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Chocolates

Show time!
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Two boxes of chocolates, one luxury car.
Where is the car?

Philosopher: It does not matter whether I change my choice, I will either get chocolates or a car.

Mathematician: It is more likely to get the car when I alter my choice - even though it is not certain!



A robot’s view of the world...
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What category of “thing” is shown to me?
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Object? Workspace? Room? Link to room? 
Can we reason about behavioural features and what is causing them?



Outline

• Uncertainty & probability (chapter 13) 

• Uncertainty represented as probability

• Syntax and Semantics

• Inference

• Independence and Bayes’ Rule

• Bayesian Networks (chapter 14.1-3)

• Syntax

• Semantics
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Using logic in an uncertain world?

Can we find rules to describe every possible outcome, even when we cannot 
observe everything? (Chess, Go - and then there was Poker)

Fixing such “rules” would mean to make them logically exhaustive, but that is 
bound to fail due to:

Laziness (too much work to list all options)

Theoretical ignorance (there is simply no complete theory)

Practical ignorance (might be impossible to test exhaustively) 

⇒ better use probabilities to represent certain knowledge states

⇒ Rational decisions (decision theory) combine probability and utility theory
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Probability basics

Given a set Ω - the sample space, e.g., the 6 possible rolls of a die,

ω ∈ Ω a sample point / possible world / atomic event, e.g., the outcome “2”.

A probability space or probability model is a sample space Ω with an assignment P(ω) for 
every ω ∈ Ω so that:

0 ≤ P(ω) ≤ 1

∑ω P(ω) = 1

An event a is any subset of Ω 

P(a) = ∑{ω∈A} P(ω)

E.g., P( die roll < 4) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2

8



Random variables
A random variable is a function from sample points to some range, e.g., the Reals or Booleans, 

e.g., when rolling a die and looking for odd numbers, 

Odd( n) = true, for n ∈ {1, 3, 5}

A proposition describes the event (set of sample points) where it (the proposition) holds, i.e., 

given Boolean random variables A and B:

event a = set of sample points ω where A(ω) = true

event ¬a = set of sample points ω where A(ω) = false

event a⋀b = points ω where A(ω) = true and B(ω) = true

Often in AI applications, the sample points are defined by the values of a set of random variables, 
i.e., the sample space is the Cartesian product of the ranges of the variables.

Probability P induces a probability distribution for any random variable X

P( X = xi) = ∑{ω:X(ω) = xi} 
P(ω)

e.g., P( Odd = true) = ∑{n:Odd(n) = true} P(n) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2

9



Bayesian Probability

Probabilistic assertions summarise effects of

laziness: failure to enumerate exceptions, qualifications, etc.

ignorance: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability:

Probabilities relate propositions to one’s state of knowledge (A = “the observed 
pattern in the data was caused by a person”)

e.g., P( A) = 0.2 

e.g., P( A | there is a ton of “leggy” furniture in the respective room) = 0.1

Not claims of a “probabilistic tendency” in the current situation, but maybe 
learned from past experience of similar situations.

Probabilities of propositions change with new evidence:

e.g., P( A | ton of furniture, dataset obtained at 7:30 by a bot) = 0.05
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Prior probability
Prior or unconditional probabilities of propositions

e.g., P( Person = true) = 0.2 and 

P( Weather = sunny) = 0.72               (e.g., known from statistics)

correspond to belief prior to the arrival of any (new) evidence

Probability distribution gives values for all possible assignments (normalised):

ℙ(Weather) = ⟨0.72, 0.1, 0.08, 0.1⟩

Joint probability distribution for a set of (independent) random variables gives the 
probability of every atomic event on those random variables (i.e., every sample point):

ℙ(Weather, Person) = a 4 x 2 matrix of values:

Weather sunny rain cloudy snow
Person

true 0,144 0,02 0,016 0,02

false 0,576 0,08 0,064 0,08
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Posterior probability
Most often, there is some information, i.e., evidence, that one can base their belief on:

e.g., P( person) = 0.2 (prior, no evidence for anything), but

P( person | leg-size) = 0.6

corresponds to belief after the arrival of some evidence                                              
(also: posterior or conditional probability).                                                               

OBS: NOT “if leg-size, then 60% chance of person”

THINK “given that leg-size is all I know” instead!
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Evidence remains valid after more evidence arrives, but it might become less useful

Evidence may be completely useless, i.e., irrelevant.

