
Problem solving and search
by Stuart Russell

modified by Jacek Malec for LTH lectures
January 19th, 2018

Chapter 3 of AIMA

c⃝ Stuart Russell Chapter 3 of AIMA 1

Outline

♦ Problem-solving agents

♦ Problem types

♦ Problem formulation

♦ Example problems

♦ Basic (uninformed) search algorithms

♦ Informed search algorithms

c⃝ Stuart Russell Chapter 3 of AIMA 2

Problem-solving agents

Restricted form of general agent:

function Simple-Problem-Solving-Agent(percept) returns an action
static: seq, an action sequence, initially empty

state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state←Update-State(state, percept)
if seq is empty then

goal←Formulate-Goal(state)
problem←Formulate-Problem(state, goal)
seq←Search(problem)

action←Recommendation(seq, state)
seq←Remainder(seq, state)
return action

Note: this is offline problem solving; solution executed “eyes closed.”
Online problem solving involves acting without complete knowledge.

c⃝ Stuart Russell Chapter 3 of AIMA 3

Example: Blocket

c⃝Jorchr / Wikimedia Commons / CC-BY-SA-3.0 / GFDL

c⃝ Stuart Russell Chapter 3 of AIMA 4

Example: Blocket

Service robot Odin, delivering drugs to divisions. Currently in the Pharmacy.
There is a drug order from Intensive Care Unit.

Formulate goal:
be in Intensive Care Unit

Formulate problem:
states: various locations
actions: drive between locations

Find solution:
sequence of locations, e.g., Pharmacy, Elevator A, Surgery, ICU

c⃝ Stuart Russell Chapter 3 of AIMA 5

Example: Blocket

Pharmacy
A

C

Storage

Laundry

Laryngology Geriatrics

B

ER

Orthopedy

Nephrology

Radiology

Surgery

Ophthalmology

ICU

Dermathology140

75

71

151

80 97

101
99

211

135 95

134

118

111

145

85

142

92

98

c⃝ Stuart Russell Chapter 3 of AIMA 6

Problem types

Deterministic, fully observable =⇒ single-state problem
Agent knows exactly which state it will be in; solution is a sequence

Non-observable =⇒ conformant problem
Agent may have no idea where it is; solution (if any) is a sequence

Nondeterministic and/or partially observable =⇒ contingency problem
percepts provide new information about current state
solution is a contingent plan or a policy
often interleave search, execution

Unknown state space =⇒ exploration problem (“online”)

c⃝ Stuart Russell Chapter 3 of AIMA 7

Example: vacuum world

Single-state, start in #5. Solution??
1 2

3 4

5 6

7 8

c⃝ Stuart Russell Chapter 3 of AIMA 8

Example: vacuum world

Single-state, start in #5. Solution??
[Right, Suck]

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}. Solution??

1 2

3 4

5 6

7 8

c⃝ Stuart Russell Chapter 3 of AIMA 9

Example: vacuum world

Single-state, start in #5. Solution??
[Right, Suck]

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}. Solution??
[Right, Suck, Left, Suck]

Contingency, start in #5
Murphy’s Law: Suck can dirty a clean carpet
Local sensing: dirt, location only.
Solution??

1 2

3 4

5 6

7 8

c⃝ Stuart Russell Chapter 3 of AIMA 10

Example: vacuum world

Single-state, start in #5. Solution??
[Right, Suck]

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}. Solution??
[Right, Suck, Left, Suck]

Contingency, start in #5
Murphy’s Law: Suck can dirty a clean carpet
Local sensing: dirt, location only.
Solution??
[Right, if dirt then Suck]

1 2

3 4

5 6

7 8

c⃝ Stuart Russell Chapter 3 of AIMA 11

Single-state problem formulation

A problem is defined by four items:

initial state e.g., “at Pharmacy”

successor function S(x) = set of action–state pairs
e.g., S(Pharmacy) = {⟨Pharmacy → Storage, Storage⟩, . . .}

goal test, can be
explicit, e.g., x = “at ICU”
implicit, e.g., NoDirt(x)

path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x, a, y) is the step cost, assumed to be ≥ 0

