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Problem-solving agents

Restricted form of general agent:

function Simple-Problem-Solving-Agent( percept) returns an action
static: seq, an action sequence, initially empty

state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state←Update-State(state, percept)
if seq is empty then

goal←Formulate-Goal(state)
problem←Formulate-Problem(state, goal)
seq←Search( problem)

action←Recommendation(seq, state)
seq←Remainder(seq, state)
return action

Note: this is offline problem solving; solution executed “eyes closed.”
Online problem solving involves acting without complete knowledge.
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Example: Blocket
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Example: Blocket

Service robot Odin, delivering drugs to divisions. Currently in the Pharmacy.
There is a drug order from Intensive Care Unit.

Formulate goal:
be in Intensive Care Unit

Formulate problem:
states: various locations
actions: drive between locations

Find solution:
sequence of locations, e.g., Pharmacy, Elevator A, Surgery, ICU
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Example: Blocket
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Problem types

Deterministic, fully observable =⇒ single-state problem
Agent knows exactly which state it will be in; solution is a sequence

Non-observable =⇒ conformant problem
Agent may have no idea where it is; solution (if any) is a sequence

Nondeterministic and/or partially observable =⇒ contingency problem
percepts provide new information about current state
solution is a contingent plan or a policy
often interleave search, execution

Unknown state space =⇒ exploration problem (“online”)
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Example: vacuum world

Single-state, start in #5. Solution??
1 2

3 4

5 6

7 8
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Example: vacuum world

Single-state, start in #5. Solution??
[Right, Suck]

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}. Solution??

1 2

3 4

5 6

7 8
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Example: vacuum world

Single-state, start in #5. Solution??
[Right, Suck]

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}. Solution??
[Right, Suck, Left, Suck]

Contingency, start in #5
Murphy’s Law: Suck can dirty a clean carpet
Local sensing: dirt, location only.
Solution??

1 2

3 4

5 6

7 8
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Example: vacuum world

Single-state, start in #5. Solution??
[Right, Suck]

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}. Solution??
[Right, Suck, Left, Suck]

Contingency, start in #5
Murphy’s Law: Suck can dirty a clean carpet
Local sensing: dirt, location only.
Solution??
[Right, if dirt then Suck]

1 2

3 4

5 6

7 8
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Single-state problem formulation

A problem is defined by four items:

initial state e.g., “at Pharmacy”

successor function S(x) = set of action–state pairs
e.g., S(Pharmacy) = {⟨Pharmacy → Storage, Storage⟩, . . .}

goal test, can be
explicit, e.g., x = “at ICU”
implicit, e.g., NoDirt(x)

path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x, a, y) is the step cost, assumed to be ≥ 0

A solution is a sequence of actions
leading from the initial state to a goal state
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Selecting a state space

Real world is absurdly complex
⇒ state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions
e.g., “Pharmacy → Storage” represents a complex set

of possible routes, detours, rest stops, etc.
For guaranteed realizability, any real state “in Pharmacy”

must get to some real state “in Storage”

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!
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Example: vacuum world state space graph
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Example: vacuum world state space graph
R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??
goal test??
path cost??
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Example: vacuum world state space graph
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states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??
path cost??
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Example: vacuum world state space graph
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states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt
path cost??
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Example: vacuum world state space graph
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states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt
path cost??: 1 per action (0 for NoOp)

c⃝ Stuart Russell Chapter 3 of AIMA 18

Example: The 8-puzzle

2
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actions??
goal test??
path cost??
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Example: The 8-puzzle
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Start State Goal State
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states??: integer locations of tiles (ignore intermediate positions)
actions??
goal test??
path cost??
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Example: The 8-puzzle

2

Start State Goal State
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states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??
path cost??
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Example: The 8-puzzle

2

Start State Goal State

51 3
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states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)
path cost??
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Example: The 8-puzzle

2

Start State Goal State

51 3
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states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)
path cost??: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]
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Example: robotic assembly

R

RR
P

R R

states??: real-valued coordinates of robot joint angles
parts of the object to be assembled

actions??: continuous motions of robot joints

goal test??: complete assembly with no robot included!

path cost??: time to execute
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Tree search algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states

