
Probabilistic reasoning over time -
Hidden Markov Models

Applied artificial intelligence (EDAF70)
Lecture 05
2019-02-06
Elin A. Topp

Material based on course book, chapter 15

 1

Tracking and associating... while moving ...

 2

−1000 0 1000 2000 3000 4000 5000
−1000

0

1000

2000

3000

4000

5000

Distance in mm relative to robot start position

D
is

ta
nc

e
in

 m
m

 re
la

tiv
e

to
 ro

bo
t s

ta
rt

po
si

tio
n

Target 0
Target 1
Target 2
Robot
Robot (1)

−1000 0 1000 2000 3000 4000 5000
−1000

0

1000

2000

3000

4000

5000

Distance in mm relative to robot start position

D
is

ta
nc

e
in

 m
m

 re
la

tiv
e

to
 ro

bo
t s

ta
rt

po
si

tio
n

Target 3
Target 4
Robot (1)
Robot
Robot (2)

−1000 0 1000 2000 3000 4000 5000
−1000

0

1000

2000

3000

4000

5000

Distance in mm relative to robot start position

D
is

ta
nc

e
in

 m
m

 re
la

tiv
e

to
 ro

bo
t s

ta
rt

po
si

tio
n

Target 5
Target 6
Target 7
Target 8
Robot (1)
Robot

Probabilistic reasoning over time

 3

... means to keep track of the current state of

- a process (temperature controller, other controllers)

- an agent with respect to the world (localisation of a robot in some “world”)

in order to make predictions or to simply understand what might have caused this
current state.

This involves both a transition model (how the state is assumed to change) and a
sensor model (how observations / percepts are related to the world state).

Previously:

the focus was on what was possible to happen (e.g., search), now it is on what is
likely / unlikely to happen

the focus was on static worlds (Bayesian networks), now we look at dynamic
processes where everything, both state AND observations, depend on time.

Three classes of approaches

 4

Hidden Markov models

Probabilistic filters (Kalman or Particle filters, Gaussian Mixture Models)

Dynamic Bayesian networks (cover actually the other two as special cases)

But first, some basics ...

Observable and “hidden” variables

 5

Alarm

JohnCalls MaryCalls

Burglary

Earthquake

P(B)

0,001 P(E)

0,002

A P(J|A)

T 0,9

F 0,05

A P(M|A)

T 0,7

F 0,01

B E P(A|B,E)

T T 0,95

T F 0,94

F T 0,29

F F 0,001

The Markov assumption

 6

A process is Markov (i.e., complies with the Markov assumption), when any given

state Xt depends only on a finite and fixed number of previous states.

155

Xt–2 Xt–1 Xt(a)

(b)

Xt+1 Xt+2

Xt–2 Xt–1 Xt Xt+1 Xt+2

Figure 15.1 FILES: figures/markov-processes.eps (Tue Nov 3 16:23:08 2009). (a) Bayesian net-
work structure corresponding to a first-order Markov process with state defined by the variables Xt. (b)
A second-order Markov process.

A first-order Markov chain as Bayesian network

 7

Raint-1 Raint Raint+1

Umbrellat-1 Umbrellat Umbrellat+1

Rt-1 P(Rt | Rt-1)

T 0.7

F 0.3

Rt P(Ut | Rt)

T 0.9

F 0.2

“cause” / state

“effect” / evidence

Inference for any t

 8

ℙ(X0:t, E1:t) = ℙ(X0) ∏ ℙ(Xi | Xi-1) ℙ(Ei | Xi)
t

i=1

With

ℙ(X0) the prior probability distribution in t=0 (i.e., the initial state model),

ℙ(Xi | Xi-1) the state transition model and

ℙ(Ei | Xi) the sensor model

we have the complete joint distribution for all variables for any t.

An issue with the Markov assumption

 9

First-order Markov chain:

 State variables (at t) contain ALL information needed for t+1.

Sometimes, that is too strong an assumption (or too weak in some sense).

Hence, increase either the order (second-order Markov chain)

or

add information into the state variable(s) (R could include also Season, Humidity,
Pressure, Location, instead of only “Rain”)

Note: It is possible to express an increase in order by increasing the number of state
variables, keeping the order fixed - for the umbrella world you could use

R = <RainYesterday, RainToday>

When things get too complex, rather add another sensor (e.g., observe coats).

