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What is a “Robot”?
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How far have we come?

Robots, and what they can do… 
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Frida “feels” when work’s done... 2013 (Magnus Linderoth, LU)

Anyone can program robots… right? 2017 (Maj Stenmark, Elin A. Topp, Cognibotics & LU)

YuMi has learned to feel when things click… 2018 (Martin Karlsson, LU)

YuMi wraps gifts… 2015 (Maj Stenmark & Andreas Stolt, LU & Cognibotics AB) 



Types of robots
Industrial robots vs. service robots vs. personal robots / robot toys

Static manipulators vs. mobile platforms (vs. mobile manipulators)

Mechanistic vs. humanoid / bio-inspired / creature-like

For all in common:  
A robot is a (physical) agent in the (physical) world                                                

(with all the consequences that might have... ;-)
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Darpa Urban Challenge 2007
Sting racing crash

Impression from user study
(Maj Stenmark, Elin A. Topp) 



Robot actuators - joints and wheels

6 DOF (6 “joint”) arm:

2x7 DOF (“humanoid” torso “YuMi” / Frida):

2 (3 effective) DOF synchro drive (car):

2 (3 effective) DOF differential drive (Pioneer p3dx):

3 DOF holonomic drive (“shopping cart”, DLR’s Justin):
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Kinematics - controlling the DOFs

Direct (forward) kinematics (relatively simple):

Where do I get with a certain configuration of parts / wheel movement?

Inverse kinematics (less simple, but more interesting):

How do I have to control joints and wheels to reach a certain point?
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Dynamics - controlling consequences of movement
Dynamics: 

Make the robot move (and move stuff) without falling apart, or crashing into 
things

How much payload is possible?

How fast can I move without tipping over?

What is my braking distance?

How do I move smoothly? (ask the automatic control people ;-)
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Weight: ca 1300 kg

Payload: ca 150 kg

Impression from user study
(Elin A. Topp) 



Dynamics in practice

Dynamics also gets you into two problems: direct and inverse dynamics.

Direct dynamics: 

Given masses, external forces, position, velocities and acceleration in the joints / 
wheels, what forces / moments are put to the depending joints and the tool 
centre point (TCP)? “Rather” simply solvable, at least more or less straight 
forward.

Inverse dynamics (again, more interesting than direct dynamics):

While solving the inverse kinematics problem is nasty, but still “only” a bunch of 
linear equations, solving the inverse dynamics problem leaves you with a bunch of 
more or less complex differential equations.
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Supporting parts: Sensors

In a predictable world, we do not need perception, but good planning and 
programming

As the world is somewhat unpredictable, some perception is useful, i.e. robots / 
robot installations need sensors.

Passive / active sensors.

Range / colour / intensity / force / direction ...

Optical / sound / radar / smell / touch ...

Most common for mobile robots: position (encoders / GPS), range (ultrasound or 
laser range finder), image (colour/intensity), sound

Most common for manipulators: position (encoders), force / torque, images, (range 
- infrared, laser RF)
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Sensors on a mobile robot
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Microphones (sound)

Ultrasound (24 emitters / receivers) (range)

Camera (image - colour / intensity)

Laser range finder (SICK LMS 200) (range)

Infrared (range / interruption)

Bumpers (touch)

Wheel encoders (position / pose)



System integration
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Make sensors, actuators and algorithms work together

Architectures, “operating systems”, controllers, programming tools ...

True Offline Programming
RobotStudio 5 is the leading product for offline 
programming on the market. With its new program-
ming methods, ABB is setting the standard for robot 
programming worldwide. Offline programming redu-Offline programming redu-
ces the risk by visualizing and confirming solutions 
and layouts before the actual robot is installed, and 
generates higher part quality through the creation of 
more accurate paths. 

Virtual Robot Technology
To achieve true offline programming, 
RobotStudio utilizes ABB VirtualRobot™ 
Technology. ABB invented VirtualRobot™  Techno-
logy more than ten years ago. 

MultiMove
With RobotStudio 5, ABB takes its Virtual Robot 
Technology to the next level. It is now possible to run 
several virtual robots at the same time, and there is 
support for MultiMove, the new IRC5 technology for 
running several robots from one controller. 

CAD Import
RobotStudio can easily import data in major 
CADformats, including IGES, STEP, VRML, VDAFS, 
ACIS and CATIA. By working with this very exact 
data the robot programmer is able to generate more 
accurate robot programs, giving higher product 
quality.

AutoPath
This is one of the most timesaving features of
RobotStudio. By using a CAD model of the part to be 
processed it is possible to automatically generate the 
robot positions needed to follow the curve in just a 
few minutes, a task that would otherwise  take hours 
or days.

