
Java on a Linux Mobile Phone -
Sharing a Virtual Machine

Torbjörn Andersson, E03
e03ta@student.lth.se

Lunds Tekniska Högskola
June 3, 2009

Abstract

This report investigates aspects of running Java SE on mobile Linux de-
vices, with special focus on situations where many applications can be ex-
pected to run simultaneously. A multi-tasking Java environment where
independent applications execute in a shared virtual machine is proposed
and technologies for achieving this are investigated. A prototype system,
designed entirely in Java as a middle layer between the Java Virtual Ma-
chine and the applications, is described. The main concept used in the
prototype, classloader-based isolation, is described in detail along with the
problems associated with it and possible solutions for these problems. It
is shown by the prototype that major savings of memory footprint can be
achieved by using it in cases where multiple Java applications are run si-
multaneously. Improvements of application startup time was not achieved
by the prototype, but the possibility of such improvements is investigated
in the report. Also, the potential of increased performance when using
inter-process communication techniques within a virtual machine compared
to communication between operating system processes is described.

2

Contents

1 Introduction 9

1.1 The problem . 10

1.2 The idea . 10

2 Background 13

2.1 Java . 14

2.2 Java on mobile devices . 15

2.3 Mobile Linux platforms . 16

2.4 The reference platform . 16

2.4.1 The OpenMoko Linux Mobile Phone 17

2.4.2 The Java Runtime Environment 18

3 Related work 21

3.1 The JKernel System . 21

3.2 Other Classloader-based solutions 22

3.2.1 Echidna . 23

3.2.2 IBM Long Running Environment 23

3.3 Using a modified Virtual Machine 24

3.3.1 JSR 121 . 25

3.3.2 Sun MVM . 26

3.3.3 KaffeOS/JanosVM . 26

3.3.4 Some Java ME implementations 27

3.4 Inter-Process communication systems 27

3.4.1 D-bus . 28

3

4 CONTENTS

3.4.2 JKernel Capabilities 29

4 The JKernel - classloader-based isolation 31

4.1 Isolation in JKernel . 32

4.1.1 Isolation using classloaders 32

4.1.2 Isolation flaws . 33

4.1.3 Extra isolation in the System class 35

4.1.4 Conclusion on classloader-based isolation 36

4.2 Resolvers . 37

4.3 Capabilities . 38

5 The prototype system 41

5.1 The underlying system . 41

5.2 JKernel modifications and extensions 43

5.2.1 Modifications for compatibility with today’s Java . . 43

5.2.2 The task launch system 45

5.2.3 The window-tracking system 47

5.2.4 New resolvers . 50

5.2.5 Security Managers . 51

5.3 Remaining problems . 52

5.4 Future work . 54

6 Results 59

6.1 Prototype functionality . 59

6.2 Performance . 60

6.2.1 Memory footprint . 62

6.2.2 Application startup performance 64

6.3 General results . 65

7 Conclusions 67

List of Figures

2.1 The relationship between the platform components 19

4.1 Shared resources with different levels of isolation. 34

4.2 Overview of sharing of objects through capabilities 39

4.3 Switched D-bus in Java, concept overview 40

5

6 LIST OF FIGURES

List of Tables

6.1 Memory usage on the mobile platform 62

6.2 Memory usage on a workstation PC 62

6.3 Startup time on the mobile platform 64

7

8 LIST OF TABLES

Chapter 1

Introduction

Java technology has gained much success in the area of mobile phone soft-
ware. It it especially popular for developing games and other entertain-
ment applications, and for applications that can be downloaded from the
cellular network. The most common utilities in mobile phones, such as
phone books and messaging applications, are however often created as C
code, which is compiled for the specific platform. Until now, Java applica-
tions for mobile devices have been using Java ME, which is a scaled-down
version of Java, suited for the simpler and slower hardware that mobile
devices have compared to workstation PCs. Java ME is, due to its limited
functionality, not suited for applications requiring better access to hard-
ware or system software interfaces.

Recently, some different initiatives have announced mobile platforms
that claim to use Java as the primary language for implementing all ap-
plications in the system. These initiatives describe more advanced Java
solutions than Java ME. It is also clear that the processing power, memory
capacity etc of mobile devices have increased to levels making it possible, at
least on high-end devices, to run more advanced Java solutions such as Java
SE. This report studies the possibilities for running Java SE on Linux-based
smartphones, with focus on reducing processing load, memory footprint
and optimizing other aspects of a system in cases where multiple applica-
tions written in Java are used simultaneously. These aspects are especially
important in the area of high-end mobile devices, smartphones, where mul-
tiple small applications should be able to run simultaneously in an envi-
ronment where system resources should be saved as much as possible and
where the processing capacity is low compared to normal workstation PCs.

9

10 CHAPTER 1. INTRODUCTION

1.1 The problem

Even though modern high-end mobile phones have the hardware capac-
ity to run Java SE applications, the performance is quite low. A typical
smartphone would only have the capacity to run a small number of Java
SE applications simultaneously, and even then with quite bad performance.
Also, on mobile devices, hardware resources should be treated as scarce re-
sources, since efforts should be done to hold power consumption, weight
and production cost of the devices down. The current situation could be
acceptable if the phone only runs a single Java application at the time, such
as many feature phones supporting Java ME programs do today. However,
for example if the applications that a user expects to find in a mobile phone,
such as phonebooks, messaging clients etc, were also written in Java and
run as stand-alone applications, there would be a need to run many Java
applications simultaneously and the system would quickly become over-
loaded. The overload is due to the fact that all Java applications carry an
additional overhead to the specific application code. Java applications need
a Java Virtual Machine to run, and this machine has memory requirements,
requires time to start and so on. Especially when running small Java appli-
cations, the overhead due to the virtual machine is significant. Removing
the virtual machine would open up for big increases in Java performance.
There are techniques for compiling Java code into native executables. How-
ever, doing so would remove some Java features that are desired, such as
platform independence, which makes this an unattractive solution. There
is a need for a virtual machine running in the system to provide proper
support for Java. There is however nothing in this stating that each applica-
tion really must have its own virtual machine, which means that resources
could be saved if all Java applications instead shared a common instance of
a virtual machine.

1.2 The idea

A potential way of saving system resources and increasing performance
when running Java is to run all applications in a single Java Virtual Machine
(JVM). Doing so saves memory, since only one Java Virtual Machine would
have to be started, even when there are multiple Java applications run-
ning. Depending on the way this would be implemented, this could also
be true for standard library classes and even application classes. Also, ini-
tializing and loading the virtual machine takes time and processing power,
which also would be possible to save. Another aspect is that when applica-
tions need to communicate with eachother, running them in the same JVM

1.2. THE IDEA 11

gives a possibility of optimizing the communication between them, avoid-
ing costly context switches between operating system processes and calls
to the operating system kernel. These aspects are of course mostly relevant
only when running multiple applications at the same time, although a sin-
gle application of course could benefit from a JVM that is already running
in terms of startup time. However, it is likely that multiple applications are
run in parallel in a mobile phone, and part of the intention of the project is
to make it possible to use Java implementations of these applications with-
out creating unnecessary overhead.

Running multiple applications in a single operating system process is
affected by one big problem. That is that all the application will share a
single address space, and the operating system will not be able to protect
the applications from eachother. This means that the system controlling the
launching of new applications within the process should implement some
sort of system for such protection. The Java language has a special property
in that it is a type-safe language. This means that the data types of objects
are checked before operations are performed on them and that objects can
not be cast to different types without being compatible with that type. This
also includes that it is not possible, for example, to create a pointer pointing
to a memory address and typecast it to an object, thus accessing an object
that might be located on that address. There is actually no possibility at all
to create Java code that directly modifies memory addresses on the heap.
The result is that references to objects cannot be created in other ways than
copying the original reference to the object. When this property is present,
running multiple applications in a single process becomes possible without
the risk of the applications accessing eachothers data, without needing an
explicit system to control the memory area. This means that a Java runtime
has the potential of running multiple applications in one virtual machine
instance, with increased performance compared to the ordinary model of
one virtual machine per application. There are different ways this can be
accomplished, and different project that have tried these ways. The various
solutions are investigated further in this report, and one of these is selected
as a base for a prototype system described in the report.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Background

The purpose of this chapter is to provide some background to the project,
motivating why research in this area is interesting. Using Linux as an op-
erating system for a mobile phone is a trend that has gained a lot of atten-
tion lately. There are many different projects focusing on this, and many
of the big mobile phone manufacturers have expressed interest in Linux
as a mobile phone operating system. In this chapter some of the more in-
teresting projects in this area are presented. Java technology, on the other
hand, has for quite some time been common in the mobile world. Java
ME is a very common technique that most mobile phones produced today
support. Recently, however, some projects that intend to deliver more ex-
tensive Java solutions for mobile units have emerged and gained a lot of
attention. These are also described in this chapter. Pure Java SE has not
gained any particular attention in the mobile world until now, much due to
high system requirements which mobile phones previously have not been
able to meet. However, modern smartphones nowadays have computing
powers on par with what personal computers had when Java was first re-
leased, therefore it might seem as a natural choice to use Java SE on modern
smartphones. Open mobile Linux platforms such as the OpenMoko plat-
form provide a good environment for creating and experimenting with a
Java SE enabled smartphone. The OpenMoko telephone and software plat-
form, as well as the Java Runtime Environment currently available for it,
will also be presented in this chapter.

