

Knowledge Representation A very brief intro

Jacek Malec
Dept. of Computer Science, Lund University
February 20, 2019

Jacek Malec, Computer Science, Lund University

1(29)

Knowledge Representation

Explicit knowledge

W. C. W. C.

Facts about:

Knowledge Representation

Plan for today

- Moving the second of the se
 - Explicit knowledge
 - Inferred knowledge
 - Domain-specific stuff
 - Changing premises
 - Uncertainty
 - Semantic anchoring
- Architectures
- Self-awareness

Jacek Malec, Computer Science, Lund University

2(29)

Knowledge Representation

Explicit knowledge

Facts about:

objects

Explicit knowledge

Facts about:

- objects
- places

Explicit knowledge

Facts about:

- objects
- places
- times
- events
- processes
- behaviours

Explicit knowledge

Facts about:

- objects
- places
- times

3(29)

Jacek Malec, Computer Science, Lund University

3(29)

Explicit knowledge

Facts about:

- objects
- places
- times
- events
- processes
- behaviours
- vehicle dynamics
- rigid body interactions
- traffic laws

Jacek Malec, Computer Science, Lund University

Jacek Malec, Computer Science, Lund University

Jacek Malec, Computer Science, Lund University

Explicit knowledge

Background knowledge for all this includes:

Explicit knowledge

Background knowledge for all this includes:

ontologies

Jacek Malec, Computer Science, Lund University

4(29)

Explicit knowledge

Background knowledge for all this includes:

- ontologies
- theories

Jacek Malec, Computer Science, Lund University

4(29)

Explicit knowledge

Background knowledge for all this includes:

- ontologies
- theories
- physics
- mereology
- ...

Explicit knowledge

Inferred knowledge

Background knowledge for all this includes:

- ontologies
- theories
- physics
- mereology
- ...

Not everything needs to be explicit, nor expressed in one monolithic formalism

Jacek Malec, Computer Science, Lund University

4(29)

Knowledge Penresentation

Logics: modal

- lacktriangle take a logical language, let α be a wff
- \bigcirc $\Diamond \alpha$ is a wff
- **4** normally $\Box \alpha \leftrightarrow \neg \Diamond \neg \alpha$

Intended meaning?

(or: turning implicit into explicit)

- logics (language)
- theorem proving (mechanics)
- modes of reasoning

Jacek Malec, Computer Science, Lund University

5(29)

Knowledge Representation

Logics: modal

- \bullet take a logical language, let α be a wff
- \bigcirc $\Diamond \alpha$ is a wff

Intended meaning?

lacktriangledown $\Box \alpha$ means **Necessarily** α

Logics: modal

- \bullet take a logical language, let α be a wff
- $\square \alpha$ is a wff
- **4** normally $\Box \alpha \leftrightarrow \neg \Diamond \neg \alpha$

Intended meaning?

- \bigcirc $\square \alpha$ means **Necessarily** α
- **2** $\square \alpha$ means **Agent knows** α

Jacek Malec, Computer Science, Lund University

Logics: modal

- $\square \alpha$ is a wff
- **a** normally $\Box \alpha \leftrightarrow \neg \Diamond \neg \alpha$

Intended meaning?

- \bullet $\square \alpha$ means **Necessarily** α
- **2** $\square \alpha$ means **Agent knows** α
- **3** $\square \alpha$ means **Agent believes** α
- **1** $\square \alpha$ means **Always** in the future α

Logics: modal

- \bullet take a logical language, let α be a wff
- $\square \alpha$ is a wff
- **4** normally $\Box \alpha \leftrightarrow \neg \Diamond \neg \alpha$

Intended meaning?

- \bigcirc $\square \alpha$ means **Necessarily** α
- **1** $\square \alpha$ means **Agent believes** α

Jacek Malec, Computer Science, Lund University

6(29)

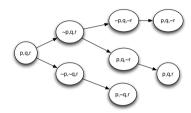
Logics: modal

- \bullet take a logical language, let α be a wff

- **4** normally $\Box \alpha \leftrightarrow \neg \Diamond \neg \alpha$

Intended meaning?