P( person | leg-size, sunny) = P( person | leg-size)

Domain knowledge lets us do this kind of inference.



Posterior probability (2)
Definition of conditional / posterior probability:

P( a | b) =                   if P( b) ≠ 0

or as Product rule (for a and b being true, we need b true and then a true, given b):

P( a ∧ b)    =    P( a | b) P( b)    =    P( b | a) P( a)

and in general for whole distributions (e.g.):                                                               

ℙ( Weather, Person)    =    ℙ( Weather | Person) ℙ( Person)
(gives a 4x2 set of equations)  

Chain rule (successive application of product rule):

ℙ( X₁, ..., Xn)  = ℙ( X₁, ..., Xn-1) ℙ( Xn | X₁, ..., Xn-1)

= ℙ( X₁, ..., Xn-2) ℙ( Xn-1 | X₁, ..., Xn-2) ℙ( Xn | X₁, ..., Xn-1)

= ... = ∏    ℙ( Xi | X₁, ..., Xi-1) 

P( a ∧ b)
-----------------------------------------

   P( b)

n

i=1
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P( person ∨ leg-size) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28P( leg-size) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Inference

For any proposition Φ, sum the atomic events where it is true:

P( Φ) = ∑ω:ω⊨ Φ P(ω)

leg-size ¬ leg-size

curved ¬ curved curved ¬ curved

person 0,108 0,012 0,072 0,008

¬ person 0,016 0,064 0,144 0,576

Can also compute posterior probabilities:

P( ¬person | leg-size) =  

            =                                                 = 0.4

P( ¬person ∧ leg-size)
----------------------------------------------------------------------------------------------------------

   P( leg-size)

            0.016 + 0.064
--------------------------------------------------------------------------------------------------------------------------------------------------------

0.108 + 0.012 + 0.016 + 0.064
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Probabilistic inference: 

Computation of posterior probabilities given observed evidence 

starting out with the full joint distribution as “knowledge base”:

Inference by enumeration



leg-size ¬ leg-size

curved ¬curved curved ¬ curved

person 0,108 0,012 0,072 0,008

¬ person 0,016 0,064 0,144 0,576

Normalisation

Denominator can be viewed as a normalisation constant:

ℙ( Person | leg-size) =  α ℙ( Person, leg-size)

= α[ℙ( Person, leg-size, curved) + ℙ( Person, leg-size, ¬curved)]

= α[⟨0.108, 0.016⟩ + ⟨0.012, 0.064⟩]

= α ⟨0.12, 0.08⟩ = ⟨0.6, 0.4⟩

And the good news:

We can compute ℙ( Person | leg-size) without knowing the value of P( leg-size)!
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Inference gone bad
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A young student suffers from depression. In her diary she speculates about her 
childhood and the possibility of her father abusing her during childhood. She had 
reported headaches to her friends and therapist, and started writing the diary 
due to the therapist’s recommendation.

The father ends up in court, since 

“headaches are caused by PTSD, and PTSD is caused by abuse”

Would you agree? 

Psychologist knowing “the math” argues:

P( headache | PTSD) = high (statistics)

P( PTSD | abuse in childhood) = high (statistics)

ok, yes, sure, but:

Court folks did not consider the relevant relations of

P( PTSD | headache) or

P( abuse in childhood | PTSD),  

i.e., they mixed up cause and effect in your argumentation!