Even if the computing power of mobile phones has increased to the
levels needed to run Java SE applications, the system resources are still not
more than barely enough for this. Especially if multiple applications are
running at the same time, this imposes a very high load on such systems.
Also, since resources are more valuable on a mobile system, much due to
the limited battery power, it is more important than on a normal worksta-
tion computer to hold the consumption of system resources down. The idea

13

14 CHAPTER 2. BACKGROUND

presented in section 1.2 could significantly reduce memory requirements
as well as processing time when running multiple Java application simul-
taneously, and the idea is therefore worth investigating further. Previous
research in that specific areas is however presented in chapter 3, "Related
Work".

2.1 Java

The Java programming language was released in 1995 by Sun Microsys-
tems as an object oriented programming language. The Java language is
part of a Java platform including not only the language in itself, but also
the Java Runtime Environment, including a Virtual Machine and a core
class library, development resources such as compilers and debuggers as
well as the Java Bytecode format for storing half-compiled Java code in a
platform independent manner. The Java Virtual Machine is a software that
takes Java bytecode representing a program and compiles and runs this at
the same time. The Java bytecode format is platform independent, and will
run on any system for which there is a Java Virtual Machine. The standard
class library is also the same on all platforms, and is mostly implemented
in Java as well.

The Java language has a syntax that reminds of C and C++, but there
are also some differences. In Java, the programmer is not allowed to han-
dle memory management explicitly. Instead, all objects are automatically
allocated on the heap when they are created, and then deallocated automat-
ically when there are no more references to them. Also, there is no pointer
arithmetic or possibility to create a reference to an object without copying
a reference that is already accessible. Objects cannot be cast to a different
type if they are not compatible with that type according to the built in in-
heritance system of the Java language. These factors all contribute in mak-
ing Java a type-safe language. These properties are maintained when the
source code is compiled into Java bytecode, and checked at runtime, which
means that these properties will be checked even when running bytecode
compiled from another language or handcrafted bytecode. The property
of type safety is absolutely necessary for making the goal of this project
achievable. Since this project aims at creating a system that runs multiple,
not necessarily trusted applications in a single address space, any code that
can have direct access to the memory area would be able to access and mod-
ify all information in all applications running in the system. For example,
such a system would not work for programs written in C. This is also the
reason why it is problematic to allow native code in such a system, since

2.2. JAVA ON MOBILE DEVICES 15

this code would be able to access data belonging to other applications in
the system.

2.2 Java on mobile devices

Java has gained a lot of popularity on mobile devices. This has happened
due to the Java Platform, Micro Edition (Java ME, formerly known as J2ME).
Java ME is a Java Platform aimed at mobile and embedded devices. It con-
sists of a subset of Java, containing only those APIs that are useful and
permittable on the target platform. There are different flavors of Java ME
which aim at different categories of devices, such as smartphones, simpler
mobile phones and embedded system with no or limited user interface.
Java ME is used on mobile phones to create games and other applications
for the devices. Especially using Java ME for games has gained much popu-
larity. There are today a great number of devices, especially mobile phones,
that have the capability of running Java ME applications.

As mobile devices such as mobile phones have gained more computing
power, these platforms have become capable of running more advanced
Java versions and software. Java ME has been released in more advanced
versions than the original version, and features have also been added by
mobile phone manufacturers. During this process, Java ME has become
more and more similar to Java SE. Some recent initiatives have however
showed that the trend goes towards replacing Java ME with something
else, more similar to Java SE in the functionality. Sun Microsystems have,
for example, announced the new system JavaFX Mobile as a part of their
new JavaFX line of products. JavaFX Mobile is an operating system based
on a Linux kernel, and is aimed at running applications written entirely in
Java. The API:s available are similar to Java SE, but backwards compati-
bility to let Java ME applications run on the system is also an important
part. JavaFX Mobile is based on products from SavaJe Technologies, which
was purchased by Sun in 2007. According to [1], at least the SavaJe OS,
included in the technology purchased from SavaJe Technologies, has sup-
port for running multiple Java applications in a single JVM instance, as
attempted by the project described in this report. JavaFX Mobile has yet
not been released for use in any commercial products.

Another initiative in the area of providing more advanced Java solu-
tions to the mobile world is the Android operating system. It was created
by the Open Handset Alliance, a business alliance with Google being the
most notable member. The Android platform is based on a Linux kernel
and uses Java as the programming language for applications. A Software
Development Kit for the system has been released, but there are no phones

16 CHAPTER 2. BACKGROUND

using the system commercially available yet. It is worth noting, however,
that the Android platform does not run Java in the ordinary fashion. The
Java syntax is used for the programming language, but the APIs available
are not compatible with the Java SE or ME APIs. Also, the code is compiled
to a different bytecode format, which is run by the Dalvik Virtual Machine
included in the system.

2.3 Mobile Linux platforms

As seen previously, Linux has gained some attention in the mobile segment
recently. Products such as JavaFX Mobile and Android use a Linux kernel
as a base for their respective mobile phone operating system. However,
there are also some other initiatives in the area that are not focused on Java
as the primary programming language. For example, the LiMo foundation
has created a platform for using Linux on mobile devices. Also, the Norwe-
gian company Trolltech, recently acquired by Nokia, has developed Qtopia,
which is an application platform for mobile devices using Linux. Motorola
is an example of a company that has released a long line of mobile phones
based on Linux, but such phones are also manufactured by a number of
other well-known companies. There are also projects using Linux with the
purpose of creating a mobile platform that is as open as possible to external
developers, such as the OpenMoko project. That specific project is closely
related to the Neo line of mobile phones from First International Computer
(FIC), and the project is presented in more detail in section 2.4.1. The Apple
iPhone is not based on Linux, but rather reuses components from Mac OS
X. This means that this also is a device using an operating system originally
created for a workstation computer, which then has been transferred to the
mobile device.

2.4 The reference platform

This section describes the platform used as a target platform for the pro-
totype system described in chapter 5. First the OpenMoko platform is de-
scribed, and then the Java Runtime Environment, consisting of the Cacao
JVM and GNU ClassPath, that is available for the platform. It is however
important to understand that the prototype is not especially tied to this
platform but can run on many different platforms with little or no modi-
fication. The technologies used are not tied to Linux or OpenMoko. Parts
of the technology is tied to GNU ClassPath, which is the Java Standard Li-
brary that has been used, although it can easily be ported to any standard
library where the source code is open and can be modified and recompiled.

2.4. THE REFERENCE PLATFORM 17

Also, some problems still remaining in the prototype are due to problems in
the Cacao JVM. Except for this, the prototype does not depend on the Java
Runtime Environment either, as long as it is Java SE compatible. The tech-
nologies used in the project could be applied to platforms running other
operating systems as well, even though testing of such functionality has
not been included in the project. The D-bus Inter-process Communications
system, which is referenced in different places of this report, is however a
Linux-centered product that is not normally used on other platforms. On
the other hand, it is not included in the prototype described in this report
but rather used as an example of an external IPC system for communication
with other processes running on the platform.

During development, a Linux-based PC has been used. To provide an
environment as similar as possible to that of the OpenMoko phone, the
same Java Runtime Environment, including the same versions1 of the soft-
ware, has been used. Testing has been performed on both platforms during
all phases of the work.