- \bigcirc $\square \alpha$ means **Necessarily** α
- **3** $\square \alpha$ means **Agent believes** α
- **1** $\square \alpha$ means **Always** in the future α
- **5** $G\alpha$ means Always in the future (or: Globally) α


STONE RVMORE

Logics: Kripke semantics

Actually, meaning of modal formulae is defined on graph structures

Nodes: possible worlds

Edges: reachability relation

Jacek Malec, Computer Science, Lund University

7(29

Knowledge Representation

Logics: temporal

Globally (always):

ПΦ

Finally (eventually):

ф◊

Next:

 $\bigcirc \Phi$

Until:

 $\Psi U \Phi$

Cf. Richard Murray's verification of autonomous car controller:

$$(\Phi^{e}_{\textit{init}} \wedge \Box \Phi^{e}_{\textit{safe}} \wedge \Box \Diamond \Phi^{e}_{\textit{prog}}) \rightarrow (\Phi^{s}_{\textit{init}} \wedge \Box \Phi^{s}_{\textit{safe}} \wedge \Box \Diamond \Phi^{s}_{\textit{prog}})$$

Knowledge Representation

Logics: temporal

Globally (always):

ПΦ

Finally (eventually):

◊Ф

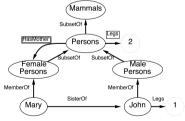
Next:

 Φ

Until:

 $\Psi U \Phi$

Jacek Malec, Computer Science, Lund University


8(29)

Knowledge Representation

Logics: description

Earlier known as semantic networks. Formal version of semantic web languages (OIL, DAML, OWL).

Effective reasoning:

- inheritance via SubsetOf (SubClass) and MemberOf (isA) links
- intersection paths
- special meaning of some links (e.g. cardinality constraints)
- classification, consistency, subsumption

Representation: ontologies

Lots of robot-related ontologies: knowrob, IEEE CORA (Standard 1872-2015), intelligent systems ontology (2005, NIST), ...

Jacek Malec, Computer Science, Lund University

10(29)

Knowledge Representation

Modes of reasoning: Deduction

RedLightAt(intersection1) $\forall (x)$ RedLightAt $(x) \rightarrow \bigcirc$ StopBefore(x)

thus

○StopBefore(intersection1)

General Pattern:

prior facts

domain knowledge

observations

conclusions

Sound.

Knowledge Representation

Modes of reasoning: Deduction

RedLightAt(intersection1) $\forall (x) RedLightAt(x) \rightarrow \bigcirc StopBefore(x)$

thus

○StopBefore(intersection1)

General Pattern:

prior facts

4 domain knowledge

observations

Jacek Malec, Computer Science, Lund University

11(29)

Knowledge Representation

Modes of reasoning: Deduction

RedLightAt(intersection1) $\forall (x)$ RedLightAt $(x) \rightarrow \bigcirc$ StopBefore(x)

thus

○StopBefore(intersection1)

General Pattern:

prior facts

domain knowledge

observations

ound But note:

Sound. But note:

Birds fly. Tweety is a penguin. Penguins are birds.

Modes of reasoning: Induction

 $OnDesk(monitor1) \land Monitor(monitor1), OnDesk(monitor2) \land Monitor(monitor2), OnDesk(monitor3) \land Monitor(monitor3), OnDesk(monitor4) \land Monitor(monitor4), OnDesk(monitor5) \land Monitor(monitor5) thus <math>\forall (x)Monitor(x) \rightarrow OnDesk(x)$

General pattern:

- Observe
- @ Generalize

Fallible. Constructs hypotheses, not true facts. However, most of our practical reasoning, in particular learning, is of this kind.

Jacek Malec, Computer Science, Lund University

12(29)

Knowledge Representation

Modes of reasoning: Abduction

General pattern:

- prior facts
- domain knowledge
- observations
- explain the observation

Given a theory T and observations O

E is an explanation of *O* given *T* if $E \cup T \models O$ and $E \cup T$ is consistent.

Usually we are interested in most plausible E, sometimes minimal E, most elegant E, ...

Probablilistic abduction: maybe Elin will (or has) mention(ed) it.