A solution is a sequence of actions
leading from the initial state to a goal state

c⃝ Stuart Russell Chapter 3 of AIMA 12

Selecting a state space

Real world is absurdly complex
⇒ state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions
e.g., “Pharmacy → Storage” represents a complex set

of possible routes, detours, rest stops, etc.
For guaranteed realizability, any real state “in Pharmacy”

must get to some real state “in Storage”

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!

c⃝ Stuart Russell Chapter 3 of AIMA 13

Example: vacuum world state space graph
R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??
actions??
goal test??
path cost??

c⃝ Stuart Russell Chapter 3 of AIMA 14

Example: vacuum world state space graph
R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??
goal test??
path cost??

c⃝ Stuart Russell Chapter 3 of AIMA 15

Example: vacuum world state space graph
R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??
path cost??

c⃝ Stuart Russell Chapter 3 of AIMA 16

Example: vacuum world state space graph
R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt
path cost??

c⃝ Stuart Russell Chapter 3 of AIMA 17

Example: vacuum world state space graph
R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt
path cost??: 1 per action (0 for NoOp)

c⃝ Stuart Russell Chapter 3 of AIMA 18

Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states??
actions??
goal test??
path cost??

c⃝ Stuart Russell Chapter 3 of AIMA 19

Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states??: integer locations of tiles (ignore intermediate positions)
actions??
goal test??
path cost??

c⃝ Stuart Russell Chapter 3 of AIMA 20

Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??
path cost??

c⃝ Stuart Russell Chapter 3 of AIMA 21

Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)
path cost??

c⃝ Stuart Russell Chapter 3 of AIMA 22

Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)
path cost??: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

c⃝ Stuart Russell Chapter 3 of AIMA 23

Example: robotic assembly

R

RR
P

R R

states??: real-valued coordinates of robot joint angles
parts of the object to be assembled

actions??: continuous motions of robot joints

goal test??: complete assembly with no robot included!

path cost??: time to execute

c⃝ Stuart Russell Chapter 3 of AIMA 24

Tree search algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states

(a.k.a. expanding states)

function Tree-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

end

c⃝ Stuart Russell Chapter 3 of AIMA 25

Tree search example

Pharmacy

c⃝ Stuart Russell Chapter 3 of AIMA 26

Tree search example

Pharmacy

LaryngologyA Storage

c⃝ Stuart Russell Chapter 3 of AIMA 27

Tree search example

Pharmacy

LaryngologyA Storage

S

c⃝ Stuart Russell Chapter 3 of AIMA 28

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree

includes parent, children, depth, path cost g(x)
States do not have parents, children, depth, or path cost!

1

23

45

6

7

81

23

45

6

7

8

State Node depth = 6

g = 6

state

parent, action

The Expand function creates new nodes, filling in the various fields and
using the SuccessorFn of the problem to create the corresponding states.

c⃝ Stuart Russell Chapter 3 of AIMA 29

Implementation: general tree search

function Tree-Search(problem, fringe) returns a solution, or failure
fringe← Insert(Make-Node(Initial-State[problem]), fringe)
loop do

if fringe is empty then return failure
node←Remove-Front(fringe)
if Goal-Test(problem,State(node)) then return node

fringe← InsertAll(Expand(node,problem), fringe)
function Expand(node, problem) returns a set of nodes

successors← the empty set
for each action, result in Successor-Fn(problem,State[node]) do

s← a new Node

Parent-Node[s]← node; Action[s]← action; State[s]← result

Path-Cost[s]←Path-Cost[node] + Step-Cost(State[node],action,
result)

Depth[s]←Depth[node] + 1
add s to successors

return successors

c⃝ Stuart Russell Chapter 3 of AIMA 30

Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
time complexity—number of nodes generated/expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be ∞)

c⃝ Stuart Russell Chapter 3 of AIMA 31

Uninformed search strategies

Uninformed strategies use only the information available
in the problem definition