2.4.1 The OpenMoko Linux Mobile Phone

OpenMoko [2] is a project attempting to create a mobile phone software
stack entirely under an Open Source license. It uses a Linux kernel and
other well-known tools that turns the system into a complete Linux distri-
bution, in much the same fashion as Linux distributions targeting work-
station PCs. OpenMoko is currently run as a small company, maintaining
the project, with the support of many open source developers participating
in the project. The project is tightly connected to the Neo telephone series,
developed by First International Computer, FIC. The first telephone in the
series was the Neo1973 prototype telephone, which is a smartphone with
touchscreen and no keyboard, and is equipped with an ARM-processor at
266 MHz, 64 MB Flash memory and 128 MB of RAM, as well as support
for GSM networks, Bluetooth and various other technologies. It will be
followed by a new model, called the Neo FreeRunner, which, in addition
to upgrades to the current hardware specifications, also comes with Wire-
less LAN Connection and a GPS system. The OpenMoko software stack is
primarily focused towards this platform, but is also intended to be possi-
ble to use on other devices. Similarly, the Neo devices could also be used
with other software stacks than OpenMoko. The OpenMoko platform and
the Neo telephones are excellent for use as platforms for development of
new software targeting Linux-based mobile devices, since it is an open en-
vironment with few restrictions to what users are allowed to do with the

1Of course, the versions used on the PC and on the phone are compiled for different
processor architectures

18 CHAPTER 2. BACKGROUND

hardware and software. These properties made the OpenMoko platform
running on the Neo1973 mobile phone a natural choice for a target plat-
form during the project described in this report.

2.4.2 The Java Runtime Environment

Jalimo

The Jalimo project [3] attempts to create a free runtime environment for
Java applications to be used on mobile Linux-based devices. It targets a
couple of different platforms, of which OpenMoko is one. Jalimo consists
of a collection of open source software packages which implement differ-
ent parts of the Java Runtime Environment, as well as some other related
products. These products are packaged together in a common distribution
system and tailored to work with the targeted platforms. Jalimo contains
the two virtual machines Cacao JVM and JamVM, of which the former uses
Just-In-Time compilation and the latter is interpreter-based. It also contains
the GNU ClassPath library, which together with a JVM becomes a working
Java Runtime Environment. Also included in the project are some pack-
ages providing different components for graphical user interfaces, as well
as other functionality, such as bindings to the D-bus Inter-Process Commu-
nications system. The Jalimo project is not locked to these software pack-
ages however, components may be changed when other products become
available for the target platforms.

Cacao JVM

The Cacao JVM [4] is a Java Virtual Machine, that uses Just-In-Time com-
pilation, which means that the bytecode is compiled into machine-specific
code the first time that every piece of code is run. Earlier virtual machines
used interpreting, which means evaluating and executing each line of byte-
code every time it is run, without caching the translation to machine code
between the times the code is run. Cacao was originally created in 1997 as
a research project, but in 2004 the project was released under a GPL license,
and is now developed further as an open source project. It is available for
a couple of different processor architectures, including the ARM processor,
which is the reason for it being included in the Jalimo project. The JVM
is also available for Intel x86-architectures, which makes it possible to run
it on ordinary workstation PC:s as well. In addition to Linux, it can also
be run on some other operating systems, such as FreeBSD and Mac OS X.
Cacao is designed to use GNU ClassPath as its standard class library.

2.4. THE REFERENCE PLATFORM 19

GNU ClassPath

GNU ClassPath [5] is an open source standard class library that is used by
many Java Virtual Machine implementations. For example, both virtual
machines included in the Jalimo project, Cacao JVM and JamVM, use GNU
ClassPath as their core class library. As will be shown later in this report,
using an open source class library was necessary for the project described
in this report. This is because the prototype system (described in chapter
5) required changes to one of the core java classes to work properly, which
would not have been possible if the source code for those classes was not
available.

OpenMoko Linux

Jalimo

GNU ClassPath Cacao JVM
Other Jalimo
Components

Other OpenMoko Components

Other OpenMoko Components

Figure 2.1: The relationship between the platform components

20 CHAPTER 2. BACKGROUND

Chapter 3

Related work

In this chapter, different projects that have made attempts at implement-
ing isolation between application in a single Java Virtual Machine are pre-
sented, as well as some different techniques that could be used to accom-
plish this isolation. Some of these products were chosen for use as a base for
the prototype system described in this report, and therefore are described
in greater detail later on in the report. These are, however, also presented
here, so that comparisons can be made with the other techniques that could
be used to solve the problem.

3.1 The JKernel System

The JKernel [6, 7] is a system for isolation between multiple applications
running in a single instance of a Java Virtual Machine. It was developed at
Cornell University in 1998, and has not been subject to any further devel-
opment since then. JKernel is implemented entirely in Java, and is there-
fore compatible with any platform that has a Java SE compatible Java Run-
time Environment. The JKernel is based around the use of classloaders
(described in detail in chapter 4) to provide separation between applica-
tions, or Tasks, as they are called in JKernel. The method is fairly simple to
understand and implement, but there are some problems that it does not
address. The JKernel compensates for some of the problems with isolation
using classloaders by complementing this with extra functionality, such as
replacing some selected classes from the standard library with wrappers
with extended functionality. However, there are still some aspects that can
not be addressed when using this method, which means that the JKernel
is not necessarily a good solution for all potential uses of shared Java Vir-
tual Machines. Since the JKernel was selected as a base for the prototype
described in this report, there is a special chapter presenting this in more

21

22 CHAPTER 3. RELATED WORK

detail. (See chapter 4.) It is presented briefly here only to provide the reader
with some basic knowledge about this system before presenting alternative
ways the preferred isolation could be achieved.

3.2 Other Classloader-based solutions

The JKernel is not the only product that uses classloaders to provide isola-
tion between applications, processes or similar abstractions. In fact, this is
a technique that is commonly used in many systems that need to provide
this kind of safety or isolation between different part of code, in various
applications. ([8] chapter 14 gives example of this.) Most systems using
this technique, however, are different kinds of application servers or other
products aimed at larger computer systems. There are some systems based
on this technique that are intended for normal desktop use, to save sys-
tem resources and startup time when using several java-based utilities at
the same time. (Example: Echidna, see section 3.2.1.) However, probably
due to the fact that mobile units only recently have achieved the computing
power to run more advanced Java systems, as well as the fact that most op-
erating systems for mobile devices have been locked down by manufactur-
ers, little development of systems providing isolation through class loaders
have been seen aimed at mobile devices1. The use of Java in a mobile de-
vice has however some similarities to application servers, in the sense that
they both suffer from the same lack of resources. In a server system, re-
sources consumed by a single application should be reduced, to provide as
many users as possible simultaneous service. In a mobile device, resource
requirements should be reduced due to low hardware prestanda, as well as
to save battery power. When running multiple applications on the mobile
device, as users might be expected to do if given the possibility, this situ-
ation is actually quite similar to that of an application server, in the sense
that reducing the resource requirements for the entire software system is
very valuable, thus motivating the use of the same techniques. Depending
on the intended use of the product, the different softwares using the class
loader technique implement different sets of features on top of the class
loader isolation. JKernel, being originally aimed at an application server
environment with great risk of interception with malicious code or users,
has put effort into some extra protection, while others, such as the Echidna
project, have focused less on protection.

1Also, Java ME does not support class loaders

3.2. OTHER CLASSLOADER-BASED SOLUTIONS 23

3.2.1 Echidna

Echidna [9, 10] by Luke Gorrie is a software aimed at single-user work-
station environments. It provides means to run different applications in a
single JVM, and uses class loader based separation for the internal imple-
mentation. The purpose of the software is to let the user run various java
utilities in the environment, to save system resources that might otherwise
have loaded the system too much, and giving the user full control of which
applications are started. Since the system trusts the user not to start any
malicious programs, there are no security measures in the system, except
for the class loader system which is needed to make the system work at
all. There is also no built in system for Inter-Process Communication, and
no possibility to forbid the use of certain classes from the standard library
or otherwise. Due to the complete lack of security features, the Echidna
system was not a good candidate to base a prototype system on. However,
the system might still be interesting to study, since it can give a good hint
on the upper bound of the performance that can be gained by using this
method.

3.2.2 IBM Long Running Environment

A US patent [11] filed by IBM in 2000 and issued by the patent authori-
ties in 2005 describes a solution that shows some similarities to the JKernel
system both concerning its purpose and the technical solution. The technol-
ogy described in the patent is implemented in the "Long Running Environ-
ment", LRE, which is part of certain software in IBM’s WebSphere product
line. In a similar fashion as the JKernel, LRE provides the possibility to
run several different applications in a single instance of a Java Virtual Ma-
chine. The system is, just as JKernel, implemented on top of the existing
Java Runtime Environments, thus being compatible with all standard en-
vironments. Both products use classloaders to create separation between
applications running in the system. Both systems also bring in some extra
protection features against such problems that the classloader separation
cannot fix, such as calls to System.exit() and modifications to the system
for the standard output stream. Both systems also analyses and modifies
bytecode internally. This means that, at a first glance, these systems look
very similar. The LRE system also keeps track of user interface objects such
as windows, to be able to terminate these when terminating an application
running in the system. Those features were missing in the JKernel system,
but have been added in the prototype described in chapter 5.