Knowledge Representatio

Modes of reasoning: Abduction

General pattern:

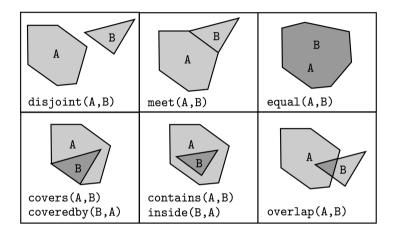
- prior facts
- domain knowledge
- Observations

Jacek Malec, Computer Science, Lund University

13(29)

Knowledge Representation

What do we want to represent?



- objects
- places
- times
- events
- processes
- behaviours
- vehicle dynamics
- rigid body interactions
- traffic laws
- ...

Knowledge Representation

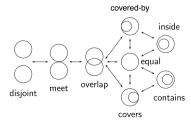
* SICILIAN WAR

Qualitative spatial reasoning

Jacek Malec, Computer Science, Lund University

15(29)

Knowledge Representation


Qualitative spatial reasoning

RCC8: region connection calculus

Given e.g.,

 $contains(A, B) \land covers(B, C)$ we can conclude contains(A, C)

 $\square(meet(A, B) \rightarrow \bigcap(meet(A, B) \lor disjoint(A, B) \lor overlap(A, B)))$

Qualitative spatial reasoning

	disjoint	meet	equal	inside	coveredby	contains	covers	overlap
disjoint	RCC8	disjoint meet inside coveredby overlap	disjoint	disjoint meet inside coveredby overlap	disjoint meet inside coveredby overlap	disjoint	disjoint	disjoint meet inside coveredby overlap
meet	disjoint meet contains covers overlap	disjoint meet equal coveredby covers overlap	meet	inside coveredby overlap	meet inside	disjoint	disjoint meet	disjoint meet inside coveredby overlap
equal	disjoint	meet	equal	inside	coveredby	contains	covers	overlap
inside	disjoint	disjoint	inside	inside	inside	RCC8	disjoint meet inside coveredby overlap	disjoint meet inside coveredby overlap
coveredby	disjoint	disjoint meet	coveredby	inside	inside coveredby	disjoint meet contains covers overlap	disjoint meet equal coveredby covers overlap	disjoint meet overlap coveredby overlap
contains	disjoint meet contains covers overlap	contains covers overlap	contains	equal inside coveredby contains covers overlap	contains covers overlap	contains	contains	contains covers overlap
covers	disjoint meet contains covers overlap	meet contains covers overlap	covers	inside coveredby overlap	equal coveredby covers overlap	contains	contains covers	contains covers overlap
overlap	disjoint meet contains covers overlap	disjoint meet contains covers overlap	overlap	inside coveredby overlap	inside coveredby overlap	disjoint meet contains covers overlap	disjoint meet contains covers overlap	RCC8

Jacek Malec, Computer Science, Lund University

16(29)

Knowledge Representation

Juggling example (Apt)

From some time on, at most one ball is not in the air:

A ball thrown from one hand remains in the air until it lands in the other hand:

Interval calculus (Allen 1983)

A is before B or B is after A Interval B A meets B or Interval A B is met by A Interval A A overlaps with B or Interval B B is overlapped by A A starts B or Interval A B is started-by A Interval B Interval A A during B or Interval B B contains A Interval A A finishes B or Interval B B is finished-by A Interval A A and B are cotemporal Interval B

Jacek Malec, Computer Science, Lund University

19(29)

Knowledge Representation

Invalidating conclusions

- Tweety is a bird.
- So it flies.
- But Tweety is a penguin.
- So it doesn't fly.

Knowledge Representatio

Invalidating conclusions

- Tweety is a bird.
- So it flies.

Jacek Malec, Computer Science, Lund University

20(29)

Knowledge Representation

Invalidating conclusions

- Tweety is a bird.
- So it flies.
- But Tweety is a penguin.
- So it doesn't fly.

Non-monotonic reasoning.

Truth-maintenance systems.

Default reasoning. Circumscription. Closed World Assumption. Negation as failure. . . .