Sometimes called blind search strategies

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening search

c⃝ Stuart Russell Chapter 3 of AIMA 32

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

c⃝ Stuart Russell Chapter 3 of AIMA 33

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

c⃝ Stuart Russell Chapter 3 of AIMA 34

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

c⃝ Stuart Russell Chapter 3 of AIMA 35

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

c⃝ Stuart Russell Chapter 3 of AIMA 36

Properties of breadth-first search

Complete??

c⃝ Stuart Russell Chapter 3 of AIMA 37

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time??

c⃝ Stuart Russell Chapter 3 of AIMA 38

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space??

c⃝ Stuart Russell Chapter 3 of AIMA 39

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space?? O(bd+1) (keeps every node in memory)

Optimal??

c⃝ Stuart Russell Chapter 3 of AIMA 40

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space?? O(bd+1) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec
so 24hrs = 8640GB.

c⃝ Stuart Russell Chapter 3 of AIMA 41

Uniform-cost search

Expand least-cost unexpanded node

Implementation:
fringe = queue ordered by path cost, lowest first

Equivalent to breadth-first if step costs all equal

Complete?? Yes, if step cost ≥ ϵ

Time?? # of nodes with g ≤ cost of optimal solution, O(b⌈C
∗/ϵ⌉)

where C∗ is the cost of the optimal solution

Space?? # of nodes with g ≤ cost of optimal solution, O(b⌈C
∗/ϵ⌉)

Optimal?? Yes—nodes expanded in increasing order of g(n)

c⃝ Stuart Russell Chapter 3 of AIMA 42

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

c⃝ Stuart Russell Chapter 3 of AIMA 43

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

c⃝ Stuart Russell Chapter 3 of AIMA 44

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

c⃝ Stuart Russell Chapter 3 of AIMA 45

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

c⃝ Stuart Russell Chapter 3 of AIMA 46

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

c⃝ Stuart Russell Chapter 3 of AIMA 47

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

c⃝ Stuart Russell Chapter 3 of AIMA 48

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

c⃝ Stuart Russell Chapter 3 of AIMA 49

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

c⃝ Stuart Russell Chapter 3 of AIMA 50

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

c⃝ Stuart Russell Chapter 3 of AIMA 51

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

c⃝ Stuart Russell Chapter 3 of AIMA 52

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

c⃝ Stuart Russell Chapter 3 of AIMA 53

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

c⃝ Stuart Russell Chapter 3 of AIMA 54

Properties of depth-first search

Complete??

c⃝ Stuart Russell Chapter 3 of AIMA 55

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time??

c⃝ Stuart Russell Chapter 3 of AIMA 56

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space??

c⃝ Stuart Russell Chapter 3 of AIMA 57

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal??

c⃝ Stuart Russell Chapter 3 of AIMA 58

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal?? No

c⃝ Stuart Russell Chapter 3 of AIMA 59

Depth-limited search

= depth-first search with depth limit l,
i.e., nodes at depth l have no successors

Recursive implementation:

function Depth-Limited-Search(problem, limit) returns soln/fail/cutoff
Recursive-DLS(Make-Node(Initial-State[problem]),problem, limit)

function Recursive-DLS(node,problem, limit) returns soln/fail/cutoff
cutoff-occurred?← false
if Goal-Test(problem,State[node]) then return node

else if Depth[node] = limit then return cutoff

else for each successor in Expand(node,problem) do
result←Recursive-DLS(successor,problem, limit)
if result = cutoff then cutoff-occurred?← true
else if result ≠ failure then return result

if cutoff-occurred? then return cutoff else return failure

c⃝ Stuart Russell Chapter 3 of AIMA 60

Iterative deepening search

function Iterative-Deepening-Search(problem) returns a solution
inputs: problem, a problem

for depth← 0 to ∞ do

result←Depth-Limited-Search(problem, depth)
if result ≠ cutoff then return result

end

c⃝ Stuart Russell Chapter 3 of AIMA 61

Iterative deepening search l = 0

Limit = 0 A A

c⃝ Stuart Russell Chapter 3 of AIMA 62

Iterative deepening search l = 1

Limit = 1 A

B C

A

B C

A

B C

A

B C

c⃝ Stuart Russell Chapter 3 of AIMA 63

Iterative deepening search l = 2

Limit = 2 A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

c⃝ Stuart Russell Chapter 3 of AIMA 64

Iterative deepening search l = 3

Limit = 3

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

c⃝ Stuart Russell Chapter 3 of AIMA 65

Properties of iterative deepening search

Complete??