Bayes’ Rule
Recap product rule: P( a ∧ b) = P( a | b) P( b) = P( b | a) P(a)

⇒  Bayes’ Rule P( a | b) = 

or in distribution form:

ℙ(  Y | X) =                         =  α ℙ( X | Y) P(  Y) 

Useful for assessing diagnostic probability from causal probability

P( Cause | Effect)  = 

E.g., with M “meningitis”, S “stiff neck”:  

P( m | s) =                        =                        = 0.0014   (not too bad, really!)
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ℙ( X | Y) P( Y)
-----------------------------------------------------------------

      P( X)

P( Effect | Cause) P( Cause)
-------------------------------------------------------------------------------------------------------------------------------

             P( Effect)

P( b | a) P( a)
--------------------------------------------------------------

       P( b)

P( s | m) P( m)
-------------------------------------------------------------------

       P( s)

0.7 * 0.00002
—————————————————————————————

      0.01



All is well that ends well ...

We can model cause-effect relationships, 

we can base our judgement on mathematically sound inference, 

we can even do this inference with only partial knowledge on the priors, ...
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... but

n Boolean variables give us an input table of size O(2n) ...

(and for non-Booleans it gets even more nasty...)
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Independence
A and B are independent iff

P( A | B) =  P( A)    or    P( B | A) = P( B)    or   P( A, B) = P( A) P( B)

                                                           

ℙ( Leg-size, Curved, Person, Weather)    =    ℙ( Leg-size, Curved, Person) ℙ( Weather)

32 entries reduced to 8 + 4 (Weather is not Boolean!).  
This absolute (unconditional) independence is powerful but rare!

Some fields (like robotics and computer vision, or, as used in the book, dentistry) have 
still a lot, maybe hundreds, of variables, none of them being independent. 

What can be done to overcome this mess...? 
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PersonPerson

Weather

Leg-size            Curved

decomposes into

Leg-size   Curved

Weather



Conditional independence
ℙ( Leg-size, Person, Curved) has 23 - 1 = 7 independent entries (must sum up to 1)

But: If there is a person, the probability for “Curved” does not depend on whether the 
pattern has leg-size (this dependency is now “implicit” in some sense):

(1) P( Curved | leg-size, person) = P( Curved | person)

The same holds when there is no person:

(2) P( Curved | leg-size, ¬person) = P( Curved | ¬person)

Curved is conditionally independent of Leg-size given Person:

ℙ( Curved | Leg-size, Person) = ℙ( Curved | Person)

Writing out the full joint distribution using chain rule:

ℙ( Leg-size, Curved, Person)                                                                                  
=  ℙ( Leg-size | Curved, Person) ℙ( Curved, Person)                                              
=  ℙ( Leg-size | Curved, Person) ℙ( Curved | Person) ℙ( Person)                                      
=  ℙ( Leg-size | Person) ℙ( Curved | Person) ℙ( Person)

gives thus 2 + 2 + 1 = 5 independent entries
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Conditional independence (2)

In most cases, the use of conditional independence reduces the size of the 
representation of the joint distribution from exponential in n to linear in n.

Hence: 

Conditional independence is our most basic and robust form of knowledge about 
uncertain environments
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Summary
Probability is a way to formalise and represent uncertain knowledge

The joint probability distribution specifies probability over every atomic event

Queries can be answered by summing over atomic events 

Bayes’ rule can be applied to compute posterior probabilities so that              
diagnostic probabilities can be assessed from causal ones

For nontrivial domains, we must find a way to reduce the joint size

Independence and conditional independence provide the tools

23



Outline

• Uncertainty & probability (chapter 13)

• Uncertainty

• Probability

• Syntax and Semantics

• Inference

• Independence and Bayes’ Rule

• Bayesian Networks (chapter 14.1-3)

• Syntax

• Semantics

• Efficient representation
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.  .  .

