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1 Machine Learning (PN) 30 points

1.1 Notations

In this exercise, you will consider a dataset ofN observations, where your will
try to predict an observed value (output or response) yi from an input vector
xi. The dataset, denoted X, is the matrix of the input vectors arranged by
rows and y = (y1, y2, ..., yN ) is the vector of observed values.

Linear regression is a linear model that predicts yi using a dot product
between xi and a learnable weight vector w. We denote ŷi this predicted
value and we have then xi · w = ŷi. We define the error as the predicted
value minus the observed value: ŷi − yi.

1.2 Background

The objective of linear regression is to find the w vector that minimizes the
quadratic loss defined as the sum of the squared errors, L2. During the
lectures, we have seen that this minimization has a closed-form for solution
with the pseudoinverse:

w = (XᵀX)−1Xᵀy.

In the loss formulation of L2, as well as in the logistic loss, the norm of
the weight vector, ||w||, is not bounded. In many real cases, when columns
of the dataset are close to be linearly dependent, the weight coordinates can
take huge values when computing a pseudoinverse. This is also the case when
using a gradient descent depending on the initial conditions.

During the lectures, we saw one way to mitigate this problem by adding
an identity matrix scaled by a small λ value:

w = (XᵀX + λI)−1Xᵀy

In your assignment program, instead of a pseudoinverse, you used gradi-
ent descent to find w. In this examination, you will adapt regularization to
a gradient descent and derive a new update rule.
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1.3 Linear regression

For linear regression, the L2 loss, corresponding to the sum of squared errors,
corresponds to:

Loss(w) =
∑

i(ŷi − yi)2,
=

∑
i(w · xi − yi)2.

To damp the norm of the weights during the descent, we can reformulate
the norm as a cost that incorporates a fraction of the norm value:

Cost(w) =
∑

i(ŷi − yi)2 + λ||w||2,
=

∑
i(w · xi − yi)2 + λ||w||2.

This process is called regularization.

1.4 Gradient descent with regularization

In this exercise, you will rewrite the update rule of a gradient descent to
incorporate regularization. You will limit yourself to a two-dimensional space
and straight lines where:

ŷi = w0 + w1xi.

1.4.1 Partial derivatives

1. Compared with the loss, explain why the cost definition will limit the
range of the weight parameters; 2 points

2. Using yi and ŷi, write the L2 loss for one point; 1 point

3. Using yi, xi, and w = (w0, w1), rewrite this L2 loss for one point; 1 point

4. Compute the partial derivatives of the L2 loss with respect to w0 and

w1,
∂Loss

∂w0
and

∂Loss

∂w1
, for one point; 2 points

5. Using yi, xi, w = (w0, w1), and λ, write the cost for one point; 1 point

6. Compute the partial derivatives of the cost with respect to w0 and w1,
∂Cost

∂w0
and

∂Cost

∂w1
, for one point. 3 points

1.4.2 Gradient descent

The gradient descent update rule at step t is given by:

w(t+1) = w(t) − α∇wLoss(w(t))

1. Give the update rules for w0 and w1 with the loss 1 point

w0 ← ?
w1 ← ?;
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2. Give the update rules for w0 and w1 with the cost: 3 points

w0 ← ?
w1 ← ?;

1.5 Optimal model

We saw during the lectures and the assignment that we reach an optimal
value of the weight vector w when the gradient is 01.

1. Using the results in Sect. 1.4.1, rewrite the equation system

∇wLoss(w(t)) = 0

with xi, yi, w0 and w1; 2 points

2. What does this new equation system mean in terms of loss? 2 points

3. Rewrite the equation system

∇wCost(w(t)) = 0

with xi, yi, λ, w0 and w1; 3 points

1.6 Relation with the pseudoinverse

The definition of the pseudoinverse with regularization we saw during the
lectures is:

w = (XᵀX + λI)−1Xᵀy

1. Expand the equation below

(XᵀX + λI)w = Xᵀy

in a two-dimensional space with one point, xi, i.e. X is limited to one
point (1, xi). 4 points

Note that the matrix product of a column vector by a row vector is:[
a
b

] [
c d

]
=

[
ac ad
bc bd

]
2. Show it is equivalent to what you obtained in the system

∇wCost(w(t)) = 0.

2 points
1In the program, you probably stopped the descent when the gradient norm was below

a small ε value.

3



1.7 Logistic regression

We can also regularize logistic regression with the squared norm of the weight
vector.

The logistic loss for one observation is defined as:

−yi ln ŷi − (1− yi) ln(1− ŷi),

where
ŷi =

1

1 + e−w·xi
.

We regularize this loss with the addition of the squared norm of the
weight vector. For one observation, this would yield:

−yi ln ŷi − (1− yi) ln(1− ŷi) + λ||w||2.

