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Outline

♦ Hill-climbing

♦ Simulated annealing (briefly)

♦ Genetic algorithms (briefly)

♦ Local search in continuous spaces (briefly)

♦ Searching with nondeterministic actions (briefly)

♦ Searching with partial observations (briefly)

♦ Online search and unknown environments (briefly)
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Iterative improvement algorithms

In many optimization problems, path is irrelevant;
the goal state itself is the solution

Then state space = set of “complete” configurations;
find optimal configuration, e.g., TSP
or, find configuration satisfying constraints, e.g., timetable

In such cases, can use iterative improvement algorithms;
keep a single “current” state, try to improve it

Constant space, suitable for online as well as offline search
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Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with thou-
sands of cities
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Example: n-queens

Put n queens on an n× n board with no two queens on the same
row, column, or diagonal

Move a queen to reduce number of conflicts

h = 5 h = 2 h = 0

Almost always solves n-queens problems almost instantaneously
for very large n, e.g., n=1million
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Hill-climbing (or gradient ascent/descent)

“Like climbing Everest in thick fog with amnesia”

function Hill-Climbing( problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node

neighbor, a node

current←Make-Node(Initial-State[problem])
loop do

neighbor← a highest-valued successor of current
if Value[neighbor] ≤ Value[current] then return State[current]
current←neighbor

end

c⃝ Stuart Russell Chapter 4 of AIMA 6

Hill-climbing contd.

Useful to consider state space landscape

current
state

objective function

state space

global maximum

local maximum
"flat" local maximum

shoulder

Random-restart hill climbing overcomes local maxima—trivially complete

Random sideways moves escape from shoulders loop on flat maxima
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Simulated annealing

Idea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function Simulated-Annealing( problem, schedule) returns a solution state
inputs: problem, a problem

schedule, a mapping from time to “temperature”
local variables: current, a node

next, a node
T, a “temperature” controlling prob. of downward steps

current←Make-Node(Initial-State[problem])
for t← 1 to ∞ do

T← schedule[t]
if T = 0 then return current

next← a randomly selected successor of current
∆E←Value[next] – Value[current]
if ∆E > 0 then current←next

else current←next only with probability e∆E/T
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Properties of simulated annealing

At fixed “temperature” T , state occupation probability reaches
Boltzman distribution

p(x) = αe
E(x)
kT

T decreased slowly enough =⇒ always reach best state x∗

because e
E(x∗)
kT /e

E(x)
kT = e

E(x∗)−E(x)
kT ≫ 1 for small T

Is this necessarily an interesting guarantee??

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.
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Local beam search

Idea: keep k states instead of 1; choose top k of all their successors

Not the same as k searches run in parallel!
Searches that find good states recruit other searches to join them

Problem: quite often, all k states end up on same local hill

Idea: choose k successors randomly, biased towards good ones

Observe the close analogy to natural selection!
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Genetic algorithms

= stochastic local beam search + generate successors from pairs of states
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Genetic algorithms contd.

GAs require states encoded as strings (GPs use programs)

Crossover helps iff substrings are meaningful components

+ =

GAs ≠ evolution: e.g., real genes encode replication machinery!
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Continuous state spaces

Suppose we want to site three robot battery loading stations in the hospital:
– 6-D state space defined by (x1, y2), (x2, y2), (x3, y3)
– objective function f(x1, y2, x2, y2, x3, y3) =

sum of squared distances from each location to nearest loading station

Discretization methods turn continuous space into discrete space,
e.g., empirical gradient considers ±δ change in each coordinate

Gradient methods compute
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to increase/reduce f , e.g., by x← x + α∇f(x)

Sometimes can solve for ∇f(x) = 0 exactly (e.g., with one location).
Newton–Raphson (1664, 1690) iterates x← x−H−1f (x)∇f(x)
to solve ∇f(x) = 0, where Hij = ∂2f/∂xi∂xj
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Searching with nondeterministic actions
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Erratic vacuum world: modified Suck;

Slippery vacuum world: modified Right and Left.
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Searching with nondeterministic actions

And-or search trees

For the erratic case:
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Searching with nondeterministic actions

And-or search trees

For the slippery case:

Right

RightSuck
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Searching with nondeterministic actions

function And-Or-Graph-Search(problem) returns a cond. plan, or failure

Or-Search(problem.Initial-State,problem,[])

function Or-Search(state,problem,path) returns a conditional plan or failure

if problem.Goal-Test(state) then return the empty plan
if state is on path then return failure

for each action in problem.Actions(state) do
plan←And-Search(Results(state,action),problem,[state | path])
if plan ≠ failure then return [action | plan]

return failure

functionAnd-Search(states,problem,path) returns a conditional plan or failure

for each si in states do

plani←Or-Search(si,problem,path)
if plani = failure then return failure

return [if s1 then plan1 else if s2 then plan2 else if ... plann−1 else plann ]
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Searching with partial observations

♦ no-information case:

sensorless problem, or

conformant problem

♦ state-space search is made in belief space

♦ Problem solving: and-or search!
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Searching with partial observations

Deterministic case:
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Searching with partial observations

Local sensing, deterministic and slippery cases:
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Searching with partial observations

Planning for the local sensing case:
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Online search and unknown environments

Interleaving computations and actions:

♦ act

♦ observe the results

♦ find out (compute) next action

Useful in dynamic domains.

Online search usually exploits locality of depth-first-like methods.

♦ random walk

♦ modified hill-climbing

♦ Learning Real-Time A* (LRTA*)

optimism under uncertainty
(unexplored areas assumed to lead to goal with least possible cost)
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