There are however some important differences between the LRE and
the JKernel. Both use classloaders for the basic separation between appli-

24 CHAPTER 3. RELATED WORK

cations, which must be considered as an established method for doing this.
The major differences instead lie in the way the extra protection is per-
formed. LRE uses bytecode rewriting techniques to remove calls to, for
example, the System.exit() method and replace these calls with callbacks to
terminate the application doing the call. In a similar way, code is added
to register created windows and associate these with a running applica-
tion, so that the central system can terminate these windows when termi-
nation an application. In the JKernel, such tasks instead are performed
through wrapping of the affected classes, and using the classloader system
to present user applications with the wrapper classes instead of the original
ones. Windows were not registered from the beginning, but the implemen-
tation introduced with the prototype described in this report (described in
chapter 5) replaces the original affected standard library classes entirely
with a compatible version. JKernel also has bytecode rewriting features,
but these are used for entirely different purposes.

It should be noted that the JKernel was presented in 1998, which means
that the technologies present in both these products should be considered
as prior art, since the IBM patent was filed in the year 2000, at least as long
as the technologies are used for the same purpose in both products. The
described functionality of using bytecode rewrital to implement protection
against troublesome methods in the standard class library is never used
either in the original implementation of the JKernel or in the prototype de-
scribed in this report. The technology could be interesting for that proto-
type, especially as there are bytecode rewriting facilities in the JKernel, but
since bytecode rewrital is slow in the JKernel and currently not bringing
very much functionality, the target should instead be to remove this. Do-
ing that, the technology would not be very interesting for the prototype
any longer. Also, since it is a patented technique, a permission would have
to be retrieved from IBM before using this technology.

3.3 Using a modified Virtual Machine

As stated earlier, using class loaders to provide isolation between differ-
ent applications, or tasks, running in the same Java virtual machine is a
solution that is simple and platform independent, but unfortunately con-
tains a few flaws that are not easy to fix. The basic problem here is that the
standard library classes in Java must be loaded by the built in system class
loader, which cannot be replaced or instantiated in multiple instances. To
make that possible, the virtual machine would have to be modified, which
has been done in some project. By modifying the virtual machine, or im-
plementing a new virtual machine, it is possible to bypass the problem that

3.3. USING A MODIFIED VIRTUAL MACHINE 25

the class loader approach suffered from. The main drawbacks are however
that this results in a system that only works on the platforms to which the
virtual machine has been ported, as well as the fact that virtual machine
internals tend to be much more complex than the java code required to
implement a class loader-based solution. When doing this kind of mod-
ifications to a virtual machine, it would be preferred if the modifications
followed some sort of standard to provide compatibility between virtual
machines from different suppliers. This section describes the JSR 121 spec-
ification request, which provides an API suitable for application isolation,
as well as some products based on it.

3.3.1 JSR 121

JSR 121 [12] has been implemented in a few different products. However,
for various reasons, none of the studied products was considered suitable
for use in this project. The JSR 121 has made its way into some Java ME
implementations. The products based on Java SE are on the other hand still
quite immature, and there are currently no released products implementing
the JSR 121 for Java SE.

The JSR 121 Java Specification Request is a request for a unified API for
products that handle multiple Java applications running simultaneously.
The basic requirement on any product implementing this API is such that
the isolation between the different applications would be sufficient for the
task this project is focused on. However, the JSR does not specify how
this should be implemented, which means that it can be implemented by,
for example, running the applications in different virtual machines. Such
an implementation, while providing isolation between application, would
provide this project with little of value, since no performance gains would
come from such a solution. There are, however, some research projects that
have resulted in prototype versions of Java Virtual Machines implementing
the API specified by the JSR 121 in a solution where the applications run
in a single JVM instance. These were studied within this project, but in the
end a classloader-based solution was selected for the prototype presented
later in this report. A classloader-based solution could however also be
made to comply with the JSR 121 API, provided that a way could be found
to establish good enough isolation between the applications running in the
system. No software implementing the JSR 121 for Java SE has been re-
leased in a final version, those described below being prototypes or in beta
stages. There are however Java ME implementations that use technique
based on this JSR.

26 CHAPTER 3. RELATED WORK

3.3.2 Sun MVM

The Multi-tasking Virtual Machine [13, 14], MVM, from Sun is a Java Vir-
tual Machine that claims to deliver proper isolation between applications
running in the same virtual machine. The MVM implements the Isolate
API defined by the JSR-121. The flaws that can be seen in classloader-based
solutions are not present in this solution, and at the same time, the over-
head created when using one virtual machine per application is not there
either. This is accomplished by using a modified JVM. MVM is also con-
structed in such a way that all of the functionality delivered by the standard
library is available without restrictions to applications running in the sys-
tem. Also, native code can be used in the system, by securely running it
as an isolated operating system process. The MVM is however still in its
prototype stages, and the prototype is only available for Solaris/SPARC
environments. Porting it to new platforms would mean lots of work, work
which would have to be repeated for each different target platform. Using
the MVM for isolation creates a system that cannot be ported to another,
ordinary, JVM, which might be preferred when targeting platforms other
than those which Sun decides to port the MVM to. The source code for
MVM is available to work with, but under a more restrictive license than
most open source software, so porting the MVM to new platforms is not
necessarily an interesting alternative either. For these reasons, it was de-
cided not to use the MVM as a base for the prototype presented in chapter
5. Also, the MVM does not include a system for IPC, which means that
such functionality must be implemented using traditional IPC methods,
thus not providing the faster IPC mechanisms that could be created when
all applications run in the same shared memory area.

3.3.3 KaffeOS/JanosVM

KaffeOS

KaffeOS [15] is a product based on the Kaffe Virtual Machine, which has
been modified to support multiple simultaneous applications. It imple-
ments an abstraction of operating system processes within the JVM, and
also reuses many concepts from normal operating systems. KaffeOS has
been focused on resource accountability and possibility to terminate pro-
cesses cleanly. For example, the system has separate memory heaps for
each process. Internally, it uses classloaders to separate processes from ea-
chother, in a similar fashion as JKernel and Echidna. Some standard

3.4. INTER-PROCESS COMMUNICATION SYSTEMS 27

library classes are loaded by the classloader associated with each process
in the JVM, while others are shared between all processes. Loading stan-
dard library classes this way would not have been possible without using
a modified Java Virtual Machine. The Kaffe Virtual Machine, which is the
base for KaffeOS, is also quite slow compared to other virtual machines.

JanosVM

JanosVM [16, 17] is a Java Virtual Machine based on the KaffeOS. It is in-
tended as a base package to construct a multitasking Java environment, to
make it possible to create such systems without having to create or mod-
ify a JVM. One addition that has been made to the KaffeOS system is that
JanosVM supports the Isolate API defined by the JSR 121. Also, JanosVM
is constructed to give possibility to IPC functionality within the JVM, al-
though no API aimed towards application programmers has been created
for this.

3.3.4 Some Java ME implementations

There are also Java ME implementations that support multitasking within a
single JVM, which is performed by using a JVM that is specialized for this.
For example, the CLDC HotSpot Implementation from Sun (from version
1.1.2) includes such support [18], and is based on the technology from the
MVM virtual machine, presented in section 3.3.2. Multitasking in a single
JVM in Java ME attempts to achieve the same performance gains as in Java
SE. There is, however, sometimes also the problem of using an underlying
operating system that does not support multitasking in itself, which means
that running multiple JVMs sometimes is not possible. Using a classloader-
based solution is not possible on a Java ME system either, since custom
classloaders are prohibited in Java ME. Thus, the only possibility to run
multiple java applications simultaneously is often to use a JVM including
this feature.

3.4 Inter-Process communication systems

Inter-Process Communication, IPC, is a term that covers all communica-
tion between different processes in a computer system. There are different
forms of inter-process communication, such as message passing, shared
memory or remote procedure calls. These are techniques that require co-
operation with the operating system, which sometimes can create unnec-
essary overhead. For example, with message-passing, the messages will in

28 CHAPTER 3. RELATED WORK

some way or another pass through the operating system on their way be-
tween processes. When running multiple applications in a single Java Vir-
tual Machine instance, IPC can be performed with less overhead between
these application and without concern about the operating system, since
these applications technically are part of the same Operating System pro-
cess. IPC within a single JVM could potentially be reduced to the level of
an ordinary function call, which is a very small operation compared to con-
text switches between operating system processes the way IPC normally
requires.