1. Tell how you would modify the update rule of logistic regression to
have a regularized gradient descent. 3 points

Note: You do not need to compute or write the gradient, just write how you
would modify the existing update rule.
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2 Games (JM) 15p

L-game is played by two players on a 4 × 4 board. Each player has an
L-shaped figure which can be turned upside down and/or rotated in all di-
rections. A move consists of two parts:

1. The player lifts her L-figure and puts it down on the board in a different
position than before.

2. If she wants, she can also move one of the two neutral pieces2 to a new
position.

The player who cannot move her L to a new position, looses the game. The
following picture illustrates the board in the beginning of the game.

Task 1 Assume now that you want to write a program that could play the
L-game. Your task consists of representing the problem as an adversarial
search problem. Describe how state and operators (possible moves) could
be represented, how the goal state will be recognized (a goal-test function),
how possible moves will be generated (a successor function), how one of the
possible moves will be chosen (a choose-move function), etc. 10 points

In order to avoid misunderstanding, some precision is necessary in your
answer. Therefore it would be a benefit if you could use e.g. list structures
(or whatever you deem appropriate) to define the necessary data types you
choose to represent state and operators. You can write your functions using
a pseudocode.

Remember that your program is going to play against an opponent.
Therefore during the search for the next best move you should take into
account the possible moves of the opponent.

2A neutral piece, marked by a circle on top of it, covers just one square of the board.
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Task 2 What is the branching factor of the search space? Is the search
space finite? 2 points

How would your answers to these two question change if the neutral pieces
were not moved by any of the players, but got random placement after each
player’s move of her L-piece? I.e., the game would go as follows: (1) first
player moves her L-piece, (2) the two neutral pieces get random positions on
the available space (including their current placement), (3) the other player
moves her L-piece, (4) the two neutral pieces get random positions on the
available space, (5) do (1) again. 2 points

Task 3 Can you come up with a winning strategy for the player moving
first? 1 point

3 Logic (JM) 20p

Imagine the following situation in the wumpus world:

Prove that the position 3,3 is safe, i.e., the agent will not get killed if it
moves there (via position 3,2 or position 2,3; other paths may be unsafe, as
you know). You need to

• formulate your problem in logic, 4 points

• state all necessary laws of the Wumpus world (do not do more than
necessary, you don’t have time), 6 points

• and finally prove that position 3,3 is safe. Maximal number of points
(10) will be given for a resolution proof. 10 points
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4 KR (JM) 5 p

How would the problem above be represented in the semantic web setting?
Try to give a concrete example rather than just describe the idea. Would the
same pattern of reasoning as in previous question be possible in this case? 5 points
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5 Probabilistic reasoning, BNs (EAT), 9p

Note: The figures referred to in the question (networks i) – iv)) may be found
on pages 9 and 10.

You have a set of 5 random variables. You know the following about
them:

• Semantically speaking, the phenomenon represented by B is known to
cause an effect on what is represented by C, which can then have an
effect on what is represented by D and A respectively.

• P (D|A,B,C,E) = P (D|B) and P (A|B,C,D,E) = P (A|B)

• P (E|A,B,C,D) = P (E)

• P (D,A) 6= P (D)P (A)

Answer the following questions (motivate your answers!):

a) When are two random variables independent of each other? When are
they conditionally independent? 2 points

b) Which of the networks i), ii), and iii) is / are correct wrt the set of
variables described above? 2 points

c) Which network is optimal (if any), and why? 2 points

d) What do the CPTs represent? Explain explicitly the one for variable C
in network i)! 2 points

e) Network iv) represents a special case of a Bayesian Network. What makes
it special and how is this type of network also called? 1 point
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Figure 1: Networks i) (top), ii) (bottom)
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Figure 2: Networks iii) (top) and iv) (bottom
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6 Probabilistic (Bayesian) reasoning (over time) /
Robotics (EAT), 21p

Similar to what you did before as a homework assignment, you are supposed
to localise an agent in a grid world. In this case, the world has obstacles
in it, and the states correspond to the number of possible positions for the
agent (see below). The agent moves according to the following assumptions:
Stay put with probability 0.4, and move to one directly adjacent state (no
diagonal moves) with probability 0.6 overall. It reports in every step how
many spots it could move to around it (this means, it reports “1”, “2”, or “3”)
with probability 0.8, or it tries to trick you and does not report anything
with probability 0.2.

0

1 2 3

4 5

6

Figure 3: The gridworld for the agent to move in; the numbers in the cells corre-
spond to the state

a) Formulate the problem of localising the agent as an HMM in matrix-
vector form, i.e. note down the matrices describing the transition and
sensor models. 6 points

b) Assume you start out with not knowing where the agent actually is, but
then you get a sensor report of “3”. Do you know for sure now, where it
is? Why? Explain both intuitively and mathematically! 2 points

c) Assume now to receive the following series of sensor reports AFTER the
initial report of “3” discussed above: “2”, “nothing”, “1”. What is/are the
possible state(s) the agent can be in? Explain intuitively! 2 points

d) Using your models, determine and explain the most likely state for the
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agent after the report series above (“2”, “nothing”, “1”), assuming again
to have gotten report “3” initially. 8 points

e) What is the Markov assumption? What does this mean for the transition
model of a process? What does it mean for the sensor model? 1 point

f) How does forward filtering work and what can it be used for? 2 points

Good Luck!
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