
Probabilistic reasoning over time -  
Hidden Markov Models

(recap BNs)

Applied artificial intelligence (EDAF70)
Lecture 09
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Elin A. Topp

Material based on course book, chapter 15
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A robot’s view of the world...
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Prior probability
Prior or unconditional probabilities of propositions

e.g., P( Person = true) = 0.2 and 

P( Weather = sunny) = 0.72               (e.g., known from statistics)

correspond to belief prior to the arrival of any (new) evidence

Probability distribution gives values for all possible assignments (normalised):

ℙ(Weather) = ⟨0.72, 0.1, 0.08, 0.1⟩

Joint probability distribution for a set of (independent) random variables gives the 
probability of every atomic event on those random variables (i.e., every sample point):

ℙ(Weather, Person) = a 4 x 2 matrix of values:

Weather sunny rain cloudy snow
Person

true 0,144 0,02 0,016 0,02

false 0,576 0,08 0,064 0,08
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P( person ∨ leg-size) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28P( leg-size) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Inference

For any proposition Φ, sum the atomic events where it is true:

P( Φ) = ∑ω:ω⊨ Φ P(ω)

leg-size ¬ leg-size

curved ¬ curved curved ¬ curved

person 0,108 0,012 0,072 0,008

¬ person 0,016 0,064 0,144 0,576

Can also compute posterior probabilities:

P( ¬person | leg-size) =  

            =                                                 = 0.4

P( ¬person ∧ leg-size)
----------------------------------------------------------------------------------------------------------

   P( leg-size)

            0.016 + 0.064
--------------------------------------------------------------------------------------------------------------------------------------------------------

0.108 + 0.012 + 0.016 + 0.064
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Probabilistic inference: 

Computation of posterior probabilities given observed evidence 

starting out with the full joint distribution as “knowledge base”:

Inference by enumeration



Independence
A and B are independent iff

P( A | B) =  P( A)    or    P( B | A) = P( B)    or   P( A, B) = P( A) P( B)

                                                           

ℙ( Leg-size, Curved, Person, Weather)    =    ℙ( Leg-size, Curved, Person) ℙ( Weather)

32 entries reduced to 8 + 4 (Weather is not Boolean!).  
This absolute (unconditional) independence is powerful but rare!

Some fields (like robotics and computer vision, or, as used in the book, dentistry) have 
still a lot, maybe hundreds, of variables, none of them being independent. 

What can be done to overcome this mess...? 
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Weather



.  .  .

Bayes’ Rule and conditional independence
ℙ( Person | leg-size ∧ curved)                                                                                  
=  α ℙ( leg-size ∧ curved | Person) ℙ( Person)                                                
=  α ℙ( leg-size | Person) ℙ( curved | Person) ℙ( Person)                                      

An example of a naive Bayes model:

ℙ( Cause, Effect1, ...., Effectn) =   ℙ( Cause) ∏i ℙ( Effecti | Cause) 

The total number of parameters is linear in n
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Bayesian networks
A simple, graphical notation for conditional independence assertions and hence for 
compact specification of full joint distributions

Syntax:
a set of nodes, one per random variable
a directed, acyclic graph (link ≈ “directly influences”)
a conditional distribution for each node given its parents:

P( Xi | Parents( Xi))

In the simplest case, conditional distribution represented as a 

conditional probability table ( CPT) 

giving the distribution over Xi  for each combination of parent values
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Tracking and associating... while moving ...
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Probabilistic reasoning over time

X

... means to keep track of the current state of 

- a process (temperature controller, other controllers)

- an agent with respect to the world (localisation of a robot in some “world”)

in order to make predictions or to simply understand what might have caused this 
current state.

This involves both a transition model (how the state is assumed to change) and a 
sensor model (how observations / percepts are related to the world state).

Previously: 

the focus was on what was possible to happen (e.g., search), now it is on what is 
likely / unlikely to happen

the focus was on static worlds (Bayesian networks), now we look at dynamic 
processes where everything, both state AND observations, depend on time.



Three classes of approaches
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Hidden Markov models

Probabilistic filters (Kalman or Particle filters, Gaussian Mixture Models)

Dynamic Bayesian networks (cover actually the other two as special cases)

But first, some basics ...



Reasoning over time

X

With

Xt  the current state description at time t

Et  the evidence obtained at time t

we can describe a state transition model and a sensor model that we can use to model a 
time step sequence - a chain of states and sensor readings according to discrete time 
steps - so that we can understand the ongoing process.  