c⃝ Stuart Russell Chapter 3 of AIMA 66

Properties of iterative deepening search

Complete?? Yes

Time??

c⃝ Stuart Russell Chapter 3 of AIMA 67

Properties of iterative deepening search

Complete?? Yes

Time?? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

Space??

c⃝ Stuart Russell Chapter 3 of AIMA 68

Properties of iterative deepening search

Complete?? Yes

Time?? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

Space?? O(bd)

Optimal??

c⃝ Stuart Russell Chapter 3 of AIMA 69

Properties of iterative deepening search

Complete?? Yes

Time?? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

Space?? O(bd)

Optimal?? Yes, if step cost = 1
Can be modified to explore uniform-cost tree

Numerical comparison for b = 10 and d = 5, solution at far right leaf:

N(IDS) = 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450

N(BFS) = 10 + 100 + 1, 000 + 10, 000 + 100, 000 + 999, 990 = 1, 111, 100

IDS does better because other nodes at depth d are not expanded

BFS can be modified to apply goal test when a node is generated

c⃝ Stuart Russell Chapter 3 of AIMA 70

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening

Complete? Yes∗ Yes∗ No Yes, if l ≥ d Yes
Time bd+1 b⌈C

∗/ϵ⌉ bm bl bd

Space bd+1 b⌈C
∗/ϵ⌉ bm bl bd

Optimal? Yes∗ Yes No No Yes∗

c⃝ Stuart Russell Chapter 3 of AIMA 71

Repeated states

Failure to detect repeated states can turn a linear problem into an exponential
one!

A

B

C

D

A

BB

CCCC

c⃝ Stuart Russell Chapter 3 of AIMA 72

Graph search

function Graph-Search(problem, fringe) returns a solution, or failure

closed← an empty set
fringe← Insert(Make-Node(Initial-State[problem]), fringe)
loop do

if fringe is empty then return failure
node←Remove-Front(fringe)
if Goal-Test(problem,State[node]) then return node

if State[node] is not in closed then

add State[node] to closed

fringe← InsertAll(Expand(node,problem), fringe)
end

c⃝ Stuart Russell Chapter 3 of AIMA 73

Partial summary

Problem formulation usually requires abstracting away real-world details to
define a state space that can feasibly be explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space
and not much more time than other uninformed algorithms

Graph search can be exponentially more efficient than tree search

c⃝ Stuart Russell Chapter 3 of AIMA 74

Informed Search Algorithms

♦ Best-first search

♦ A∗ search

♦ Heuristics

c⃝ Stuart Russell Chapter 3 of AIMA 75

Best-first search

Idea: use an evaluation function for each node
– estimate of “desirability”

⇒ Expand most desirable unexpanded node

Implementation:
fringe is a queue sorted in decreasing order of desirability

Special cases:
greedy search
A∗ search

c⃝ Stuart Russell Chapter 3 of AIMA 76

Blocket with distances in seconds

Pharmacy
A

C

Storage

Laundry

Laryngology Geriatrics

B

ER

Orthopedy

Nephrology

Radiology

Surgery

Ophthalmology

ICU

Dermathology140

75

71

151

80 97

101
99

211

135 95

134

118

111

145

85

142

92

98

Direct 3D distances to ICU

Radiology
Orthopedy
B
Nephrology
Dermathology
Ophthalmology
A
Surgery
C
ER
Geriatrics
Laryngology
Pharmacy
Storage
Laundry
ICU