Since all the applications running in a single JVM instance actually share
the same memory area, large data structures could potentially be sent be-
tween applications just by passing references, thus avoiding heavy copying
operations. The shared memory area, in its turn, is possible due to Java be-
ing a type-safe language, as explained in section 2.1. The conclusion is that
a system running several applications in a single JVM has the potential to
great increases in IPC performance, compared to ordinary IPC system. That
is the reason why this is studied as a topic in this report.

The JKernel, which has been used as the base for the prototype that is
presented in this report, has a built-in IPC system called Capabilities, which
draws advantage of the described properties to increase IPC performance,
and which will be studied in the report. The Capabilities system, however,
has no possibility of communicating outside the Java Virtual Machine, and
it also has some limitations in its functionality. Therefore, another IPC sys-
tem, called D-bus, will also be described. The prototype, described in chap-
ter 5, currently has no D-bus support, but adding it to the system should
be possible. Also, it might be possible to modify the D-bus system to run
on top of the Capabilities system, so that applications running in the same
instance of the prototype could use it and still benefit from the advantages
of running in the same JVM.

3.4.1 D-bus

The D-bus [19] is a IPC system based on passing of messages. It acts as
a message bus to which processes can sign up with an unique identifier.
After that, messages can be sent through the D-bus system using that iden-
tifier, and the D-bus system will pass the messages on to the correct process.
In D-bus, data in messages is treated as specific data types, and not just as
a stream of bytes. Also, the system supports sending a message and get-
ting an associated answer back. The structure of messages and replies are
defined by interfaces, in a fashion much like the interface concept in java.
That way, D-bus can be viewed as a system for performing Remote Proce-
dure Calls, that is, sending a call with a set of data as parameters, and then

3.4. INTER-PROCESS COMMUNICATION SYSTEMS 29

getting a reply back with another set of data, corresponding to a return
value.

D-bus is a product centered around Linux and Unix environments, and
is currently not available for e. g. Windows environments. Recently, the
team behind the OpenMoko mobile Linux platform has decided to use this
as the primary IPC system for the OpenMoko platform. The system is also
used by a variety of programs for the Linux platform. This makes the D-bus
especially interesting to study when developing software targeting mobile
Linux platforms. Since there is a Java interface for D-bus, it might be inter-
esting to study also in this project, to see if it is a suitable platform to use to
interconnect a JVM running multiple applications with native software or
java applications running in their own JVM instances.

Java D-bus

There is a java port [20] of the D-bus system, which should be possible
to use together with the Linux D-bus system. This java port is of course
not designed for use in a JVM that is shared between multiple application,
but rather for communication between applications running in separate
JVM instances. Communication can currently be performed using either
TCP/IP or Unix sockets. This means that the potential performance boost
to IPC that a shared JVM could bring is not achieved using this IPC sys-
tem. However, the system could give the applications in the shared JVM
a possibility to communicate with other applications. Also, with the way
the D-bus system works, it might be evaluated if an add-on to that system
could be implemented, providing a message switching functionality so that
messages that should be passed between applications running in the same
JVM would not need to be passed through the operating system.

3.4.2 JKernel Capabilities

The JKernel, described in section 3.1, contains a built-in IPC system called
Capabilities [6]. It only works between tasks running in the same JKernel
instance, but it shows the potential performance gains when running inter-
process communication within a single instance of a Java Virtual Machine.
The JKernel Capabilities provides the possibilities to share objects between
tasks in a safe way and to do method calls across task boundaries. Since
the tasks are all running in the same operating system process, there is no
need for communication between them to go through the operating system
kernel as inter-process communication normally does. Instead communi-
cation between tasks does not take very much more resources into account
than ordinary method calls within applications, since it is performed inter-

30 CHAPTER 3. RELATED WORK

nally in the JKernel system as method calls. Also, since all the tasks run in
the same physical address space, with isolation provided through the safe
language, data can be sent between tasks by just giving access to references.
This reduces the need to copy large amounts of data that might be neces-
sary to send between tasks. This IPC system is interesting to study and to
compare with other IPC solutions, due to the potential performance gains
it brings over conventional IPC systems. Capabilities are described in more
detail in section 4.3 in the next chapter.

Chapter 4

The JKernel - classloader-based
isolation

The JKernel system [6, 7], described briefly in section 3.1, was created at
Cornell University in 1998 and was originally intended for use in applica-
tion server-like environments. When studied, it became apparent that the
JKernel could be useful as a base for a prototype system providing isola-
tion between Java applications also on a mobile platform, since it contains
most of the technology that would be needed in the prototype. Compared
to other products using similar technology, such as Echidna (described in
section 3.2.1), JKernel is a quite large system, containing many function
that extend the functionality of the system. Some of these were considered
necessary, or at least useful, in the prototype, thus ruling out simpler prod-
ucts such as Echidna. It might however be worth noting that some of the
features in the JKernel might be of less use in this application, and instead
reducing performance of the system for no good use. On the other hand,
JKernel is released as open source under a BSD-like license, permitting any-
one to do most about anything with the code, which means not only that
the prototype could be used for anything without the explicit permission
from the original authors, but also that the structure could be reused for
creating an implementation including only the features needed and noth-
ing more.

From this background, the JKernel was selected as a suitable platform
for the prototype system. For this reason, the JKernel is presented here
with more detail than given about the different topics in chapter 3, "Re-
lated Work". The most important techniques used in the JKernel are also
described in this chapter. This chapter focuses on the original distribu-
tion of the JKernel, although on some occasions references are made to the
extensions to the JKernel that are described in chapter 5, "The prototype

31

32 CHAPTER 4. THE JKERNEL - CLASSLOADER-BASED ISOLATION

system". References to changes to the JKernel system introduced with the
prototype are clearly marked as such, and they are only introduced when
describing issues that are not properly addressed by the original JKernel
implementation.

4.1 Isolation in JKernel

This section describes the techniques used for isolation between tasks in
JKernel. The primary means of isolation is the use of classloaders, which is
described in detail in section 4.1.1, "Isolation with classloaders". Isolation
using classloaders unfortunately has some drawbacks, and to fill in a few
of the holes left open, the JKernel has some extra features, which are de-
scribed in section 4.1.3, "Extra isolation features in the System class". Even
with these features, though, there are still some flaws left which the JKernel
system will not be able to handle, and these are described in more detail in
the section 4.1.2, "Isolation flaws".

4.1.1 Isolation using classloaders

Using classloaders is a fairly common technique for achieving isolation be-
tween applications in a singe JVM. The classloader is the part of the java
system that loads new classes into the system. The classloader that is used
can be replaced, and different classloaders can be used at the same time to
load different classes. In Java, a class is uniquely identified at runtime by
the combination of its name and the classloader that was used to load it,
even though only the class name is visible in the java source code. This
means that if you would want to run different applications in a single JVM,
then you could assign a different classloader1 to each application and load
all the application with this, and the applications would then never share
any class even if they both would use a class with the same name that was
originated from the same class file. The need for this separation between
different applications is most clearly visible when looking at static fields
and methods in a class. By separating the classes used by different applica-
tions, a statically defined field would be accessible from everywhere inside
an application, but another application running in the same JVM and using
the same class (as defined in the source code) would see a different instance
of the static field. This is due to the fact that at runtime, these applications
actually do not use the same class, but rather different classes with the same
name, which was accomplished by the use of multiple classloaders. The

1A different classloader object is sufficient, the classloaders do not have to be of different
classes.

4.1. ISOLATION IN JKERNEL 33

source code below demonstrates the problem that can arise when multiple
applications use the same class containing static fields. Two applications
both using the class MyClass will read and overwrite eachother’s value of
the static variable x. When loading this class with two different classload-
ers, both applications can have their own instance of the variable x.

public class MyClass
{

private static int x;

public void putX(int i){
x = i;

}

public int getX(){
return x;

}
}

4.1.2 Isolation flaws

Worth noting about classloaders is that using a custom classloader is only
permitted for user classes. Standard library classes should be loaded by
the system class loader, which cannot be replaced, and thus, static fields
and methods in these classes will be shared by all applications in the JVM.
Trying to go around this by locating the standard class library on disk and
loading the standard classes from their original bytecode as if they were
user classes will not work, since many classes actually only can exist in one
version due to connections with the virtual machine and the outside world
through native code. Also, as can be seen later on in section 4.2 concern-
ing resolvers, the JKernel uses eager class loading to recursively load all
user classes before starting an application. Applied to the standard library
classes, this would lead to recursively loading major parts of the library be-
fore the application can start, which would completely waste all resource
savings that the project has the potential to achieve. Disabling eager load-
ing could technically be done, but it is not recommended since usage of
forbidden classes would not be discovered until after an application has
started. Therefore, the sharing of static fields and methods in the standard
library classes has to be accepted when using this method.