We assume to start out in X0, but evidence will only arrive after the first state 
transition is made: E1 is then the first piece of evidence to be plugged into the chain.

The “general” transition model would then specify

ℙ( Xt | X0:t-1) 

... this would mean we need full joint distributions over all time steps... or not?



Observable and “hidden” variables
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Alarm
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The Markov assumption

X

A process is Markov (i.e., complies with the Markov assumption), when any given 

state Xt depends only on a finite and fixed number of previous states. 

155

Xt–2 Xt–1 Xt(a)

(b)

Xt+1 Xt+2

Xt–2 Xt–1 Xt Xt+1 Xt+2

Figure 15.1 FILES: figures/markov-processes.eps (Tue Nov 3 16:23:08 2009). (a) Bayesian net-
work structure corresponding to a first-order Markov process with state defined by the variables Xt. (b)
A second-order Markov process.



A first-order Markov chain as Bayesian network

11

Raint-1 Raint Raint+1

Umbrellat-1 Umbrellat Umbrellat+1

Rt-1 P(Rt | Rt-1)

T 0.7
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Rt P(Ut | Rt)
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“cause” / state

“effect” / evidence



Inference for any t

X

ℙ( X0:t, E1:t)  = ℙ( X0) ∏    ℙ( Xi | Xi-1) ℙ( Ei | Xi) 
t

i=1

With

ℙ( X0) the prior probability distribution in t=0 (i.e., the initial state model),

ℙ( Xi | Xi-1) the state transition model and

ℙ( Ei | Xi) the sensor model

we have the complete joint distribution for all variables for any t.



An issue with the Markov assumption

X

First-order Markov chain:

                  State variables (at t) contain ALL information needed for t+1.

Sometimes, that is too strong an assumption (or too weak in some sense).

Hence, increase either the order (second-order Markov chain)

or 

add information into the state variable(s) (R could include also Season, Humidity, 
Pressure, Location, instead of only “Rain”)

Note: It is possible to express an increase in order by increasing the number of state 
variables, keeping the order fixed - for the umbrella world you could use 

R = <RainYesterday, RainToday> 

When things get too complex, rather add another sensor (e.g., observe coats).



Inference in temporal models 
- what can we use all this for?
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• Filtering: Finding the belief state, or doing state estimation, i.e., 
computing the posterior distribution over the most recent state, using evidence up 
to this point:  
ℙ( Xt | e1:t)

• Predicting: Computing the posterior over a future state, using evidence up to 
this point: ℙ( Xt+k | e1:t) for some k>0 (can be used to evaluate course of action 
based on predicted outcome)

• Smoothing: Computing the posterior over a past state, i.e., understand the past, 

given information up to this point: ℙ( Xk | e1:t) for some k with 0 ≤ k < t

• Explaining: Find the best explanation for a series of observations, i.e., computing  
argmaxx1:t P( x1:t | e1:t) - can be efficiently handled by Viterbi algorithm

• Learning: If sensor and / or transition model are not known, they can be learned 
from observations (by-product of inference in Bayesian network - both static or 
dynamic). Inference gives estimates, estimates are used to update the model, 
updated models provide new estimates (by inference). Iterate until converging - 
again, this is an instance of the EM-algorithm.



Filtering: 
Prediction & update (FORWARD-step)
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   ℙ( Xt+1 | e1:t+1) = f( ℙ( Xt | e1:t), et+1)  = f1:t+1                         

= ℙ( Xt+1 | e1:t, et+1)                                                     (decompose)

= α ℙ( et+1 | Xt+1, e1:t)ℙ( Xt+1 | e1:t)                               (Bayes’ Rule) 

= α ℙ( et+1 | Xt+1)  ℙ( Xt+1 | e1:t)                                   (1. update under  
                                                                                   Markov assumption (sensor model),      
                                                                                   2. one-step prediction)

= α ℙ( et+1 | Xt+1)  ∑ ℙ( Xt+1 | xt, e1:t) P( xt | e1:t)            (sum over atomic events for X)  
                             xt

= α ℙ( et+1 | Xt+1)  ∑ ℙ( Xt+1 | xt) P( xt | e1:t)                  (Markov assumption)   
                             xt

ℙ( Xt | e1:t)                                                 (“forward message”, propagated recursively   
 
f1:t+1 = α FORWARD( f1:t , et+1)                     through “forward step function”) 

f1:0    = ℙ( X0) 



Prediction - 
filtering without the update
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 ℙ( Xt+k+1 | e1:t) = ∑ ℙ( Xt+k+1 | xt) P( xt+k | e1:t)            (k-step prediction)                       
                          xt+k

For large k the prediction gets quite blurry and will eventually converge into a stationary 
distribution at the mixing point, i.e., the point in time when this convergence is reached - in some 
sense this is when “everything is possible”.  



