Non-classical search algorithms by Stuart Russell

MODIFIED BY JACEK MALEC FOR LTH LECTURES JANUARY 19TH, 2018

Chapter 4 of AIMA

Stuart Russell Chapter 4 of AIMA 1

Iterative improvement algorithms

In many optimization problems, **path** is irrelevant; the goal state itself is the solution

Then state space = set of "complete" configurations; find optimal configuration, e.g., TSP or, find configuration satisfying constraints, e.g., timetable

In such cases, can use iterative improvement algorithms; keep a single "current" state, try to improve it

Constant space, suitable for online as well as offline search

Outline

- ♦ Hill-climbing
- ♦ Simulated annealing (briefly)
- ♦ Genetic algorithms (briefly)
- ♦ Local search in continuous spaces (briefly)
- ♦ Searching with nondeterministic actions (briefly)
- ♦ Searching with partial observations (briefly)
- ♦ Online search and unknown environments (briefly)

Stuart Russell Chapter 4 of AIMA 2

Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with thousands of cities

Example: *n*-queens

Put n queens on an $n\times n$ board with no two queens on the same row, column, or diagonal

Move a queen to reduce number of conflicts

Almost always solves n-queens problems almost instantaneously for very large n, e.g., n=1million

© Stuart Russell Chapter 4 of AIMA 5

Hill-climbing contd.

Useful to consider state space landscape

Random-restart hill climbing overcomes local maxima—trivially complete

Random sideways moves Sescape from shoulders Sloop on flat maxima

Hill-climbing (or gradient ascent/descent)

"Like climbing Everest in thick fog with amnesia"

© Stuart Russell Chapter 4 of AIMA 6

Simulated annealing

ldea: escape local maxima by allowing some "bad" moves but gradually decrease their size and frequency

```
\begin{array}{l} \textbf{function Simulated-Annealing}(\textit{problem}, \textit{schedule}) \ \textbf{returns} \ \textbf{a} \ \textbf{solution state} \\ \textbf{inputs:} \ \textit{problem}, \ \textbf{a} \ \textbf{problem}, \ \textbf{a} \ \textbf{problem}, \ \textbf{schedule}, \ \textbf{a} \ \textbf{mapping} \ \textbf{from time to "temperature"} \\ \textbf{local variables:} \ \textit{current}, \ \textbf{a} \ \textbf{node} \\ \textit{next}, \ \textbf{a} \ \textbf{node} \\ \textit{T, a "temperature"} \ \textbf{controlling prob.} \ \textbf{of downward steps} \\ \textit{current} \leftarrow \text{Make-Node}(\text{Initial-State}[\textit{problem}]) \\ \textbf{for} \ t \leftarrow 1 \ \textbf{to} \ \textbf{odo} \\ \textit{T} \leftarrow \textit{schedule}[t] \\ \textbf{if} \ T = 0 \ \textbf{then return} \ \textit{current} \\ \textit{next} \leftarrow \text{a randomly selected successor of} \ \textit{current} \\ \textit{next} \leftarrow \text{a randomly selected successor of} \ \textit{current} \\ \textit{\DeltaE} \leftarrow \text{Value}[\textit{next}] - \text{Value}[\textit{current}] \\ \textbf{if} \ \Delta E > 0 \ \textbf{then} \ \textit{current} \leftarrow \textit{next} \\ \textbf{else} \ \textit{current} \leftarrow \textit{next} \ \text{only with probability} \ e^{\Delta E/T} \\ \end{array}
```

Stuart Russell Chapter 4 of AIMA 7 © Stuart Russell

Properties of simulated annealing

At fixed "temperature" T, state occupation probability reaches Boltzman distribution

$$p(x) = \alpha e^{\frac{E(x)}{kT}}$$

T decreased slowly enough \Longrightarrow always reach best state x^* because $e^{\frac{E(x^*)}{kT}}/e^{\frac{E(x)}{kT}}=e^{\frac{E(x^*)-E(x)}{kT}}\gg 1$ for small T

Is this necessarily an interesting guarantee??

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.