Uncertainty

Every perception is associated with uncertainty. Account for that.

Approaches:

- probabilistic representations
- fuzzy approaches
- multi-valued logics

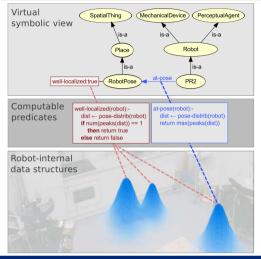
Transformations between representations as needed.

Jacek Malec, Computer Science, Lund University

21(29)

Knowledge Representation

KnowRob lessons


Beetz and Tenorth, AlJ, 2016:

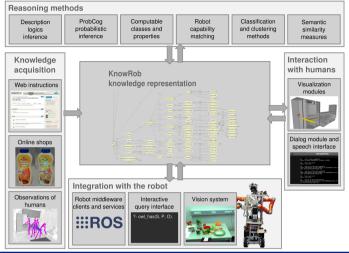
- No fixed levels of abstraction, no layers, no "black boxes";
- A knowledge base should reuse data structures of the robot's control program;
- Symbolic knowledge bases are useful, but not sufficient;
- Robots need multiple inference methods;
- Evaluating a robot knowledge base is difficult.

Knowledge Representation

Back to KnowRob

Jacek Malec, Computer Science, Lund University

22(29)


Knowledge Representation

Architectures of knowledge-based systems

AIMA agents (cf. introductory lecture)

- Logical agents declarative, compositional
- 2 Rule-based systems compositionality on the rule level
- Stayered systems (distribution of concerns)
- Blackboards compositionality of reasoners (knowledge sources) (KnowRob, our SIARAS system)
- Stream-oriented reasoning Heintz@LiU

KnowRob as a blackboard

Jacek Malec, Computer Science, Lund University

25(29)

Knowledge Representation

Self-awareness: motivation

- true autonomy requires self-awareness
- autoepistemic logic captures just one aspect: awareness of own knowledge
- resource limitations: anytime algorithms, active logic
- interaction: distributed knowledge
- interaction: shared knowledge
- explanation of own behaviour (trust)

Knowledge Representation

Self-awareness: Autoepistemic logic

Distribution axiom K:

$$(K\alpha \wedge K(\alpha \rightarrow \beta)) \rightarrow K\beta$$

Moving the second Se

$$K\alpha \rightarrow \alpha$$

Positive introspection 4:

$$K\alpha \rightarrow KK\alpha$$

Negative introspection 5:

$$\neg K\alpha \to K\neg K\alpha$$

Jacek Malec, Computer Science, Lund University

26(29)

Knowledge Representation

References 1

https://www.youtube.com/watch?v=ymUFadN_MO4 (How Watson learns)

DOI: 10.1147/JRD.2012.2186519, Automatic knowledge extraction from documents, J. Fan, A. Kalyanpur, D. C. Gondek, D. A. Ferrucci, IBM J. RES. DEV. VOL. 56 NO. 3/4 PAPER 5, 2012 YAGO2: A Spatially and Temporally Enhanced Knowledge Base from Wikipedia, Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, Gerhard Weikum, Artificial Intelligence Journal, vol. 194, pp. 28-61, 2013

Representations for robot knowledge in the KnowRob framework, Moritz Tenorth, Michael Beetz, Artificial Intelligence Journal, in press, available on the journal site

Logics for Artificial Intelligence, Raymond Turner, Ellis Horwood, 1984

References 2

Logic In Action, Johan van Benthem, http://www.logicinaction.org, 2012

Rete: A Fast Algorithm for the Many Pattern/ Many Object Pattern Match Problem, Charles L. Forgy, Artificial Intelligence Journal, vol.19 (1982), pp. 17-37.

https://arxiv.org/pdf/1201.4089.pdf, A Description Logic Primer, Markus Kroetzsch, Frantisek Simancik, Ian Horrocks Qualitative Spatial Representation and Reasoning, Anthony G Cohn and Jochen Renz, Handbook of Knowledge Representation, pp. 551-596, Elsevier, 2008

Jacek Malec, Computer Science, Lund University

29(29)