Smoothing: 
“explaining” backward
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   ℙ( Xk | e1:t) = fb( Xk, e1:k, ℙ( ek+1:t | Xk)) with 0 ≤ k < t     (understand the past from the  
                                                                                     recent past)                 

= ℙ( Xk | e1:k, ek+1:t)                                                   (decompose)

= α ℙ( Xk | e1:k) ℙ( ek+1:t | Xk, e1:k)                             (Bayes’ Rule)

= α ℙ( Xk | e1:k) ℙ( ek+1:t | Xk)                                   (Markov assumption)

= α f1:k  ⨯ bk+1:t                                                       (forward-message ⨯ backward-message)

 



Smoothing: 
calculating backward message
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bk+1:t  =  ℙ( ek+1:t | Xk)  

= ∑ ℙ( ek+1:t | Xk, xk+1) ℙ( xk+1 | Xk)            (conditioning on Xk+1, i.e., looking “backward”)  
   xk+1

= ∑ P( ek+1:t | xk+1) ℙ( xk+1 | Xk)                 (cond. indep. - Markov assumption)  
   xk+1

= ∑ P( ek+1, ek+2:t | xk+1) ℙ( xk+1 | Xk)                 (decompose)  
   xk+1

= ∑ P( ek+1| xk+1) P( ek+2:t | xk+1) ℙ( xk+1 | Xk)      (1. sensor, 2. backward msg, 3. transition model)  
   xk+1

= BACKWARD( bk+2:t, ek+1)

ℙ( ek+1:t | Xk)                             (“backward message”, propagated recursively)   
 
bk+1:t = BACKWARD( bk+2:t , ek+1)    (through “backward step function”) 

bt+1:t  = ℙ( et+1:t | Xt) = ℙ( | Xt) = 1

 



Smoothing “in a nutshell”: 
Forward-Backward-algorithm
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ℙ( Xk | e1:t) = fb( e1:k, ℙ( ek+1:t | Xk)) with 0 ≤ k < t     understand the past from the  
                                                                                  recent past                 

= α f1:k  ⨯ bk+1:t                                                     by first filtering (forward) until step k, then  
                                                                             explaining backward from t to k+1

Obviously, it is a good idea to store the filtering (forward) results for later smoothing

Drawback of the algorithm: not really suitable for online use (t is growing, ...)

Consequently, try with fixed-lag-smoothing (keeping a fixed-length window, BUT: “simple” 
Forward-Backward does not really do it efficiently - here we need HMMs)



“HMM” 
Hidden Markov models

X

A specific class of models (sensor and transition) to be plugged into the previously discussed 
algorithms - which makes the algorithms more specific as well!

Main idea:

The state is represented by a single discrete random variable, taking on values that represent the 
(all) possible states of the world. 

Complex states, e.g., the location and the heading of a robot in a grid world can be merged into 
one variable; the possible values are then all possible tuples of the values for each original 
“single” variable.



“HMM” 
State transition and sensor model
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We get the following notation:

Xt  the state at time t, taking on values 1 ... S, with S the number of possible states / values. 

Et  the observation at time t

The transition model P( Xt  | Xt-1 ) is then expressed as S x S matrix T:

                                         Tij  = P( Xt  = j | Xt-1 = i) in time step t

The sensor model for the corresponding observations depending on the current state, i.e.,  
P( et  | Xt = i) is then expressed as S x S diagonal matrix O in time step t with

                                         Oe_tij  = P( et | Xt = i)    for i  = j                              and 

 
                                         Oe_tij  = 0                    for i ≠ j 



Forward-backward equations 
as matrix-vector operations
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Forward-equation (recap) 

P( Xt+1 | e1:t+1) = f( P( Xt | e1:t), et+1)  = f1:t+1 = α P( et+1 | Xt+1)  ∑ P( Xt+1 | xt) P( xt | e1:t)                                                   
                                                                                             xt

becomes f1:t+1 = α Ot+1 TT f1:t

Backward-equation (recap) 

P( ek+1:t | Xk) = bk+1:t  = ∑ P( ek+1| xk+1) P( ek+2:t | xk+1) P( xk+1 | Xk) 
                                   xk+1

becomes bk+1:t = TOk+1 bk+2:t

Forward-Backward-equation is then still  α f1:k  ⨯ bk+1:t 



Smoothing in constant space

X

Idea

propagate both f and b in the same direction, hence avoiding to store the f1:k for a shifting / 
growing time slice k:t

