
Bayesian learning
(with a recap of HMMs)

Applied artificial intelligence (EDAF70)
Lecture 10
2018-02-16
Elin A. Topp

Material based on course book, chapters 14.1-3, 20,
and on Tom M. Mitchell, “Machine Learning”, McGraw-Hill, 1997

1

The Markov assumption

2

A process is Markov (i.e., complies with the Markov assumption), when any given

state Xt depends only on a finite and fixed number of previous states.

155

Xt–2 Xt–1 Xt(a)

(b)

Xt+1 Xt+2

Xt–2 Xt–1 Xt Xt+1 Xt+2

Figure 15.1 FILES: figures/markov-processes.eps (Tue Nov 3 16:23:08 2009). (a) Bayesian net-
work structure corresponding to a first-order Markov process with state defined by the variables Xt. (b)
A second-order Markov process.

A first-order Markov chain as Bayesian network

3

Raint-1 Raint Raint+1

Umbrellat-1 Umbrellat Umbrellat+1

Rt-1 P(Rt | Rt-1)

T 0.7

F 0.3

Rt P(Ut | Rt)

T 0.9

F 0.2

“cause” / state

“effect” / evidence

“HMM”
Hidden Markov models

4

A specific class of models (sensor and transition) to be plugged into algorithms for filtering,
predicting, learning - which makes the algorithms more specific as well!

Main idea:

The state is represented by a single discrete random variable, taking on values that represent the
(all) possible states of the world.

Complex states, e.g., the location and the heading of a robot in a grid world can be merged into
one variable; the possible values are then all possible tuples of the values for each original
“single” variable.

“HMM”
State transition and sensor model

5

We get the following notation:

Xt the state at time t, taking on values 1 ... S, with S the number of possible states / values.

Et the observation at time t

The transition model P(Xt | Xt-1) is then expressed as S x S matrix T:

 Tij = P(Xt = j | Xt-1 = i) in time step t

The sensor model for the corresponding observations depending on the current state, i.e.,  
P(et | Xt = i) is then expressed as S x S diagonal matrix O in time step t with

 Oe_tij = P(et | Xt = i) for i = j and

 
 Oe_tij = 0 for i ≠ j

Forward-backward equations
as matrix-vector operations

6

Forward-equation (recap)

P(Xt+1 | e1:t+1) = f(P(Xt | e1:t), et+1) = f1:t+1 = α P(et+1 | Xt+1) ∑ P(Xt+1 | xt) P(xt | e1:t)  
 xt

becomes f1:t+1 = α Ot+1 TT f1:t

Backward-equation (recap)

P(ek+1:t | Xk) = bk+1:t = ∑ P(ek+1| xk+1) P(ek+2:t | xk+1) P(xk+1 | Xk) 
 xk+1

becomes bk+1:t = TOk+1 bk+2:t

Forward-Backward-equation is then still α f1:k ⨯ bk+1:t

Example matrix setup for a two-state world
and three sensor readings

7

Ball behaviour:

P(step t: ball in 1 | step t-1: ball in 1) = 0.7

P(step t: ball in 2 | step t-1: ball in 1) = 0.3

P(step t: ball in 1 | step t-1: ball in 2) = 0.4

P(step t: ball in 2 | step t-1: ball in 2) = 0.6

Sensor correct:  
“red” in state 1, “yellow” in state 2  
 
P(sensor correct) = 0.8

P(sensor incorrect) = 0.15

P(sensor fails) = 0.05  
1 2

 
T =  
 

(  0.7 0.3

0.4 0.6  
)

 
Or =  
 

(  0.8 0.0

0.0 0.15  
)
  

 
Oy =  
 

(  0.15 0.0

0.0 0.8  
)

 
Of =  
 

(  0.05 0.0

0.0 0.05  
)
  

 forward filtering with f1:0 = ℙ(X0) becomes then: f1:t+1 = α Ot+1 TT f1:t

Inference in temporal models
- what can we use all this for?