Bayes’ Rule and conditional independence
ℙ( Person | leg-size ∧ curved)                                                                                  
=  α ℙ( leg-size ∧ curved | Person) ℙ( Person)                                                
=  α ℙ( leg-size | Person) ℙ( curved | Person) ℙ( Person)                                      

An example of a naive Bayes model:

ℙ( Cause, Effect1, ...., Effectn) =   ℙ( Cause) ∏i ℙ( Effecti | Cause) 

The total number of parameters is linear in n
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Cause

Effect 1 Effect n

Person

Leg-size Curved



Bayesian networks
A simple, graphical notation for conditional independence assertions and hence for 
compact specification of full joint distributions

Syntax:
a set of nodes, one per random variable
a directed, acyclic graph (link ≈ “directly influences”)
a conditional distribution for each node given its parents:

P( Xi | Parents( Xi))

In the simplest case, conditional distribution represented as a 

conditional probability table ( CPT) 

giving the distribution over Xi  for each combination of parent values
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Example
Topology of network encodes conditional independence assertions:

Weather is (unconditionally, absolutely) independent of the other variables

Leg-size and Curved are conditionally independent given Person
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Person

Leg-size Curved
Weather

P(W=sunny) P(W=rainy) P(W=cloudy) P(W=snow)

0.72 0.1 0.08 0.1

P(Per) P(¬Per)

0.2 0.8

Per P(L|Per) P(¬L|Per)

T 0.6 0.4

F 0.1 0.9

Per P(C|Per) P(¬C|Per)

T 0.9 0.1

F 0.2 0.8

We can skip the dependent columns in the tables to reduce complexity!

P(W=sunny) P(W=rainy) P(W=cloudy)

0.72 0.1 0.08

P(Per)

0.2

Per P(T|Per)

T 0.6

F 0.1

Per P(C|Per)

T 0.9

F 0.2



Example 2
I am at work, my neighbour John calls to say my alarm is ringing, but neighbour 
Mary does not call. 

Sometimes the alarm is set off by minor earthquakes. 

Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects “causal” knowledge:

A burglar can set the alarm off

An earthquake can set the alarm off

The alarm can cause John to call

The alarm can cause Mary to call
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Example 2 (2)

29

Alarm

JohnCalls MaryCalls

Burglary

Earthquake

P(B)

0,001 P(E)

0,002

A P(J|A)

T 0,9

F 0,05

A P(M|A)

T 0,7

F 0,01

B E P(A|B,E)

T T 0,95

T F 0,94

F T 0,29

F F 0,001



Global semantics
Global semantics defines the full joint distribution as 
the product of the local conditional distributions:

P( x1, ..., xn)  =  ∏     P(  xi | parents( Xi ))

E.g., P( j ∧ m ∧ a ∧ ¬b ∧ ¬e)

= 
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A

J M

B
E

n

i=1

    P( j | a) P( m | a) P( a | ¬b, ¬e) P( ¬b) P( ¬e)

=  0.9 * 0.7 * 0.001 * 0.999 * 0.998

≈ 0.000628



Constructing Bayesian networks
We need a method such that a series of locally testable assertions of conditional 
independence guarantees the required global semantics.

1. Choose an ordering of variables X1,..., Xn

2. For i = 1 to n

add Xi  to the network

select parents from X1,..., Xi-1  such that 

P( Xi | Parents( Xi)) = P( Xi | X1,..., Xi-1 )

This choice of parents guarantees the global semantics:

P( X1,..., Xn )  =  ∏    P( Xi | X1,..., Xi-1 )      (chain rule)

   = ∏     P( Xi | Parents( Xi))    (by construction)
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n

i=1

n

i=1



Deciding conditional independence is hard in noncausal directions

(Causal models and conditional independence seem hardwired for humans!)

Assessing conditional probabilities is hard in noncausal directions

Network is less compact: 1 + 2 + 4 +2 +4 = 13 numbers

Hence: Choose preferably an order corresponding to the cause → effect “chain”

Construction example

32

JohnCalls

MaryCalls

Alarm

Burglary

Earthquake



Initial evidence:  The *** car won’t start!