AutoReach
AutoReach automatically analyses reachability and is a 
handy feature that lets you simply move the robot or 
the work piece around until all positions are reachable. 
This allows you to verify and optimize the work cell 
layout in just a few minutes.

RobotStudio™ 5
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System integration - system is bigger than 
the sum of its components 
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Impression from user study
(Elin A. Topp, H. Huettenrauch, 2006)

Darpa Robotics Challenge 2015, 
Robots falling over



Ethics detour
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Robots can be the “cool” embodiment of artificially intelligent systems -  
but their reasoning mechanisms can only build upon a given baseline.

So far, systems will take instructions literally, and only reason within given limits. 

AI-systems must be capable of explaining themselves, and we should not expect 
them to be more than they are!

Robot and Frank - what is stealing?



Some fundamental AI challenges in robotics - 
or should we say robotics challenges in AI?

We need to describe and control our robots’ movement to make them do something

We need to either plan and program every little detail of their movement  
OR  
We need to equip them with capabilities for perception, understanding, insight, 
deliberation - but when we do that, we need to “plan and program” for that

How can a mobile platform know how to go to place X, when it does not know 
where X is - and what its own position is? (Describe the world)

How can a two-armed robot know how to glue two work-pieces together, if it does 
not know what the work-pieces are, where to find them, how to grasp them, how to 
direct them towards each other, or how to glue stuff together? (Describe tasks)

How can a robot understand that a correctly planned action did not result in the 
foreseen outcome? What should it do to resolve this situation? (Describe problems)
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Outline

AI in Robotics - integrating the “brain” into the “body”

• Probabilistic methods for Mapping & Localisation

• SJPDAFs for person tracking

• Identifying interaction patterns in  
Human Augmented Mapping with BNs

• (Reinforcement) Learning in robotics

• Deliberation & High level decision making and planning

• Knowledge representation, reasoning, and NLP to support HRI and high-level 
robot programming
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Mapping
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Where have 
I been?

112 Thrun

Figure 1. A set of noise-free sonar measurements that a robot may
receive while passing an open door. While the measurements are
perfectly consistent, existing occupancy grid maps induce a conflict
in the door region, where short and long sensor cones overlap. This
article presents a method that overcomes this problem.

the doorway—which often leads to the doorway being
closed in the final map.

Figure 2 illustrates the problem graphically. In dia-
gram (a), a passing robot might receive the (noise-free)

Figure 2. The problem with current occupancy grid mapping algorithms: For the environment shown in (a), a passing robot might receive the
(noise-free) measurement shown in (b). Inverse sensor models map these beams into probabilistic maps. This is done separately for each grid
cell and each beam, as shown in (c) and (d). Combining both interpretations may yield a map as shown in (e). Obviously, there is a conflict in
the overlap region, indicated by the circles in (e). The interesting insight is: There exist maps, such as the one in diagram (f), which perfectly
explain the sensor measurement without any such conflict. For a sensor reading to be explained, it suffices to assume an obstacle somewhere in
the cone of a measurement, and not everywhere. This effect is captured by the forward models described in this article.

range measurements shown in diagram (b). Inverse sen-
sor models map these beams into probabilistic maps.
This is done separately for each grid cell and each beam,
as shown in diagrams (c) and (d). Combining both in-
terpretations may yield a map as shown in diagram (e).
Obviously, there is a conflict in the overlap region, indi-
cated by the circles in this diagram. Such conflicts are
usually accommodated by averaging. The interesting
insight is: There exist maps, such as the one in diagram
(f), which perfectly explains the sensor measurements
without any such conflict. This is because for a sensor
reading to be explained, it suffices to assume an ob-
stacle somewhere in its measurement cone. Put differ-
ently, the fact that cones sweep over multiple grid cells
induces important dependencies between neighboring
grid cells. A decomposition of the mapping problem
into thousands of binary estimation problems—as is
common practice in the literature—does not consider
these dependencies and therefore may yield suboptimal
results.

While this consideration uses sonar sensors as mo-
tivating example, it is easily extended to certain other
sensor types that may be used for building occupancy
maps, such as stereo vision (Murray and Little, 2001);
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Geometrical approaches

Topological approaches 

Occupancy grid approaches (e.g., Sebastian Thrun)

(Hybrid approaches)



Localisation
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HMM in a grid world

Where am 
I now?