Inference in temporal models
- what can we use all this for?

 10

• Filtering: Finding the belief state, or doing state estimation, i.e.,
computing the posterior distribution over the most recent state, using evidence up
to this point:  
ℙ(Xt | e1:t)

• Predicting: Computing the posterior over a future state, using evidence up to
this point: ℙ(Xt+k | e1:t) for some k>0 (can be used to evaluate course of action
based on predicted outcome)

• Smoothing: Computing the posterior over a past state, i.e., understand the past,

given information up to this point: ℙ(Xk | e1:t) for some k with 0 ≤ k < t

• Explaining: Find the best explanation for a series of observations, i.e., computing  
argmaxx1:t P(x1:t | e1:t) - can be efficiently handled by Viterbi algorithm

• Learning: If sensor and / or transition model are not known, they can be learned
from observations (by-product of inference in Bayesian network - both static or
dynamic). Inference gives estimates, estimates are used to update the model,
updated models provide new estimates (by inference). Iterate until converging -
again, this is an instance of the EM-algorithm.

“HMM”
Hidden Markov models

 11

A specific class of models (sensor and transition) to be plugged into such algorithms - which
makes the algorithms more specific as well!

Main idea:

The state is represented by a single discrete random variable, taking on values that represent the
(all) possible states of the world.

Complex states, e.g., the location and the heading of a robot in a grid world can be merged into
one variable; the possible values are then all possible tuples of the values for each original
“single” variable.

The state is then assumed not to be observable directly, but some observations of “sensor
readings” can be made.

Filtering:
Prediction & update (FORWARD-step)

 12

 ℙ(Xt+1 | e1:t+1) = f(ℙ(Xt | e1:t), et+1) = f1:t+1

= ℙ(Xt+1 | e1:t, et+1) (decompose)

= α ℙ(et+1 | Xt+1, e1:t)ℙ(Xt+1 | e1:t) (Bayes’ Rule)

= α ℙ(et+1 | Xt+1) ℙ(Xt+1 | e1:t) (1. update under  
 Markov assumption (sensor model),  
 2. one-step prediction)

= α ℙ(et+1 | Xt+1) ∑ ℙ(Xt+1 | xt, e1:t) P(xt | e1:t) (sum over atomic events for X)  
 xt

= α ℙ(et+1 | Xt+1) ∑ ℙ(Xt+1 | xt) P(xt | e1:t) (Markov assumption)  
 xt

ℙ(Xt | e1:t) (“forward message”, propagated recursively  
 
f1:t+1 = α FORWARD(f1:t , et+1) through “forward step function”)

f1:0 = ℙ(X0) 

Prediction -
filtering without the update

 13

 ℙ(Xt+k+1 | e1:t) = ∑ ℙ(Xt+k+1 | xt) P(xt+k | e1:t) (k-step prediction)  
 xt+k

For large k the prediction gets quite blurry and will eventually converge into a stationary
distribution at the mixing point, i.e., the point in time when this convergence is reached - in some
sense this is when “everything is possible”.  

Smoothing:
“explaining” backward

 14

 ℙ(Xk | e1:t) = fb(Xk, e1:k, ℙ(ek+1:t | Xk)) with 0 ≤ k < t (understand the past from the  
 recent past)

= ℙ(Xk | e1:k, ek+1:t) (decompose)

= α ℙ(Xk | e1:k) ℙ(ek+1:t | Xk, e1:k) (Bayes’ Rule)

= α ℙ(Xk | e1:k) ℙ(ek+1:t | Xk) (Markov assumption)

= α f1:k x bk+1:t (forward-message x backward-message)

with x indicating componentwise (pointwise, cf course book, page 574) multiplication  

Smoothing:
calculating backward message

 15

bk+1:t = ℙ(ek+1:t | Xk)

= ∑ ℙ(ek+1:t | Xk, xk+1) ℙ(xk+1 | Xk) (conditioning on Xk+1, i.e., looking “backward”)  
 xk+1