2
285
130
250

90
110
230
100

77
1
280
312
280
235
220

0

c⃝ Stuart Russell Chapter 3 of AIMA 77

Greedy search

Evaluation function h(n) (heuristic)
= estimate of cost from n to the closest goal

E.g., hSLD(n) = straight-line distance from n to ICU

Greedy search expands the node that appears to be closest to goal

c⃝ Stuart Russell Chapter 3 of AIMA 78

Greedy search example

Pharmacy

280

c⃝ Stuart Russell Chapter 3 of AIMA 79

Greedy search example

Pharmacy

LaryngologyA Storage

28

2 2

c⃝ Stuart Russell Chapter 3 of AIMA 80

Greedy search example

Pharmacy

LaryngologyA Storage

SurgeryGeriatrics PharmacyOpthalmology

280

230 312 235

280 110 100 280

c⃝ Stuart Russell Chapter 3 of AIMA 81

Greedy search example

Pharmacy

Storage

SurgeryGeriatrics PharmacyOpthalmology

280

230 312 235

280 110 100 280

C

230 0

c⃝ Stuart Russell Chapter 3 of AIMA 82

Properties of greedy search

Complete??

c⃝ Stuart Russell Chapter 3 of AIMA 83

Properties of greedy search

Complete?? No–can get stuck in loops, e.g., with Geriatrics as goal,
Radiology → Orthopedy → Radiology → Orthopedy →

Complete in finite space with repeated-state checking

Time??

c⃝ Stuart Russell Chapter 3 of AIMA 84

Properties of greedy search

Complete?? No–can get stuck in loops, e.g.,
Radiology → Orthopedy → Radiology → Orthopedy →

Complete in finite space with repeated-state checking

Time?? O(bm), but a good heuristic can give dramatic improvement

Space??

c⃝ Stuart Russell Chapter 3 of AIMA 85

Properties of greedy search

Complete?? No–can get stuck in loops, e.g.,
Radiology → Orthopedy → Radiology → Orthopedy →

Complete in finite space with repeated-state checking

Time?? O(bm), but a good heuristic can give dramatic improvement

Space?? O(bm)—keeps all nodes in memory

Optimal??

c⃝ Stuart Russell Chapter 3 of AIMA 86

Properties of greedy search

Complete?? No–can get stuck in loops, e.g.,
Radiology → Orthopedy → Radiology → Orthopedy →

Complete in finite space with repeated-state checking

Time?? O(bm), but a good heuristic can give dramatic improvement

Space?? O(bm)—keeps all nodes in memory

Optimal?? No

c⃝ Stuart Russell Chapter 3 of AIMA 87

A∗ search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n
h(n) = estimated cost to goal from n
f(n) = estimated total cost of path through n to goal

A∗ search uses an admissible heuristic
i.e., h(n) ≤ h∗(n) where h∗(n) is the true cost from n.
(Also require h(n) ≥ 0, so h(G) = 0 for any goal G.)