(a.k.a. expanding states)

function Tree-Search( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

end
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Tree search example

Pharmacy
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Tree search example

Pharmacy

LaryngologyA Storage
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Tree search example

Pharmacy

LaryngologyA Storage

S
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Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree

includes parent, children, depth, path cost g(x)
States do not have parents, children, depth, or path cost!
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State Node depth = 6

g = 6

state

parent, action

The Expand function creates new nodes, filling in the various fields and
using the SuccessorFn of the problem to create the corresponding states.
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Implementation: general tree search

function Tree-Search( problem, fringe) returns a solution, or failure
fringe← Insert(Make-Node(Initial-State[problem]), fringe)
loop do

if fringe is empty then return failure
node←Remove-Front(fringe)
if Goal-Test(problem,State(node)) then return node

fringe← InsertAll(Expand(node,problem), fringe)
function Expand(node, problem) returns a set of nodes

successors← the empty set
for each action, result in Successor-Fn(problem,State[node]) do

s← a new Node

Parent-Node[s]← node; Action[s]← action; State[s]← result

Path-Cost[s]←Path-Cost[node] + Step-Cost(State[node],action,
result)

Depth[s]←Depth[node] + 1
add s to successors

return successors
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Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
time complexity—number of nodes generated/expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be ∞)
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Uninformed search strategies

Uninformed strategies use only the information available
in the problem definition

Sometimes called blind search strategies

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening search
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Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G
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Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end
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Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end
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Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end
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Properties of breadth-first search

Complete??
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Properties of breadth-first search

Complete?? Yes (if b is finite)

Time??
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Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space??
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Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space?? O(bd+1) (keeps every node in memory)

Optimal??

c⃝ Stuart Russell Chapter 3 of AIMA 40



Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space?? O(bd+1) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec
so 24hrs = 8640GB.
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Uniform-cost search

Expand least-cost unexpanded node

Implementation:
fringe = queue ordered by path cost, lowest first

Equivalent to breadth-first if step costs all equal

Complete?? Yes, if step cost ≥ ϵ

Time?? # of nodes with g ≤ cost of optimal solution, O(b⌈C
∗/ϵ⌉)

where C∗ is the cost of the optimal solution

Space?? # of nodes with g ≤ cost of optimal solution, O(b⌈C
∗/ϵ⌉)

Optimal?? Yes—nodes expanded in increasing order of g(n)
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

c⃝ Stuart Russell Chapter 3 of AIMA 45

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

c⃝ Stuart Russell Chapter 3 of AIMA 49

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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H I J K L M N O
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Properties of depth-first search

Complete??
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Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time??

c⃝ Stuart Russell Chapter 3 of AIMA 56



Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space??
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Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal??
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Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal?? No
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Depth-limited search

= depth-first search with depth limit l,
i.e., nodes at depth l have no successors

Recursive implementation:

function Depth-Limited-Search( problem, limit) returns soln/fail/cutoff
Recursive-DLS(Make-Node(Initial-State[problem]),problem, limit)

function Recursive-DLS(node,problem, limit) returns soln/fail/cutoff
cutoff-occurred?← false
if Goal-Test(problem,State[node]) then return node

else if Depth[node] = limit then return cutoff

else for each successor in Expand(node,problem) do
result←Recursive-DLS(successor,problem, limit)
if result = cutoff then cutoff-occurred?← true
else if result ≠ failure then return result

if cutoff-occurred? then return cutoff else return failure
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Iterative deepening search

function Iterative-Deepening-Search( problem) returns a solution
inputs: problem, a problem

for depth← 0 to ∞ do

result←Depth-Limited-Search( problem, depth)
if result ≠ cutoff then return result

end
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Iterative deepening search l = 0

Limit = 0 A A
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Iterative deepening search l = 1

Limit = 1 A
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Iterative deepening search l = 2
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Iterative deepening search l = 3

Limit = 3
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Properties of iterative deepening search

Complete??
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Properties of iterative deepening search

Complete?? Yes

Time??
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Properties of iterative deepening search

Complete?? Yes

Time?? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

Space??
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Properties of iterative deepening search

Complete?? Yes

Time?? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

Space?? O(bd)

Optimal??
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Properties of iterative deepening search