= ∑ P(ek+1:t | xk+1) ℙ(xk+1 | Xk) (cond. indep. - Markov assumption)  
 xk+1

= ∑ P(ek+1, ek+2:t | xk+1) ℙ(xk+1 | Xk) (decompose)  
 xk+1

= ∑ P(ek+1| xk+1) P(ek+2:t | xk+1) ℙ(xk+1 | Xk) (1. sensor, 2. backward msg, 3. transition model)  
 xk+1

= BACKWARD(bk+2:t, ek+1)

ℙ(ek+1:t | Xk) (“backward message”, propagated recursively)  
 
bk+1:t = BACKWARD(bk+2:t , ek+1) (through “backward step function”)

bt+1:t = ℙ(et+1:t | Xt) = ℙ(| Xt) = 1

 

Smoothing “in a nutshell”:
Forward-Backward-algorithm

 16

ℙ(Xk | e1:t) = fb(e1:k, ℙ(ek+1:t | Xk)) with 0 ≤ k < t understand the past from the  
 recent past

= α f1:k x bk+1:t by first filtering (forward) until step k, then  
 explaining backward from t to k+1

Obviously, it is a good idea to store the filtering (forward) results for later smoothing

Drawback of the algorithm: not really suitable for online use (t is growing, ...)

Consequently, try with fixed-lag-smoothing (keeping a fixed-length window, BUT: “simple”
Forward-Backward does not really do it efficiently - here we need HMMs)

“HMM”
State transition and sensor model

 17

We get the following notation:

Xt the state at time t, taking on values 1 ... S, with S the number of possible states / values.

Et the observation at time t

The transition model P(Xt | Xt-1) is then expressed as S x S matrix T:

 Tij = P(Xt = j | Xt-1 = i) in time step t

The sensor model for the corresponding observations depending on the current state, i.e.,  
P(et | Xt = i) is then expressed as S x S diagonal matrix O in time step t with

 Oe_tij = P(et | Xt = i) for i = j and

 
 Oe_tij = 0 for i ≠ j

Forward-backward equations
as matrix-vector operations

 18

Forward-equation (recap)

P(Xt+1 | e1:t+1) = f(P(Xt | e1:t), et+1) = f1:t+1 = α P(et+1 | Xt+1) ∑ P(Xt+1 | xt) P(xt | e1:t)  
 xt

becomes f1:t+1 = α Ot+1 TT f1:t (Matrix-matrix and matrix-vector scalar multiplication!)

Backward-equation (recap)

P(ek+1:t | Xk) = bk+1:t = ∑ P(ek+1| xk+1) P(ek+2:t | xk+1) P(xk+1 | Xk) 
 xk+1

becomes bk+1:t = TOk+1 bk+2:t

Forward-Backward-equation is then still α f1:k x bk+1:t

Cf. https://en.wikipedia.org/wiki/Forward–backward_algorithm  
for an illustration of the book-example in the “umbrella world”

Example matrix setup for a two-state world
and three sensor readings

 19

Ball behaviour:

P(step t: ball in 1 | step t-1: ball in 1) = 0.7

P(step t: ball in 2 | step t-1: ball in 1) = 0.3

P(step t: ball in 1 | step t-1: ball in 2) = 0.4

P(step t: ball in 2 | step t-1: ball in 2) = 0.6

Sensor correct:  
“red” in state 1, “yellow” in state 2  
 
P(sensor correct) = 0.8

P(sensor incorrect) = 0.15

P(sensor fails) = 0.05  
1 2

 
T =  
 

(  0.7 0.3

0.4 0.6  
)

 
Or =  
 

(  0.8 0.0

0.0 0.15  
)
  

 
Oy =  
 

(  0.15 0.0

0.0 0.8  
)

 
Of =  
 

(  0.05 0.0

0.0 0.05  
)
  

 forward filtering with f1:0 = ℙ(X0) becomes then: f1:t+1 = α Ot+1 TT f1:t

Smoothing in constant space

 20

Idea

propagate both f and b in the same direction, hence avoiding to store the f1:k for a shifting /
growing time slice k:t

Propagate the forward-message f “backward” with

f1:t = α’ (TT)-1O-1t+1 f1:t+1

Start with computing ft:t in a standard forward-run, forgetting all the intermediate messages, then
compute both f and b simultaneously “backward” to do smoothing for each step this should be
done for (NOTE: works obviously only if TT and O can be inverted, i.e., every sensor reading
must be possible in every state, though it can be very unlikely)

Fixed-lag smoothing (online)

 21

Idea

if we can do smoothing with constant space requirements, we can also find an efficient recursive
algorithm for online smoothing (a shifting “window”), independent of the length d of the
investigated time slice t-d (with t growing).