Propagate the forward-message f “backward” with

f1:t = α’ (TT )-1O-1t+1 f1:t+1

Start with computing ft:t in a standard forward-run, forgetting all the intermediate messages, then 
compute both f and b simultaneously “backward” to do smoothing for each step this should be 
done for (NOTE: works obviously only if  TT and O can be inverted, i.e., every sensor reading 
must be possible in every state, though it can be very unlikely)



Fixed-lag smoothing (online)

X

Idea

if we can do smoothing with constant space requirements, we can also find an efficient recursive 
algorithm for online smoothing (a shifting “window”), independent of the length d of the 
investigated time slice t-d (with t growing).

We need to compute

α f1:t-d  ⨯ bt-d+1:t  for time slice t-d. In t+1, when a new observation arrives, we need

α f1:t-d+1  ⨯ bt-d+1:t+1 for time slice t-d+1.

We can get f1:t-d+1 from f1:t-d , applying standard filtering.

For the backward message, some more inspection has to be done (bt-d+1:t+1 depends on the new 
evidence in t+1) but there is a way by looking at how bt-d+1:t  relates to bt+1:t



Fixed-lag smoothing (online)

X

Backward recursion:
apply the recursive equation for bt-d+1:t d times:
                t    
bt-d+1:t = ( ∏  TOi)bt+1:t = Bt-d+1:t 1
         i=t-d+1 

Then, after the next observation, this will be:
                 t+1    
bt-d+2:t+1 = ( ∏  TOi)bt+2:t+1 = Bt-d+2:t+1 1
          i=t-d+2 

Do some matrix “division” and get an incremental update for B (and ultimately bt-d+2:t+1):
                      
Bt-d+2:t+1 =  O-1t-d+1 T-1Bt-d+1:t TOt+1



The full algorithm for 
fixed-lag smoothing

X

37

function FIXED-LAG-SMOOTHING(et,hmm ,d ) returns a distribution over Xt−d

inputs: et, the current evidence for time step t
hmm, a hidden Markov model with S× S transition matrix T
d , the length of the lag for smoothing

persistent: t , the current time, initially 1
f, the forward message P(Xt|e1:t), initially hmm.PRIOR
B, the d-step backward transformation matrix, initially the identity matrix
et−d:t, double-ended list of evidence from t− d to t, initially empty

local variables: Ot−d,Ot, diagonal matrices containing the sensor model information

add et to the end of et−d:t

Ot← diagonal matrix containing P(et|Xt)
if t > d then
f← FORWARD(f, et)
remove et−d−1 from the beginning of et−d:t

Ot−d← diagonal matrix containing P(et−d|Xt−d)
B←O−1

t−dT
−1BTOt

else B←BTOt

t← t + 1
if t > d then return NORMALIZE(f × B1) else return null

Figure 15.6 An algorithm for smoothing with a fixed time lag of d steps, implemented as an online
algorithm that outputs the new smoothed estimate given the observation for a new time step. Notice
that the final output NORMALIZE(f×B1) is just α f× b, by Equation (??).

function PARTICLE-FILTERING(e,N ,dbn) returns a set of samples for the next time step
inputs: e, the new incoming evidence

N , the number of samples to be maintained
dbn , a DBN with prior P(X0), transition model P(X1|X0), sensor model P(E1|X1)

persistent: S , a vector of samples of size N , initially generated from P(X0)
local variables: W , a vector of weights of size N

for i = 1 to N do
S [i]← sample from P(X1 | X0 = S [i ]) /* step 1 */
W [i]←P(e | X1 = S[i]) /* step 2 */

S←WEIGHTED-SAMPLE-WITH-REPLACEMENT(N ,S ,W ) /* step 3 */
return S

Figure 15.17 The particle filtering algorithm implemented as a recursive update operation with state
(the set of samples). Each of the sampling operations involves sampling the relevant slice variables
in topological order, much as in PRIOR-SAMPLE. The WEIGHTED-SAMPLE-WITH-REPLACEMENT
operation can be implemented to run in O(N) expected time. The step numbers refer to the description
in the text.



Summary

20

Inference in temporal models

- Filtering and prediction (FORWARD)

- Smoothing (FORWARD-BACKWARD)

Hidden Markov Models

- Simplified matrix representation for Forward-backward calculations