The fact that static fields are shared between standard library classes
used in different Tasks is one of the major problems with the JKernel and
similar solutions. However, it can be debated whether this is a problem that
has a major impact on the usability of the system or not. Many static fields
or function in the standard library classes have characteristics that make

34 CHAPTER 4. THE JKERNEL - CLASSLOADER-BASED ISOLATION

App Class

Static Fields

App Class

Static Fields

App Class

Static Fields

App Class

Static Fields

App Class

Static Fields

System Class

Static Fields

System Class

Static Fields

System Class

Static Fields

System Class

Static Fields

Application 1 Application 2 Shared Resource

Figure 4.1: Shared resources with different levels of isolation.
In the leftmost figure, processes run without isolation and share
all static fields. In the middle, a solution where application classes
but not system classes are isolated is shown. The rightmost figure
shows the preferred case where all classes are isolated between ap-
plications, which however is difficult to achieve using classloaders.

them harmless from an isolation perspective. Many times these static fields
only provide information that can safely be shared between Tasks, such
as system time etc, or they might be used to provide access to system re-
sources that per definition can exist only in one instance. Static fields are
not commonly used as a communications channel, as to provide a link be-
tween different classes that for some reason cannot share access to the same
references. Such usage would be an example of a use of static fields that
would compromise isolation security and functionality when running in
the JKernel. During the work in this project, some special places in the stan-
dard library classes have been identified where there are particular prob-
lems due to shared static fields. For example, the System.out, System.in
and System.err fields are stored as static fields in the System class. As a
workaround for this, the JKernel has a replacement system class that can
be used with a custom classloader, thus providing the possibility of creat-
ing different instances of these static fields. Also, the method System.exit()
is a static method2 that has the potential to affect other Tasks when called.
However, since this method couldn’t be allowed to run, even if it was not
declared as static, it would be necessary to completely disable this func-
tionality, and possibly replace it with code to terminate the calling Task in-
stead, since that would logically correspond to terminating the JVM when
running in a single-application environment. The specific modifications
concerning the System class are presented in greater detail in section 4.1.3.

2Static methods are generally not a problem, unless there are also static fields that can
be affected or accessed using them.

4.1. ISOLATION IN JKERNEL 35

Another java feature that would have the possibility to disturb other
running Tasks are so called modal dialogs. These are dialog windows that
disable access to other windows in the application until the user has re-
sponded to the content of the modal dialog. These will block access also to
windows created by other tasks, which is not what the user might expect.
Currently, no system to solve this is implemented, either in the original
JKernel or in the prototype described in chapter 5.

4.1.3 Extra isolation in the System class

The class java.lang.System contains some of the most common static fields
and methods that are likely to create isolation problems in a classloader-
separated system of applications. Therefore, the JKernel implements coun-
termeasures concerning this specific class. The methods described in this
section could also be used to prevent uses of other problematic methods or
fields in other standard library classes, if such problems emerge.

As described above, the JKernel cannot load the standard library classes
with a custom classloader. Therefore, static fields and methods in these
classes will be shared between the tasks running in the system. Perhaps
the most obvious place in which this creates problems is the System class.
The fields System.out, System.err and System.in would all be shared be-
tween all running tasks, which would create trouble since the output from
all tasks would end up in the same terminal, as well as giving the possibil-
ity for the tasks to send input to eachother and read eachother’s output. To
prevent this, the JKernel contains a replacement class for the System class,
which can be loaded with a custom classloader. This replacement class is
presented to the tasks by making the classloader return this class rather
than the original System class. The replacement class can thereafter access
the original System class and delegate function call to this if it is safe to do
so. There is also a system to differentiate between tasks, thus letting some
tasks perform dangerous operations like System.exit(), while preventing
others from doing so.

One problem with this method for replacing the System class is that it
relies on the JKernel classloader system to load the System class and not
to let the system classloader do this. When a java class references another
class, it will use its own classloader to resolve the other class. As seen
previously, standard library classes are loaded with the system classloader.
The result of this is that when a standard library class references the System
class, it will use the system classloader to resolve it, which will lead to the
original System class being resolved rather than the replacement version.
This will mean that using for example the System.out field will not work,
since it refers to the field "out" in the original System class, which not only

36 CHAPTER 4. THE JKERNEL - CLASSLOADER-BASED ISOLATION

is not the same as in the tasks instance of the replacement System class,
but also is a stream that cannot be used as the usual output stream, since it
has been replaced by the JKernel to provide output and input streams that
work through capabilities3.

The problem when accessing the System class from within standard
library classes becomes even more apparent when looking at a situation
where a standard library class calls the System.exit() method. When this
happens, a call to the original function, which will terminate the Java Vir-
tual Machine, thus terminating all running tasks, will be made without any
check of the tasks permission to do so at all. This situation is not at all hy-
pothetical, but a realistic situation for example when using the method set-
DefaultCloseOperation in the class JFrame, thereby configuring the JFrame
to call System.exit() when it is closed. To prevent this, the prototype de-
scribed in chapter 5 uses a SecurityManager, described in section 5.2.5. The
original JKernel system did not address this issue at all.

4.1.4 Conclusion on classloader-based isolation

Since only a small number of flaws created due to the lack of isolation
within standard library classes have been discovered, and since these most
often can be accounted for by extra functionality such as described in sec-
tion 4.1.3, it seems as the JKernels usefulness is not heavily restricted by
this problem. There has not been any complete or otherwise extensive re-
view of the Java standard library classes included in this project, therefore
no guarantees can be made that there are no other problems, solveable or
not, created through isolation flaws. However, there are techniques such
as replacing standard library classes that can be used to solve such prob-
lems, at least when there is a reasonably small amount of classes where the
problems exist. If problems emerge when the problematic standard library
class is accessed from other standard library classes, the replacement meth-
ods used for the System class will not work. In such cases, there still is
the possibility to implement a solution in a way similar to the replacement
techniques used for the Window class, described later on in section 5.2.3.
No such techniques have however been used in the original implementa-
tion of the JKernel, and these also cannot be used when using a standard
class library that for some reason cannot be modified.

3JKernel Capabilities are described in detail in section 4.3

4.2. RESOLVERS 37

4.2 Resolvers

The Classloader system in JKernel uses a system of so-called resolvers to
determine which classes it is allowed to load. This functionality is needed
to prevent the system for loading classes that might threaten the system se-
curity. A resolver is an object that can return bytecode or a class object for
an already loaded class, and there are also resolvers that can filter other re-
solvers and thus regulate which classes can be used. This is used to regulate
which user classes the applications running in JKernel are allowed to load,
but also to regulate which standard library classes can be used. The latter
could be seen as the more important of the two tasks, since the standard
library classes can access JVM internal functions and do other things that
normally is not implemented in Java code. Since some of the functionality
in the standard library classes has the potential of destroying the isolation
between applications, a carefully compiled list of allowed and disallowed
classes is needed. Also, it is necessary to prevent non-trusted applications
in the system from extending their own rights or launching new applica-
tions with more rights than their own by creating and installing its own
resolvers.

If none of the installed resolvers can produce the class that the class-
loader wants to load, the class loading will fail, and the application will
terminate. This is not a very big problem, since normally all user classes
are loaded before the program is allowed to start, thus not creating any pro-
gram terminations while the program is actually running4. This happens
because the JKernel eagerly loads all necessary classes recursively. This is
true for user classes, but system classes will not be loaded recursively. Sys-
tem classes are loaded with the system classloader, and this will cause other
system classes that are referenced from the first one to load using the nor-
mal java class loading system, which means that they will be lazily loaded
as well as not being affected by JKernel resolvers and their restriction. The
resolvers must therefore be even more carefully designed, so that no black-
listed system classes can be retrieved or accessed through a system class
that is allowed to be loaded. An application that was terminated due to a
failed resolver lookup cannot run in JKernel unless the resolvers are mod-
ified, which means that if this happens the only alternative is to run the
application in its own virtual machine.

4If class resolving fails, either the system is misconfigured or the user is trying to run a
program using unauthorized classes, in which case the program should not start.