We need to compute

α f1:t-d x bt-d+1:t for time slice t-d. In t+1, when a new observation arrives, we need

α f1:t-d+1 x bt-d+1:t+1 for time slice t-d+1.

We can get f1:t-d+1 from f1:t-d , applying standard filtering.

For the backward message, some more inspection has to be done (bt-d+1:t+1 depends on the new
evidence in t+1) but there is a way by looking at how bt-d+1:t relates to bt+1:t

Fixed-lag smoothing (online)

 22

Backward recursion:
apply the recursive equation for bt-d+1:t d times:
 t  
bt-d+1:t = (∏ TOi)bt+1:t = Bt-d+1:t 1
 i=t-d+1

Then, after the next observation, this will be:
 t+1  
bt-d+2:t+1 = (∏ TOi)bt+2:t+1 = Bt-d+2:t+1 1
 i=t-d+2

Do some matrix “division” and get an incremental update for B (and ultimately bt-d+2:t+1):
  
Bt-d+2:t+1 = O-1t-d+1 T-1Bt-d+1:t TOt+1

The full algorithm for
fixed-lag smoothing

 23

37

function FIXED-LAG-SMOOTHING(et,hmm ,d) returns a distribution over Xt−d

inputs: et, the current evidence for time step t
hmm, a hidden Markov model with S× S transition matrix T
d , the length of the lag for smoothing

persistent: t , the current time, initially 1
f, the forward message P(Xt|e1:t), initially hmm.PRIOR
B, the d-step backward transformation matrix, initially the identity matrix
et−d:t, double-ended list of evidence from t− d to t, initially empty

local variables: Ot−d,Ot, diagonal matrices containing the sensor model information

add et to the end of et−d:t

Ot← diagonal matrix containing P(et|Xt)
if t > d then
f← FORWARD(f, et)
remove et−d−1 from the beginning of et−d:t

Ot−d← diagonal matrix containing P(et−d|Xt−d)
B←O−1

t−dT
−1BTOt

else B←BTOt

t← t + 1
if t > d then return NORMALIZE(f × B1) else return null

Figure 15.6 An algorithm for smoothing with a fixed time lag of d steps, implemented as an online
algorithm that outputs the new smoothed estimate given the observation for a new time step. Notice
that the final output NORMALIZE(f×B1) is just α f× b, by Equation (??).

function PARTICLE-FILTERING(e,N ,dbn) returns a set of samples for the next time step
inputs: e, the new incoming evidence

N , the number of samples to be maintained
dbn , a DBN with prior P(X0), transition model P(X1|X0), sensor model P(E1|X1)

persistent: S , a vector of samples of size N , initially generated from P(X0)
local variables: W , a vector of weights of size N

for i = 1 to N do
S [i]← sample from P(X1 | X0 = S [i]) /* step 1 */
W [i]←P(e | X1 = S[i]) /* step 2 */

S←WEIGHTED-SAMPLE-WITH-REPLACEMENT(N ,S ,W) /* step 3 */
return S

Figure 15.17 The particle filtering algorithm implemented as a recursive update operation with state
(the set of samples). Each of the sampling operations involves sampling the relevant slice variables
in topological order, much as in PRIOR-SAMPLE. The WEIGHTED-SAMPLE-WITH-REPLACEMENT
operation can be implemented to run in O(N) expected time. The step numbers refer to the description
in the text.

Summary

 24

Inference in temporal models

- Filtering and prediction (FORWARD)

- Smoothing (FORWARD-BACKWARD)

Hidden Markov Models

- Simplified matrix representation for Forward-backward calculations

- the states causing the observable (uncertain) evidence are themselves HIDDEN,
i.e. unobservable