Complete?? Yes

Time?? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

Space?? O(bd)

Optimal?? Yes, if step cost = 1
Can be modified to explore uniform-cost tree

Numerical comparison for b = 10 and d = 5, solution at far right leaf:

N(IDS) = 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450

N(BFS) = 10 + 100 + 1, 000 + 10, 000 + 100, 000 + 999, 990 = 1, 111, 100

IDS does better because other nodes at depth d are not expanded

BFS can be modified to apply goal test when a node is generated
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Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening

Complete? Yes∗ Yes∗ No Yes, if l ≥ d Yes
Time bd+1 b⌈C

∗/ϵ⌉ bm bl bd

Space bd+1 b⌈C
∗/ϵ⌉ bm bl bd

Optimal? Yes∗ Yes No No Yes∗
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Repeated states

Failure to detect repeated states can turn a linear problem into an exponential
one!

A

B

C

D

A

BB

CCCC
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Graph search

function Graph-Search( problem, fringe) returns a solution, or failure

closed← an empty set
fringe← Insert(Make-Node(Initial-State[problem]), fringe)
loop do

if fringe is empty then return failure
node←Remove-Front(fringe)
if Goal-Test(problem,State[node]) then return node

if State[node] is not in closed then

add State[node] to closed

fringe← InsertAll(Expand(node,problem), fringe)
end
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Partial summary

Problem formulation usually requires abstracting away real-world details to
define a state space that can feasibly be explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space
and not much more time than other uninformed algorithms

Graph search can be exponentially more efficient than tree search
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Informed Search Algorithms

♦ Best-first search

♦ A∗ search

♦ Heuristics
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Best-first search

Idea: use an evaluation function for each node
– estimate of “desirability”

⇒ Expand most desirable unexpanded node

Implementation:
fringe is a queue sorted in decreasing order of desirability

Special cases:
greedy search
A∗ search
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Blocket with distances in seconds

Pharmacy
A

C
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Direct 3D distances to ICU

Radiology
Orthopedy
B
Nephrology
Dermathology
Ophthalmology
A
Surgery
C
ER
Geriatrics
Laryngology
Pharmacy
Storage
Laundry
ICU

2
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250

90
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230
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77
1
280
312
280
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220

0
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Greedy search

Evaluation function h(n) (heuristic)
= estimate of cost from n to the closest goal

E.g., hSLD(n) = straight-line distance from n to ICU

Greedy search expands the node that appears to be closest to goal
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Greedy search example

Pharmacy

280
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Greedy search example

Pharmacy

LaryngologyA Storage

28

2 2
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Greedy search example

Pharmacy

LaryngologyA Storage

SurgeryGeriatrics PharmacyOpthalmology

280

230 312 235

280 110 100 280
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Greedy search example

Pharmacy

Storage

SurgeryGeriatrics PharmacyOpthalmology

280

230 312 235

280 110 100 280

C

230 0
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Properties of greedy search

Complete??
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Properties of greedy search

Complete?? No–can get stuck in loops, e.g., with Geriatrics as goal,
Radiology → Orthopedy → Radiology → Orthopedy →

Complete in finite space with repeated-state checking

Time??

c⃝ Stuart Russell Chapter 3 of AIMA 84



Properties of greedy search

Complete?? No–can get stuck in loops, e.g.,
Radiology → Orthopedy → Radiology → Orthopedy →

Complete in finite space with repeated-state checking

Time?? O(bm), but a good heuristic can give dramatic improvement

Space??
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Properties of greedy search

Complete?? No–can get stuck in loops, e.g.,
Radiology → Orthopedy → Radiology → Orthopedy →

Complete in finite space with repeated-state checking

Time?? O(bm), but a good heuristic can give dramatic improvement

Space?? O(bm)—keeps all nodes in memory

Optimal??
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Properties of greedy search

Complete?? No–can get stuck in loops, e.g.,
Radiology → Orthopedy → Radiology → Orthopedy →

Complete in finite space with repeated-state checking

Time?? O(bm), but a good heuristic can give dramatic improvement

Space?? O(bm)—keeps all nodes in memory

Optimal?? No
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A∗ search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n
h(n) = estimated cost to goal from n
f(n) = estimated total cost of path through n to goal

A∗ search uses an admissible heuristic
i.e., h(n) ≤ h∗(n) where h∗(n) is the true cost from n.
(Also require h(n) ≥ 0, so h(G) = 0 for any goal G.)