8

• Filtering: Finding the belief state, or doing state estimation, i.e.,
computing the posterior distribution over the most recent state, using evidence up
to this point:  
ℙ(Xt | e1:t)

• Predicting: Computing the posterior over a future state, using evidence up to
this point: ℙ(Xt+k | e1:t) for some k>0 (can be used to evaluate course of action
based on predicted outcome)

• Smoothing: Computing the posterior over a past state, i.e., understand the past,
given information up to this point: ℙ(Xk | e1:t) for some k with 0 ≤ k < t

• (Explaining: Find the best explanation for a series of observations, i.e.,
computing  
argmaxx1:t P(x1:t | e1:t))

• Learning: If sensor and / or transition model are not known, they can be learned
from observations (by-product of inference in Bayesian network - both static or
dynamic). Inference gives estimates, estimates are used to update the model,
updated models provide new estimates (by inference). Iterate until converging -
and you have an instance of the EM-algorithm.

A robot’s view of the world...

9

−5000 −4000 −3000 −2000 −1000 0 1000 2000 3000
−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Distance in mm relative to robot position

D
is

ta
nc

e
in

 m
m

 re
la

tiv
e

to
 ro

bo
t p

os
iti

on
Scan data
Robot

A robot’s view of the world...

9

−5000 −4000 −3000 −2000 −1000 0 1000 2000 3000
−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Distance in mm relative to robot position

D
is

ta
nc

e
in

 m
m

 re
la

tiv
e

to
 ro

bo
t p

os
iti

on
Scan data
Robot

Which combination of point group features corresponds to person-leg, which to furniture?

We want to classify / categorize / label new observations based on experience

More general: We want to predict and explain based on (limited) experience, to find
categories / labels for observations or even the model for “how things work” (transition
models, sensor models) given a series of (explained) observations.

Limitation of this lecture: Reinforcement learning, which also builds upon probabilistic
methods, is not discussed.

Bayesian learning.

10

Predicting the next outcome

11

?

Candy bags with different percentages of flavours “lime” and “cherry”.
A bag is opened, you can take the candies, but the label of the bag is gone. Which type was it?  
And, more interestingly, what will the next candy flavour be, if I pick one at random?

Hypotheses for types of pattern collection (i.e., images from a certain situation) are still
available, with their priors:

h1: 100% Cherry P(h1) = 0.1

h2: 75% Cherry, 25% Lime P(h2) = 0.2

h3: 50% Cherry, 50% Lime P(h3) = 0.4

h4: 25% Cherry, 75% Lime P(h4) = 0.2

h5: 100% Lime P(h5) = 0.1

−5000 −4000 −3000 −2000 −1000 0 1000 2000 3000
−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Distance in mm relative to robot position

D
is

ta
nc

e
in

 m
m

 re
la

tiv
e

to
 ro

bo
t p

os
iti

on

Scan data
Robot

?

Maximum Likelihood

12

We can predict (probabilities) by maximizing the likelihood of having observed some

particular data with the help of the Maximum Likelihood hypothesis:

 hML = argmax P(D | h)
 h

… which is a strong simplification disregarding the priors…

?

“Maximum A Posteriori” - MAP

13

Finding the slightly more sophisticated Maximum A Posteriori hypothesis:

 hMAP = argmax P(h | D)
 h

Then predict by assuming the MAP-hypothesis (quite bold)

ℙ(X | D) = P(X | hMAP)

?

Optimal Bayes learner

14

Prediction for X, given some observations D = <d0, d1 dn>

ℙ(X | D) = ∑i ℙ(X | hi) P(hi | D) in first step, P(hi | D) = P(hi)…

For comparison (look at the prediction step in forward filtering):

ℙ(Xt+1 | e1:t+1) = α ℙ(et+1 | Xt+1) ∑ ℙ(Xt+1 | xt) P(xt | e1:t)  
 xt

?

Learning from experience

X

Prediction for the first pattern picked, assuming e.g., h3, and no observations are made:

P(d0 = Cherry | h3) = P(d0 = Lime | h3) = 0.5

First candy is of type Lime, now we know:

P(h1 | d0) = 0 (as P(d0 | h1) = 0), etc...