38 CHAPTER 4. THE JKERNEL - CLASSLOADER-BASED ISOLATION

4.3 Capabilities

The IPC system included in the JKernel is called Capabilities. This is an
IPC system in which it is possible to share objects between tasks and invoke
methods in objects located in another task. By using Capabilities, objects
can be shared between tasks, and the task that created the shared object
can later on revoke the shared object, which means that it can no longer
be used by the task that it was seeded to - using a capability after it has
been revoked will cause an exception to be thrown. To create a capability,
an interface and an implementation must be created. The interface should
define which methods and fields should be accessible to the remote task,
that is, the task that did not create the capability. The implementation then
implements this interface. To set up the capability, the sharing task will call
the other tasks seed-method with the name of the implementation class. A
reference to an instance of the implementation class will be returned and
at the same time a stub class following the same interface will be created
in the remote task. This way, methods can be called from both tasks acting
on the same object, providing a way for data to be shared. The remote
task has however no possibility to get access to the reference to the original
implementation object, and when the capability is revoked the stub object
will no longer be able to communicate with the real implementation object
in the calling class. It was intended when the JKernel was created that the
system should be as similar as possible to the Java RMI interface [6].

When methods are called through capabilities, this is performed like an
ordinary method call in Java, only with a little overhead for checking that
the capability has not been revoked. This is a major performance advantage
compared to ordinary IPC systems. Normally, IPC systems will have to
send their data through the operating system kernel, which will lead to a
number of switches between processes. This can consume quite a lot of
system resources, at least when compared to a method call within a single
process. Of course this performance gain can only be made when running
an IPC system within a single process the way this project attempts to do.
Another performance gain is also possible, due to the fact that the JKernel
system uses shared memory. When using large data structures as function
call parameters, these can be passed by reference instead of being passed
by copy as in most IPC systems. That way, the copying of large amounts of
data through the operating system kernel to another process gets reduced
to a simple passing of a reference, which can potentially save very large
amounts of system resources.

The JKernel uses the capability system internally when creating new
tasks. The objects that are shared are the context that a task needs, such as
the standard output and input streams, as well as some resolvers for shared

4.3. CAPABILITIES 39

Seeding Task

Implementation
Object

Receiving Task

Stub ObjectInternal connection
created by JKernel

Common Interface,
not belonging to any of

the Tasks

Figure 4.2: Overview of sharing of objects through capabilities

resources. In the JKernel, the seeding functionality is limited so that each
task can only be seeded once. It could be changed to allow multiple seed-
ings, but making the different seeds in a task aware of eachother requires
a somewhat complex solution. Currently, all objects that should be seeded
to a task need to be bundled in one data structure that is seeded to the task
by its parent before starting it5. This means that all objects that should be
seeded must be known by the tasks parent, as well as being known before
the task has started. No new capabilities can be set up between a task and
its parent after the task has started. It also means that a task only will be
able to communicate only with its parent and its children, thus creating a
tree-like structure of connections between tasks. Due to this limitation, the
Capabilities system can be considered somewhat crippled at the moment.

One potential way to create an IPC system that works between all ap-
plication would of course be to allow multiple seedings to tasks. This
is, however, rather complex, not only to the application programmer that
would use it, but also when considering the implementation aspects in the
JKernel. Such a solution needs to have a system to give tasks access to
other tasks Task objects. Also, it is necessary to prevent seeding capabil-
ities to tasks that have not explicitly permitted this, since the capabilities
otherwise would become a security risk.

A better way would be to provide another IPC system, for example a
message-based one, on top of the current Capabilities-system, thus letting
the messages pass through the tree of parents and children to the right task.
The proposed prototype described in chapter 5 will create a flat tree with a
main task with all the other tasks as its children, not allowing normal tasks

5A task has no code to run before it has been seeded. Therefore, the single allowed seed
has to be used to provide this code.

40 CHAPTER 4. THE JKERNEL - CLASSLOADER-BASED ISOLATION

to create children. This way, the distance between two tasks in the system
would only be two steps, with the main task as the only middle node. An
interesting structure of a messaging system could be for example the one
used in D-bus, described in section 3.4.1. It might also be a good idea to
make such a system compatible with an existing system that would work
outside the JKernel, to allow communication with programs that cannot
run in the JKernel. The d-bus might be suitable for this, if extended with a
module running in the main task that would switch messages so that mes-
sages between processes running in the same JKernel instance would not
have to be passed on into the operating system. However, no such efforts
has been done either in the original JKernel system or in the proposed pro-
totype described in chapter 5.

D-bus Daemon Process

Application
Process 1

Application Process 2 - Java Virtual Machine

Jkernel-based
system with D-bus

switch

Java Application 1 Java Application 2

D-bus over Capabilities D-bus over Capabilities

Java D-bus

Standard D-bus CommunicationStandard D-bus Communication

Native Process

Java Process

Figure 4.3: Switched D-bus in Java, concept overview

Chapter 5

The prototype system

To prove the feasibility of a system for running multiple application in a
single Java Virtual Machine with proper isolation between them, as well as
to demonstrate the potential performance gains such a system could intro-
duce compared to running multiple applications in their own instances of
the virtual machine, a prototype system has been implemented. The proto-
type system is based on the JKernel system from Cornell University for its
basic functionality. It was then extended with functionality that is preferred
on a mobile platform. Also, some modifications had to be made to the orig-
inal JKernel system, mostly because this was developed in 1998, and sev-
eral changes to the Java system have been introduced since then, which the
system must account for. This chapter describes the prototype, focusing es-
pecially on the changes that have been made to the original JKernel system
and the functionality that has been added. Problems that are not solved in
the prototype are also presented in a separate section.

5.1 The underlying system

The system that the prototype runs on is primarily the OpenMoko plat-
form, using the Jalimo Java environment, which in its turn uses the Cacao
JVM and the GNU ClassPath class library to create a Java runtime Envi-
ronment. The OpenMoko platform and the Java Runtime Environment are
described in sections 2.4.1 and 2.4.2 respectively. Much of the testing, how-
ever, was performed on the development workstation, which runs Ubuntu
Linux, and using Cacao JVM and GNU ClassPath. The versions of the JRE
components are the same on the development workstation as on the Open-
Moko telephone - differences are just that the Cacao JVM is compiled for
different processor architectures, and possibly some differences that can

41

42 CHAPTER 5. THE PROTOTYPE SYSTEM

have been added by the Jalimo team to either of the components on the
OpenMoko platform.

The OpenMoko platform, although in development, is a quite stable
product. The performance when running Java program using the combi-
nation of JVM and Class library supplied by the Jalimo project is however
not very good. Except for performance issues, the only major problem con-
cerning the system that the prototype runs on is a problem with the Cacao
JVM. The Cacao JVM does for some reason not implement the function-
ality needed to stop running threads, that is when the method stop() in
the class java.lang.Thread is called. Even though the class is located in
the GNU ClassPath package, it will in its turn make a native call into the
virtual machine, which in the current implementation of cacao results in
a call to an empty function, thus letting the thread continue to run. The
method Thread.stop() is deprecated in the java standard classes API, but it
still should be implemented, which means that this should still be consid-
ered a bug in the Cacao JVM.

The possibility to stop running threads is essential to the JKernel-based
prototype described in this chapter. The suggested way of stopping threads
in java is nowadays to use some sort of an exit condition, designing the
thread code to finish whenever this condition becomes true. However,
since the JKernel allows user applications to load their own code, which
was not necessarily designed to run in the JKernel from the beginning,
no such demands can be put on the code. Also, demanding this kind of
special conformance to the system would mean that the application pro-
grammer becomes responsible for protecting the JKernel against his own
application, thus opening up possibilities for writers of malicious code to
create threads that cannot be terminated. Many applications also terminate
themselves by calling the System.exit() method, which normally would ter-
minate the JVM, meaning that all threads would be stopped without any
need for a system for clean exits. In the JKernel, however, the System.exit()
calls gets blocked (see section 4.1.3 concerning this) and translated into a
request to terminate the calling task instead. To terminate a single task
without closing down the virtual machine and thus terminating all other
running tasks, some different things need to be done, among them termi-
nating all threads started by the task. This system clearly will leave the
threads running after termination of the task, when using the current ver-
sion of the Cacao JVM. Therefore, the system is not really useable as long as
this bug is present in the used JVM. Also, due to the fact that the bug was
present in the development environment, and due to the fact that testing
cannot easily be performed in another JRE since the prototype is partially
tied to the GNU ClassPath class library, the termination functionalities in

5.2. JKERNEL MODIFICATIONS AND EXTENSIONS 43

the prototype have not been possible to test and to develop. This means
that these would probably need some work if it is chosen to develop the
system further on a JRE that supports thread termination.