Stuart Russell

Genetic algorithms

Chapter 4 of AIMA 9

= stochastic local beam search + generate successors from pairs of states

Fitness Selection Pairs Cross-Over Mutation

Local beam search

Idea: keep k states instead of 1; choose top k of all their successors

Not the same as k searches run in parallel! Searches that find good states recruit other searches to join them

Problem: quite often, all k states end up on same local hill

Idea: choose k successors randomly, biased towards good ones

Observe the close analogy to natural selection!

Stuart Russell Chapter 4 of AIMA 10

Genetic algorithms contd.

GAs require states encoded as strings (GPs use programs)

Crossover helps iff substrings are meaningful components

 $\mathsf{GAs} \neq \mathsf{evolution} \colon \mathsf{e.g.}, \mathsf{\, real \, genes \, encode \, replication \, \, \mathsf{machinery!}}$

Continuous state spaces

Suppose we want to site three robot battery loading stations in the hospital:

- 6-D state space defined by (x_1, y_2) , (x_2, y_2) , (x_3, y_3)
- objective function $f(x_1, y_2, x_2, y_2, x_3, y_3) =$ sum of squared distances from each location to nearest loading station

Discretization methods turn continuous space into discrete space, e.g., empirical gradient considers $\pm\delta$ change in each coordinate

Gradient methods compute

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3}\right)$$

to increase/reduce f, e.g., by $\mathbf{x} \leftarrow \mathbf{x} + \alpha \nabla f(\mathbf{x})$

Sometimes can solve for $\nabla f(\mathbf{x}) = 0$ exactly (e.g., with one location). Newton–Raphson (1664, 1690) iterates $\mathbf{x} \leftarrow \mathbf{x} - \mathbf{H}_f^{-1}(\mathbf{x}) \nabla f(\mathbf{x})$ to solve $\nabla f(\mathbf{x}) = 0$, where $\mathbf{H}_{ij} = \partial^2 f/\partial x_i \partial x_j$

© Stuart Russell Chapter 4 of AIMA 13

Searching with nondeterministic actions

And-or search trees

For the erratic case:

Suck
Right
Right
Left
Loop
Loop
GOAL
Loop
Loop
GOAL
Right

Searching with nondeterministic actions

Erratic vacuum world: modified **Suck**;

Slippery vacuum world: modified Right and Left.

Stuart Russell Chapter 4 of AIMA 14

Searching with nondeterministic actions

And-or search trees

For the slippery case:

Searching with nondeterministic actions

function AND-OR-GRAPH-SEARCH(problem) returns a cond. plan, or failure OR-SEARCH(problem.INITIAL-STATE, problem,[])

function OR-SEARCH(state, problem, path) returns a conditional plan or failure if problem. GOAL-TEST(state) then return the empty plan

if state is on path then return failure

for each action in problem. ACTIONS (state) do

 $plan \leftarrow And\text{-Search}(Results(state, action), problem, [state \mid path])$

if $plan \neq failure$ then return [action | plan]

return failure

function AND-SEARCH(states, problem, path) returns a conditional plan or failure for each s_i in states do

 $plan_i \leftarrow \text{OR-SEARCH}(s_i, problem, path)$

if $plan_i = failure$ then return failure

return [if s_1 then $plan_1$ else if s_2 then $plan_2$ else if ... $plan_{n-1}$ else $plan_n$]

 $\ \ \, \odot$ Stuart Russell Chapter 4 of AIMA $\ \ \,$ 17

Searching with partial observations

Deterministic case:

Searching with partial observations

- no-information case: sensorless problem. or
 - conformant problem
- ♦ state-space search is made in **belief space**
- ♦ Problem solving: and-or search!

Stuart Russell Chapter 4 of AIMA 18

Searching with partial observations

Local sensing, deterministic and slippery cases:

Searching with partial observations

Planning for the local sensing case:

© Stuart Russell Chapter 4 of AIMA 21

Online search and unknown environments

Interleaving computations and actions:

- \Diamond act
- \Diamond observe the results
- ♦ find out (compute) next action

Useful in dynamic domains.

Online search usually exploits locality of depth-first-like methods.

- ♦ random walk
- ♦ modified hill-climbing
- ♦ Learning Real-Time A* (LRTA*)

optimism under uncertainty (unexplored areas assumed to lead to goal with least possible cost)

© Stuart Russell Chapter 4 of AIMA 22