159

(a) Posterior distribution over robot location after E1 = NSW

(b) Posterior distribution over robot location after E1 = NSW, E2 = NS

Figure 15.7 FILES: figures/localization-figures-b.eps (Tue Nov 3 16:23:07 2009). Posterior dis-
tribution over robot location: (a) one observation E1 =NSW ; (b) after a second observation E2 =NS.
The size of each disk corresponds to the probability that the robot is at that location. The sensor error
rate is ϵ =0.2.

159

(a) Posterior distribution over robot location after E1 = NSW

(b) Posterior distribution over robot location after E1 = NSW, E2 = NS

Figure 15.7 FILES: figures/localization-figures-b.eps (Tue Nov 3 16:23:07 2009). Posterior dis-
tribution over robot location: (a) one observation E1 =NSW ; (b) after a second observation E2 =NS.
The size of each disk corresponds to the probability that the robot is at that location. The sensor error
rate is ϵ =0.2.

159

(a) Posterior distribution over robot location after E1 = NSW

(b) Posterior distribution over robot location after E1 = NSW, E2 = NS

Figure 15.7 FILES: figures/localization-figures-b.eps (Tue Nov 3 16:23:07 2009). Posterior dis-
tribution over robot location: (a) one observation E1 =NSW ; (b) after a second observation E2 =NS.
The size of each disk corresponds to the probability that the robot is at that location. The sensor error
rate is ϵ =0.2.



Data filters for state estimation
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0. Represent state, identify system function

1. Estimate / predict state from model applying the function

2. Take a measurement

3. Update state according to model and observation (measurement)

Used for position tracking, detection of significant changes in a data stream, 
localisation ... 

E.g., particle filters (Monte Carlo), Kalman filters



Particle filter
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1. Represent possible positions by samples (uniform distribution) x = (x, y, θ)

2. Estimate movement / update samples according to assumed robot movement + 
noise

3. Take a measurement z

4. Assign weights to samples according to posterior probabilities P( xi | z) 

5. Resample (pick “good” samples, use those as new “seeds”, redistribute in position 
space and add some noise), continue at 2.



Localisation
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E.g., Monte Carlo Localisation (D. Fox, S. Thrun, et al.)

Where am 
I now?

Particle filter based localisation indoor



Kalman filter

 21

Represent posteriors for transition and sensor models with a Gaussian. 

𝒩( 𝛍, 𝚺)(x) = 𝛼 e 

Assume locally linear dynamical system with                                                                          
F, H system matrices, i.e., transition and sensor model;  
xt the state in time t,  zt measurement in time t (vectors);   
𝚺x and  𝚺z the  covariances for the transitions and measurements, i.e., gaussian noise)

P( xt+1 | xt) = 𝒩( Fxt, 𝚺x)(xt+1)     

   P( zt | xt) = 𝒩( Hxt, 𝚺z)(zt)                         

Then do prediction and update, just as with the HMM  (well, almost ;-)         

-1/2(( x - 𝛍)T 𝚺-1 (x - 𝛍))



Kalman filter, updates
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Update the overall mean state estimate 𝛍t+1 (essentially xt+1) based on last estimate 𝛍t as  

𝛍t+1 = F𝛍t  +  Kt+1(zt+1 — HF𝛍t)   
with F𝛍t  the state prediction and HF𝛍t the prediction of the observation and

update the overall covariance as

𝚺t+1 = (I  — Kt+1H) F 𝚺t FT  + 𝚺x

with Kt+1 = (F 𝚺t FT  + 𝚺x) HT(H(F 𝚺t FT  + 𝚺x)HT + 𝚺z)-1   the Kalman gain matrix  
(essentially what we win in terms of certainty when doing the update)



GPS-free positioning at sea
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Depth and magnetic field measurements in a PF + KF combination

Where am 
I now?

[Mårten Lager, Smart Technologies for Unmanned Surface Vessels, Licentiate Thesis, CS LTH, Feb 2019]



GPS-free positioning at sea (2)
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Example for discarding samples: When particles are “one the 
wrong side” of the bottom depth line, they are discarded

Where am 
I now?

[Mårten Lager, Smart Technologies for Unmanned Surface Vessels, Licentiate Thesis, CS LTH, Feb 2019]



GPS-free positioning at sea (3)
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Combining the different distributions (for depth and 
magnetic field measurements) into a joint PDF

Where am 
I now?

[Mårten Lager, Smart Technologies for Unmanned Surface Vessels, Licentiate Thesis, CS LTH, Feb 2019]



Mapping & Localisation: Chicken & Egg?
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Simultaneous localisation and mapping (SLAM)  

While building the map, stay localised!

Use filters to “sort” landmarks: 

Known? Update your pose estimation!

Unknown? Extend the map!



SLAM example
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FastSLAM (D. Haehnel)


