

Introduction of a formally proven safety violation check function

The	 demand	 in	 society	 for	 increased	 system	 safety	 requires	 that	 companies	 continually	
work	 on	 improving	 their	 products	 and	 processes	 to	 meet	 standards	 and	 regulations	 of	
national	 and	 international	 standardization	 bodies.	When	 an	 increased	 effort	 in	 test	 and	
verification	renders	diminishing	returns,	a	shift	to	alternative	or	complementary	methods	
can	prove	a	more	efficient	allocation	of	resources.	

For	 an	 existing	 product,	 we	 have	 long	 wanted	 to	 introduce	 formal	 verification	 of	 the	
business	logic,	but	earlier	discussions	on	formal	verification	have	resulted	in	the	conclusion	
that	since	we	have	no	formal	specifications	there	 is	nothing	to	verify	the	implementation	
against.	 To	 develop	 full	 formal	 specifications	 for	 the	 current	 functionality	 would	 be	
prohibitively	expensive,	and,	even	if	we	did,	the	current	implementation,	being	written	in	
C,	does	not	lend	itself	well	to	formal	proof.	

Therefore,	 we	 want	 to	 explore	 the	 possibility	 to	 formally	 prove	 only	 specific,	 safety	
relevant,	 properties.	 This	 could	 be	 accomplished	 through	 a	 separately	 specified	 and	
implemented	module	(Safety	Violation	Check	Package).	The	SCVP	module	shall	check	only	
safety	relevant	invariants;	invariants	that	are	believed	to	hold	as	a	result	of	the	combined	
requirements	on	 the	product,	 but	 cannot	be	 formally	proven.	 This	 relatively	 small	 set	of	
rules	could	be	expressed	more	succinctly	than	the	functional	requirements,	and	they	shall	
be	implemented	such	that	formal	proof	of	correctness	of	the	rules	is	possible.	

The	SCVP	shall	shut	down	the	system	in	case	of	a	violation	of	the	rules	but	not	otherwise	
affect	the	output.	This	allows	the	SCVP	to	be	incrementally	developed	all	the	while	keeping	
a	 fully	 functional	 system.	 Rules	 can	 be	 refined	 and	 added,	 or	 even	 removed,	 without	
affecting	the	functionality.	

The	following	is	a	rough	outline	of	the	steps	involved	in	the	study:	
• Perform	a	literature	study	on	formal	verification	and	safety	supervision	functions.	
• Gain	an	understanding	of	the	architecture	and	workings	of	the	product.	
• Propose	 an	 architecture	 that	 lets	 the	 SCVP	 monitor	 the	 state	 of	 the	 system	 at	 key	

moments,	allowing	it	to	evaluate	the	state	and	shut	down	if	any	violations	are	found.	
• Evaluate	and	select	a	language	for	the	implementation	and	tools	for	the	formal	proof.	
• Develop	a	specification	for	the	new	module.	
• Propose	a	set	of	rules	for	the	proof	of	concept.	
• Implement	a	proof	of	concept	with	a	limited	rule	set.	
• Evaluate	the	proof	of	concept.	

The	following	questions	should	be	answered	in	the	study:	
• What	kind	of	properties	can	be	proven	to	hold	and	to	what	extent?	
• How	natural	is	the	integration	with	the	current	C-code?	

o What	effort	is	needed	to	translate	the	state	and	present	it	to	the	SCVP?	
o How	much	will	this	interface	code	and	translation	weaken	the	safety	arguments?	
o What	is	the	impact	of	reusing	functional	code	to	access	the	state	from	the	SCVP?	

• What	performance	penalties	can	be	expected?	
o What	is	the	complexity	of	the	algorithms?	
o Does	the	solution	scale	well	for	large	states?	
o Perform	empirical	time	measurements	on	the	proof	of	concept.	

• What	are	the	probable	effect	on	our	current	development	process?	
o Do	we	need	 independence	between	 the	 functional	 implementation	and	 the	SCVP	

implementation?	
o Do	we	need	independent	test	and	verification	of	the	SCVP?	

	

For	more	information,	contact:	

Bombardier	Transportation	-	Rail	Control	Solutions	
Magnus	Adamsson	
email:	magnus.adamsson@rail.bombardier.com	
tel:	073-448	08	00	

Lund	University,	Department	of	Computer	Science	
Martin	Höst	
email:	martin.host@cs.lth.se	
tel:	046-222	90	16	