After 10 patterns that all turn out to be Lime, assuming that outcomes for di are i.i.d.

(independent and identically distributed):

P(D | hk) = ∏i P(di | hk)

ℙ(hk | D) = ℙ(D | hk) P(hk) / ℙ(D) = α ℙ(D | hk) P(hk)

?

Posterior probabilities

15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

Po
st

er
io

r p
ro

ba
bi

lit
y

of
 h

yp
ot

he
si

s

Number of observations in d

P(h1 | d)
P(h2 | d)
P(h3 | d)
P(h4 | d)
P(h5 | d)Posterior probability

for hypothesis hk after
i observations

Number of observations

?

Prediction after sampling, OBC

16

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

Pr
ob

ab
ili

ty
 th

at
 n

ex
t c

an
dy

 is
 li

m
e

Number of observations in d

Probability for the
next candy being lime

Number of observations

?

Optimal learning vs MAP-estimating

X

Predict by assuming the MAP-hypothesis:

ℙ(X | D) = P(X | hMAP) with hMAP = argmax P(h | D)  
 h

i.e., P_hMAP(d4 = Lime | d1 = d2 = d3 = Lime) = P(X | h5) = 1

While the optimal classifier / learner predicts

P(d4 = Lime | d1 = d2 = d3 = Lime) = ... = 0.7961

However, they will grow closer! Consequently, the MAP-learner should not be
considered for small sets of training data!

?

The Gibbs Algorithm

17

Optimal Bayes Learner is costly, MAP-learner might be as well.

Gibbs algorithm (surprisingly well working under certain conditions regarding the a

posteriori distribution for H):

1. Choose a hypothesis h from H at random, according to the posterior probability

distribution over H (i.e., rule out “impossible” hypotheses)

2. Use h to predict the classification of the next instance x.

Bayes’ Rule

Bayes’ Rule P(a | b) =

or in distribution form:

ℙ(Y | X) = = α ℙ(X | Y) ℙ(Y)

Useful for assessing diagnostic probability from causal probability  
- assume hypothesis / class as causing the observations / features

P(Cause | Effect) =

And, if independence (at least conditional such) can be assumed:

Naive Bayes model: ℙ(Cause, Effect1,, Effectn) = ℙ(Cause) ∏i ℙ(Effecti | Cause)

18

ℙ(X | Y) ℙ(Y)

 ℙ(X)

P(Effect | Cause) P(Cause)

 P(Effect)

P(b | a) P(a)
--

 P(b)

Naive Bayes classifier

19

Each instance (pattern) with a value vj from a fixed set V (= {furniture, person}) in a

training set (all patterns registered and annotated) is described by several attributes

<a1, ... , ai, ... , an> (e.g., number of laser data points, curvature of the “arc”, distance

from first to last point)

Now we try to maximise:

 vMAP = argmax P(vj | a1, a2, an)
 vj

 = argmax
 vj

 = argmax P(a1, a2, an | vj) P(vj)
 vj

And (by assuming independence) end up with the Naive Bayes Classifier

(corresponding to the MAP-hypothesis, if the observations are seen as features):

vNB = argmax P(vj) ∏i P(ai | vj)
 vj

P(a1, a2, an | vj) P(vj)

 P(a1, a2, an)

Expressed as a BN:
(true model)

20

CN D

Class P(Class)

0.5

Class P(N=n1|Class) = P(C = c1 | Class) = P(D = d1| Class)

Furniture 0.8

Person 0.3

N = No of points,
n1 = “N<threshold”, n2 = “N >= threshold”

C = Curvature,
c1 = “C=strong”, c2 = “weak”

D = Distance first to last point,
d1 = “D<threshold”, d2 = “D >= threshold

Learning Bayesian Belief Networks

21

Two issues:

Learning the CPTs given a suitable structure AND all variables are observable:

Estimate the CPTs as for a Naive Bayes Classifier / Learner (relatively easy)

Learning the CPTs given a network structure with only partially observable variables:

Corresponds to learning the weights of hidden units in a neural network (ascent

gradient or EM)

Learning the network structure

Difficult. Bayesian scoring method for choosing among alternative networks.