E.g., hSLD(n) never overestimates the actual road distance

Theorem: A∗ search is optimal

c⃝ Stuart Russell Chapter 3 of AIMA 88

A∗ search example

Pharmacy

0+280=280

c⃝ Stuart Russell Chapter 3 of AIMA 89

A∗ search example

P

Storage

0+

75+

c⃝ Stuart Russell Chapter 3 of AIMA 90

A∗ search example

Pharmacy

Storage

LaundryPharmacy

0+280=280

140+230=370 75+312=387 118+235=353

236+280=516 229+220=449

c⃝ Stuart Russell Chapter 3 of AIMA 91

A∗ search example

Pharmacy

Storage

Surgery Laundry

75

29 22 239 28 23 229

c⃝ Stuart Russell Chapter 3 of AIMA 92

A∗ search example

Pharmacy

Storage

Surgery LaundryGeriatrics PharmacyPharmacyOpthalmology

0+280=280

140+230=370 75+312=387 118+235=353

291+280=571 220+110=330 239+100=339 280+280=560 230+286=516 229+220=449

ADermathology

317+90=407 300+230=530

c⃝ Stuart Russell Chapter 3 of AIMA 93

A∗ search example

Pharmacy

Storage

SurgeryGeriatrics PharmacyPharmacyOpthalmology

0+280=280

140+230=370 75+312=387 118+235=353

291+280=571 220+110=330 239+100=339 280+280=560 230+286=516 229+220=449

ADermathology

317+90=407 300+230=530

A

374+77=451 338+230=568 450+0=450

c⃝ Stuart Russell Chapter 3 of AIMA 94

A∗ search example

Pharmacy

Storage

Surgery Geriatrics LaundryGeriatrics Pharmacy PharmacyPharmacyOpthalmology

0+280=280

140+230=370 75+312=387 118+235=353

291+280=571 220+110=330 239+100=339 280+280=560 230+286=516 229+220=449

ADermathology

317+90=407 300+230=530

C A ICU

374+77=451 338+230=568 450+0=450

150+280=430 146+280=426

c⃝ Stuart Russell Chapter 3 of AIMA 95

A∗ search example

Pharmacy

Storage

Surgery Geriatrics LaundryGeriatrics Pharmacy PharmacyPharmacyOpthalmology

0+280=280

140+230=370 75+312=387 118+235=353

291+280=571 220+110=330 239+100=339 280+280=560 230+286=516 229+220=449

ADermathology

317+90=407 300+230=530

C A ICU

374+77=451 338+230=568 450+0=450

150+280=430 146+280=426

Opthalmology ICU

414+110=524 418+0=418 402+130=532

c⃝ Stuart Russell Chapter 3 of AIMA 96

Optimality of A∗ (standard proof)

Suppose some suboptimal goal G2 has been generated and is in the queue.
Let n be an unexpanded node on a shortest path to an optimal goal G1.

G

n

G2

Start

f(G2) = g(G2) since h(G2) = 0

> g(G1) since G2 is suboptimal

≥ f(n) since h is admissible

Since f(G2) > f(n), A∗ will never select G2 for expansion

c⃝ Stuart Russell Chapter 3 of AIMA 97

Properties of A∗

Complete??

c⃝ Stuart Russell Chapter 3 of AIMA 98

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)

Time??

c⃝ Stuart Russell Chapter 3 of AIMA 99

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)

Time?? Exponential in [relative error in h × length of solution]

Space??

c⃝ Stuart Russell Chapter 3 of AIMA 100

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)

Time?? Exponential in [relative error in h × length of soln.]

Space?? Keeps all nodes in memory

Optimal??

c⃝ Stuart Russell Chapter 3 of AIMA 101

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)

Time?? Exponential in [relative error in h × length of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand fi+1 until fi is finished

A∗ expands all nodes with f(n) < C∗

A∗ expands some nodes with f(n) = C∗

A∗ expands no nodes with f(n) > C∗

c⃝ Stuart Russell Chapter 3 of AIMA 102

Admissible heuristics

E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) =??
h2(S) =??

c⃝ Stuart Russell Chapter 3 of AIMA 103

Admissible heuristics

E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) =?? 6
h2(S) =?? 4+0+3+3+1+0+2+1 = 14

c⃝ Stuart Russell Chapter 3 of AIMA 104

Dominance

If h2(n) ≥ h1(n) for all n (both admissible)
then h2 dominates h1 and is better for search

Typical search costs:

d = 14 IDS = 3,473,941 nodes
A∗(h1) = 539 nodes
A∗(h2) = 113 nodes

d = 24 IDS ≈ 54,000,000,000 nodes
A∗(h1) = 39,135 nodes
A∗(h2) = 1,641 nodes

Given any admissible heuristics ha, hb,

h(n) = max(ha(n), hb(n))

is also admissible and dominates ha, hb

c⃝ Stuart Russell Chapter 3 of AIMA 105

Relaxed problems

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then h1(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then h2(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem

c⃝ Stuart Russell Chapter 3 of AIMA 106

Summary

Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest h
– incomplete and not always optimal

A∗ search expands lowest g + h
– complete and optimal
– also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems

c⃝ Stuart Russell Chapter 3 of AIMA 107

