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( Iterative improvement algorithms |

In many optimization problems, path is irrelevant;
the goal state itself is the solution

Then state space = set of “complete” configurations;
find optimal configuration, e.g., TSP
or, find configuration satisfying constraints, e.g., timetable

In such cases, can use iterative improvement algorithms;
keep a single “current” state, try to improve it

Constant space, suitable for online as well as offline search
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l Outline

& Hill-climbing

¢ Simulated annealing (briefly)

¢ Genetic algorithms (briefly)

¢ Local search in continuous spaces (briefly)

{» Searching with nondeterministic actions (briefly)
¢ Searching with partial observations (briefly)

¢ Online search and unknown environments (briefly)
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| Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with thou-

sands of cities
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( Example: 1-queens |

Put 7 queens on an n x n board with no two queens on the same
row, column, or diagonal

Move a queen to reduce number of conflicts

I
frerd

h=5

Almost always solves 1-queens problems almost instantaneously
for very large n, e.g., n= lmillion
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( Hill-climbing contd. |

Useful to consider state space landscape

objective function lobal maximum

shoulder

local maximum
"flat" local maximum

state space
current P

state
Random-restart hill climbing overcomes local maxima—trivially complete

Random sideways moves (©)escape from shoulders )loop on flat maxima
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| Hill-climbing (or gradient ascent/descent) |

“Like climbing Everest in thick fog with amnesia”

function HILL-CLIMBING( problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current <— MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor+<— a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current <— neighbor

end
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( Simulated annealing |

Idea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function SIMULATED-ANNEALING( problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
T, a “temperature” controlling prob. of downward steps

current <— MAKE-NODE(INITIAL-STATE[problem])
for t< 1 to oo do
T« schedule][l)
if 7= 0 then return current
next < a randomly selected successor of current
AE <« VALUE[nezt] - VALUE[current]
if AE > 0 then current < neat

else current < next only with probability e2F/
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( Properties of simulated annealing | l Local beam search |

At fixed “temperature” T, state occupation probability reaches Idea: keep k states instead of 1; choose top k of all their successors

Boltzman distribution

B Not the same as k searches run in parallel!
()

p(z) = ae*T Searches that find good states recruit other searches to join them
T decreased slowly enough = always reach best state 2~ Problem: quite often, all £k states end up on same local hill
E(z*) E(x) E(2*)—FE(x)
because ¢ 77 /e 7T = T > | forsmall T

Idea: choose k successors randomly, biased towards good ones

Is this necessarily an interesting guarantee??

Observe the close analogy to natural selection!

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.
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( Genetic algorithms | ( Genetic algorithms contd. |
= stochastic local beam search + generate successors from pairs of states GAs require states encoded as strings (GPs use programs)
24748552 52411 | 32748552 | I 327441p2 | Crossover helps iff substrings are meaningful components
32752411 48552 | 24752411 || 24752411 |
24415124 | 20 26% ~[ 32752411 [ 32752124 || 32252124 |
32543213 | 11 1% ~[ 24415124 [24415811 | ] 24415417

Fitness Selection  Pairs Cross-Over

GAs # evolution: e.g., real genes encode replication machinery!
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( Continuous state spaces |

Suppose we want to site three robot battery loading stations in the hospital:
— 6-D state space defined by (1, 1), (29, 12), (€3, y3)
— objective function [(x1, 12, 79, Yo, T3, 13) =
sum of squared distances from each location to nearest loading station

Discretization methods turn continuous space into discrete space,
e.g., empirical gradient considers +9 change in each coordinate

Gradient methods compute

Oz’ Oyy” Oxo’ Oyy’ Ox3” Oy,

to increase/reduce f, e.g., by x <~ x + o'V f(x)

Sometimes can solve for V f(x) = 0 exactly (e.g., with one location).
Newton—Raphson (1664, 1690) iterates x +— x — H;' (x)V f(x)

to solve V f(x) = 0, where H;; = 0*f /0,0
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( Searching with nondeterministic actions |

And-or search trees

For the erratic case:
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( Searching with nondeterministic actions
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Erratic vacuum world: modified Suck;

Slippery vacuum world: modified Right and Left.
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( Searching with nondeterministic actions

And-or search trees

For the slippery case:
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( Searching with nondeterministic actions |

function AND-OR-GRAPH-SEARCH(problem) returns a cond. plan, or failure
OR-SEARCH(problem. INITIAL-STATE, problem,[])

function OR-SEARCH(state,problem,path) returns a conditional plan or failure
if problem.GOAL-TEST(state) then return the empty plan
if state is on path then return failure
for each action in problem.ACTIONS(state) do
plan < AND-SEARCH(RESULTS(state,action),problem,[state | path])
if plan # failure then return [action | plan]
return failure

function AND-SEARCH(states,problem,path) returns a conditional plan or failure
for each s; in states do
plan; < OR-SEARCH(s;, problem, path)
if plan; = failure then return failure
return [if s; then plan; else if sy then plan, else if ... plan,_; else plan,, |
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( Searching with partial observations |

Deterministic case:
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( Searching with partial observations

{> no-information case:
sensorless problem, or
conformant problem
() state-space search is made in belief space

¢ Problem solving: and-or search!
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( Searching with partial observations

Local sensing, deterministic and slippery cases:
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( Searching with partial observations | [ Online search and unknown environments |

Planning for the local sensing case: Interleaving computations and actions:

$ act

{> observe the results

¢ find out (compute) next action

Useful in dynamic domains.
[B.Clean]

Online search usually exploits locality of depth-first-like methods.

@ < random walk
4
& modified hill-climbing

¢ Learning Real-Time A* (LRTA¥)

optimism under uncertainty
(unexplored areas assumed to lead to goal with least possible cost)
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