Expectation maximization - EM algorithm

22

A situation with some variables being sometimes unobservable, sometimes observable is

quite common.

Use the observations that are available to predict in cases where there is not any

observation.

Step 1: Estimate value for the hidden variable given some parameters (observed, initial...)

Step 2: Maximize parameters assuming this estimate

Finding the numbers … (model lost)

23

C = c1 C = c2

D = d1 D = d2 D = d1 D = d2

N = n1 273 93 104 90

N = n2 79 100 94 167

N = No of points,
n1 = “N<threshold”, n2 = “N >= threshold”

C = Curvature,
c1 = “C=strong”, c2 = “weak”

D = Distance first to last point,
d1 = “D<threshold”, d2 = “D >= threshold

Now, we can do EM

CN D

Class

Starting guess

24

CN D

Class P(Class)

0.6?

Class P(N=n1|Class) = P(C = c1 | Class) = P(D = d1| Class)

Furniture 0.6?

Person 0.4?

N = No of points,
n1 = “N<threshold”, n2 = “N >= threshold”

C = Curvature,
c1 = “C=strong”, c2 = “weak”

D = Distance first to last point,
d1 = “D<threshold”, d2 = “D >= threshold

Excourse: Classifying text

25

Our approach to representing arbitrary text is disturbingly simple: Given a text document,

such as this paragraph, we define an attribute for each word position in the document and

define the value of that attribute to be the English word found in that position. Thus, the

current paragraph would be described by 111 attribute values, corresponding to the 111 word

positions. The value of the first attribute is the word “our”, the value of the second attribute is

the word “approach”, and so on. Notice that long text documents will require a larger number

of attributes than short documents. As we shall see, this will not cause us any trouble. (*)

vNB = argmax P(vj) ∏i111 P(ai | vj) = P(vj) P(a1 = “our” | vj) * * P(a111 = “trouble” | vj)
 vj ∈ {like, dislike}

(*)[Tom M. Mitchell, “Machine Learning”, p 180]

Naive Bayes Classifier for text

26

Given a test person who classified 1000 text samples into the categories “like” and “dislike” (i.e., the target value
set V) and those text samples (Examples), the text from the previous slide is to be classified with the help of the
Naive Bayes Classifier. This algorithm (from Tom M. Mitchell, “Machine Learning”, p 183) assumes (and learns) the
m-estimate for P(wk | vj), the term describing the probability that a randomly drawn word from a document in
class vj will be the word wk.

LEARN_NAIVE_BAYES_TEXT(Examples, V)
/* learn probability terms P(wk | vj) and the class prior probabilities P(vj) */
1. Collect all words, punctuation, and other tokens that occur in Examples

• Vocabulary ⟵	the set of	all distinct words and other tokens occurring in any text document from Examples
2. calculate the required P(vj) and P(wk | vj) terms

• docsj ⟵	the subset of documents from Examples for which the target value is vj

• P(vj) ⟵	| docsj | / | Examples |
• Textj ⟵	a single document created by concatenating all members of docsj

• n ⟵	total number of distinct word positions in Textj
• for each word wk in Vocabulary

• nk ⟵	number of times word wk occurs in Textj
• P(wk | vj) ⟵	(nk +1) / (n + | Vocabulary |) /* m-estimate */

CLASSIFY_NAIVE_BAYES_TEXT(Doc)
/* Return the estimated target value for the document Doc. ai denotes the word found in ith position within Doc.

• positions ⟵	all word positions in Doc that contain tokens found in Vocabulary
• Return vNB, where

 vNB = argmax P(vj) ∏ P(ai | vj)
 vj ∈V i ∈positions

Summary

27

Maximum likelihood hypothesis and MAP-hypothesis / learning

Optimal Bayes learner / classifier

Gibbs algorithm

Naive Bayes classifier

Learning Bayesian Belief Networks
 - EM algorithm

(Example: The GeNIe network for interaction patterns)