E.g., hSLD(n) never overestimates the actual road distance

Theorem: A∗ search is optimal
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A∗ search example

Pharmacy

0+280=280
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A∗ search example

P

Storage

0+

75+
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A∗ search example

Pharmacy

Storage

LaundryPharmacy

0+280=280

140+230=370 75+312=387 118+235=353

236+280=516 229+220=449
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A∗ search example

Pharmacy

Storage

Surgery Laundry

75

29 22 239 28 23 229
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A∗ search example

Pharmacy

Storage

Surgery LaundryGeriatrics PharmacyPharmacyOpthalmology

0+280=280

140+230=370 75+312=387 118+235=353

291+280=571 220+110=330 239+100=339 280+280=560 230+286=516 229+220=449

ADermathology

317+90=407 300+230=530
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A∗ search example

Pharmacy

Storage

SurgeryGeriatrics PharmacyPharmacyOpthalmology

0+280=280

140+230=370 75+312=387 118+235=353

291+280=571 220+110=330 239+100=339 280+280=560 230+286=516 229+220=449

ADermathology

317+90=407 300+230=530

A

374+77=451 338+230=568 450+0=450

c⃝ Stuart Russell Chapter 3 of AIMA 94

A∗ search example

Pharmacy

Storage

Surgery Geriatrics LaundryGeriatrics Pharmacy PharmacyPharmacyOpthalmology

0+280=280

140+230=370 75+312=387 118+235=353

291+280=571 220+110=330 239+100=339 280+280=560 230+286=516 229+220=449

ADermathology

317+90=407 300+230=530

C A ICU

374+77=451 338+230=568 450+0=450

150+280=430 146+280=426
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A∗ search example

Pharmacy

Storage

Surgery Geriatrics LaundryGeriatrics Pharmacy PharmacyPharmacyOpthalmology

0+280=280

140+230=370 75+312=387 118+235=353

291+280=571 220+110=330 239+100=339 280+280=560 230+286=516 229+220=449

ADermathology

317+90=407 300+230=530

C A ICU

374+77=451 338+230=568 450+0=450

150+280=430 146+280=426

Opthalmology ICU

414+110=524 418+0=418 402+130=532
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Optimality of A∗ (standard proof)

Suppose some suboptimal goal G2 has been generated and is in the queue.
Let n be an unexpanded node on a shortest path to an optimal goal G1.

G

n

G2

Start

f(G2) = g(G2) since h(G2) = 0

> g(G1) since G2 is suboptimal

≥ f(n) since h is admissible

Since f(G2) > f(n), A∗ will never select G2 for expansion
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Properties of A∗

Complete??
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Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)

Time??
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Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)

Time?? Exponential in [relative error in h × length of solution]

Space??
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Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)

Time?? Exponential in [relative error in h × length of soln.]

Space?? Keeps all nodes in memory

Optimal??
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Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)

Time?? Exponential in [relative error in h × length of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand fi+1 until fi is finished

A∗ expands all nodes with f(n) < C∗

A∗ expands some nodes with f(n) = C∗

A∗ expands no nodes with f(n) > C∗
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Admissible heuristics

E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) =??
h2(S) =??
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Admissible heuristics

E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) =?? 6
h2(S) =?? 4+0+3+3+1+0+2+1 = 14
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Dominance

If h2(n) ≥ h1(n) for all n (both admissible)
then h2 dominates h1 and is better for search

Typical search costs:

d = 14 IDS = 3,473,941 nodes
A∗(h1) = 539 nodes
A∗(h2) = 113 nodes

d = 24 IDS ≈ 54,000,000,000 nodes
A∗(h1) = 39,135 nodes
A∗(h2) = 1,641 nodes

Given any admissible heuristics ha, hb,

h(n) = max(ha(n), hb(n))

is also admissible and dominates ha, hb
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Relaxed problems

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then h1(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then h2(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem
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Summary

Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest h
– incomplete and not always optimal

A∗ search expands lowest g + h
– complete and optimal
– also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems
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