Testable variables (green), “broken, so fix it” variables (yellow)

Hidden variables (blue) ensure sparse structure / reduce parameters

Locally structured (sparse) network 
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battery age
alternator 

broken
fanbelt
broken

battery dead no charging

battery meter battery flat no oil no gas
fuel line
blocked

starter
broken

lights oil light gas gauge
car won’t

start! dipstick



BNs for interaction patterns
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January 7, 2017 Advanced Robotics Topp˙InteractionPatternsInHAM

Prediction Region Region link Workspace Object
Definition

Region 62 0 4 0
Region link 16 3 5 0
Workspace 5 0 197 40
Object 0 0 23 189

Table 1. The confusion matrix for item category predictions against our definition based assumptions

Otherwise, the main influence on the predicted category stems from the evaluation of behaviour
observations, where only the three basic categories were relevant, hence no further predictions
of Region links were given, however, another five of the expected 16 Region links were predicted
as Workspace, which corresponds to the originally formulated hypothesis that a link to a region
might be presented like a large object or workplace rather than like a region from inside. Overall,
about 83% of the predictions correspond directly to our assumptions which is quite satisfying.
Looking at the remaining confusions there are comparably few confusions between regions and
workspaces, while workspaces and objects are confused more frequently. This can be explained
with several of the items occurring in the trials being di�cult to clearly place in either category,
e.g., co↵ee-makers or projectors (mobile). The fact that 16 of 24 expected Region links are
predicted as Region seems somewhat unsatisfying.
Still, we noted that in many cases the room for which we expected our subjects to do the

presentation from the outside due to its size, was actually presented with the subject being
inside and the robot outside – which rendered the user behaviour more like that observable
when both were inside a room than that observable when both were outside. This is, however,
a rather unusual configuration for which other cues would be needed to fully understand the
situation, e.g., a door-way detector or other geometrical analysis of the surroundings, as suggested
in previous work [2].
However, all these analysis steps were performed manually, hence the results are quite error-
prone due to subjective interpretation of timelines and observations. Approaches to automating
also the identification of the features in the first place are subject to current investigations.
To avoid at least the last layer of subjectivity we implemented a prototype interaction monitor
system, that was able to parse the annotations of the video material and feed specific annotations
as “observed features” into the respective core part of the Bayesian Network, which is shown in
Figure 2. We explain our implementation in the following section.

4.2 Automated identification of Interaction Patterns

Our implementation [20, 21] was based on ROS (www.ros.org, as of 2015-10-30), both for com-
patibility reasons with other research e↵orts in symbiotic HRI, but also to benefit from the
improvements and further development of ROS in comparison to the tools and hardware ab-
straction previously used for implementing the Human-Augmented Mapping software.
For the manual annotation of the video footprint from the user study we had used ELAN

(https://tla.mpi.nl/tools/tla-tools/elan, as of 2015-10-30), a for research purposes freely available
tool that produces XML-files from which it is possible to reconstruct the original timeline and
organise the annotations accordingly. Hence, one part of the prototype was a parser for the
ELAN-generated annotation files, that provides the core part of the system, the interaction
monitor, with the stream of annotations. As indicated above, we assume here, that it would be
possible to exchange the parser with online recognition tools for di↵erent types of perceptions
(i.e., tools for multi-modal interaction). We already tested an approach that would not rely
on the manually provided annotations but on actual trajectory data produced by a previously
proposed person tracking approach [20, 22].
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Elin A. Topp, “Interaction Patterns in Human Augmented Mapping” 
Special Issue on Spatial Interaction and Reasoning for Real-World Robotics, RSJ Advanced Robotics, vol 5, issue 31, March 2017



Summary
Bayesian networks provide a natural representation for (causally induced) conditional
independence

Topology + CPTs = compact representation of joint distribution

Generally easy for (non)experts to construct

And going further:
Continuous variables  ⇒  parameterised distributions (e.g., linear Gaussians)

Do BNs help for the questions in the beginning?  
YES (but that story will be told later …)
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