5.2 JKernel modifications and extensions

The JKernel is used as the base for the prototype described in this report.
However, the JKernel was not instantaneously useable in its original form.
A number of changes have been required to make the JKernel run on a
modern Java Virtual Machine, as well as to make it possible to take ap-
plications that use modern-day java code and have been compiled with a
modern java compiler and run these as tasks in the JKernel. On top of this,
some functionality had to be added and changed to turn the JKernel into a
useable environment for the intended mobile platform. JKernel was orig-
inally supposed to be extended with functionality for the different things
it might be used for, but the original intent was to use the system in vari-
ous forms of servers that need to use java code, such as application servers
and similar applications. When it was written in 1998, there was probably
no thought of that it could be useful in a mobile device such as a mobile
phone. Therefore, a number of modifications and extensions have been
necessary to do. This section describes the most important modifications
and extensions to the JKernel system needed to create the prototype.

5.2.1 Modifications for compatibility with today’s Java

The JKernel was originally created in 1998, and was intended to run on Java
Runtime Systems compatible with Sun’s Java 1.1. Since then, the JKernel
has not been subject to any active development and maintenance from the
original team. This means that any features added to Java in later revisions
have not been considered by the JKernel team. Running a java applica-
tion written for an older Java revision in a new Java Runtime Environment
is generally not a problem. However, since JKernel aims to control other
applications, which might use newly introduced Java features or be com-
piled with a modern Java compiler, the JKernel needs to be able to deal
with those new features. For example, since the JKernel classloader exam-
ines and rewrites the bytecode of all the classes that are loaded with it, it
must be aware of the new features in the bytecode. Also, since the resolver
system contains lists of which standard library classes a task running in
JKernel is allowed to use, these lists should also be up to date with later
revisions of the Java system. This is necessary to make sure that no dan-

44 CHAPTER 5. THE PROTOTYPE SYSTEM

gerous classes are permitted, while at the same time not reducing the set of
available classes unnecessarily much.

The parts of the JKernel handling bytecode were originally only pre-
pared for Java 1.1 bytecode, which has since then been extended with some
extra attributes. The system was partially prepared for handling this, by
designing the bytecode analyzing parts so that unknown attributes are pre-
served just as they were in the original file. This works for a number of the
new attributes that have been added. However, in some cases, it is not
possible to just copy the data. Instead the meaning of the data must be un-
derstood and modified before putting it into the resulting bytecode. The
most common case when this is needed is when the data in the attribute
consists of references to data on other positions in the data structure hold-
ing the bytecode1, positions which may have moved around during the
bytecode rewrital. Support is implemented by creating handler systems for
the new attributes using the same techniques as older attributes were han-
dled, and adding these new attribute as possible cases in the places in the
code where attributes are identified. This means that these modifications
are spread out all over the bytecode handling classes, and not very easy
to identify as parts of the modifications of the JKernel introduced for this
prototype. An example of a difficult attribute to handle is the InnerClasses
attribute, which contains information about the inner classes that a class
might have. This attribute has a variable length depending on the number
of inner classes in the class, as well as references to strings in another place
in the bytecode file containing the names of these classes. Therefore, the
InnerClasses attribute is a good example of the techniques used to handle
new attributes.

Another thing that needs to be updated with new Java revisions is the
lists containing standard library classes that the tasks are allowed to use.
The lists are used by the resolvers in the JKernel to tell the difference be-
tween classes that are safe to use by tasks running in the system and classes
that the tasks should not be allowed to use. If the lists are used with an-
other java revision than they were created for, some of the allowed stan-
dard library classes may have been extended with functionality that threat-
ens the security of the system. This threat might seem rather unlikely at
a first glance, but it should be noted that the blocking lists only work for
the classes that are directly referenced from the application code. Forbid-
den classes can still be referenced internally from other standard library
classes that are on the list of allowed classes. Another aspect is that when
new features enter the standard library, the corresponding classes should
be evaluated to see if they can be allowed in the JKernel system. Otherwise,

1Typically a byte array, a stream or a file

5.2. JKERNEL MODIFICATIONS AND EXTENSIONS 45

the JKernel system will slowly get crippled since new functionality that ap-
plications use never get introduced. Therefore, the lists should be updated
for each new Java revision. The original JKernel package, for example, did
not support any of the packages for graphical user interfaces, such as AWT
or Swing. It should be noted that the lists used in the prototype have not
been developed using any particular analysis of the standard library, but
rather just extending the original set of allowed classes with those classes
needed to load the applications used during testing. There is no guaran-
tee that either the classes on the original lists or the ones added with the
prototype actually are safe to use without threatening the security of the
system.

5.2.2 The task launch system

The largest module that the prototype adds to the JKernel is the task launch
system. It is a system that lets the running tasks initiate new tasks in a se-
cure way, by delegating initialization requests to a centralized task loading
system. Tasks cannot be allowed to freely start their own subtasks, since
the launch system needs to have control over the created tasks and which
resolvers these tasks get. The launch system needs to keep track of all run-
ning tasks to make it possible to terminate a running task at any time2.
The system is based around capabilities to send requests from tasks to the
launch task.

Every task is equipped with a TaskLoader object, which is a capability
giving access to methods to send requests back to the launch task. From
the perspective of a task, the TaskLoader interface is the interface to the
entire Launch System. Through this interface a task can send requests for
new tasks to be initiated, as well as requests to start native programs, which
will then be run as ordinary operating system processes. A task that cannot
run in JKernel, due to for example use of classes that the resolver doesn’t
allow, can instead be run in a separate JVM instance using a request to run
the JVM as a native program. The native programs started through JKernel
will not have any possibility to access the launch system or any other parts
of the JKernel system, since they are running as separate operating system
processes, and in the current implementation the JKernel is not connected
to any operating system-wide IPC system. The TaskLoader interface also
gives access to methods for requesting other special events such as the ter-
mination of other tasks and native processes that have been started3. The
system will however perform a verification first, to check that the calling

2Terminating tasks currently doesn’t work anyways, due to the problem described in
section 5.1

3Currently, it is only possible to terminate all tasks at once, and not an individual task.

46 CHAPTER 5. THE PROTOTYPE SYSTEM

task has the permission to perform the request. In the prototype, the first
task started after the launch system is given the privilege to perform such
requests, but other tasks will be blocked from this feature. This behaviour
could however be changed if needed.

For convenient access to the TaskLoader system from within tasks, a
singleton is available in every task, giving access to this whenever needed.
This is necessary, since the user code of every task is expected to be initial-
ized with a main method in the same manner as normal Java applications,
which only can take strings as input parameters and not other objects. The
solution is also attractive for convenience reasons, providing applications
with access to the TaskLoader system from anywhere in the application
code. There is also a class called TaskStartRequest which packs all infor-
mation about a task that should be started in a single package. It is used in
the internal workings of the launch system, but it can also be used in tasks
for convenience reasons, especially since it can set the parameters that were
not specified by the task implementation to default values. Unfortunately,
the TaskStartRequest class currently cannot be sent as an argument through
the capabilities system, so the information will have to be extracted from
the object again before sending the request to the launch system.

Internally, there is much more functionality in the launch system than
just the TaskLoader class. The internal functionality is hidden away to the
tasks, to prevent tasks from bypassing the TaskLoader class and setting
up their own instance of the launch system. The launch system starts up
the same way as any other task, and is used as the first task started by
the JKernel system. The launch system in itself contains no GUI, since the
system should not be dependant on a particular GUI solution. Instead, the
launch system starts by initializing itself, and then goes on by initiating
its first subtask, which supposedly is some sort of main menu program
that creates a user interface to let the user start other applications. After
that, the launch system will only initialize new tasks when requested to
do so by other tasks. The first task that is started is given the privilege of
requesting special functionality in the launch task, such as task and process
termination, system termination etc. This privilege can be assigned to the
first task, since before that task is started, only the launch system is running
in the JKernel, which means that it can be the privilege of the launch task
to choose what the first task will be. Currently the launch system takes the
name of the first task as a startup argument, but this could of course be
changed to being hardcoded, read from a configuration file or retrieved in
some other way.

The task launch system sets up a thread that listens for requests from
other tasks. This is done by using the implementation of the TaskLoader

5.2. JKERNEL MODIFICATIONS AND EXTENSIONS 47

interface as a monitor, waiting for requests from the tasks through the ca-
pability system. The internal launching of new tasks and handling of other
types of requests is centered around the ProgramLoader class. This class
controls all initializing, termination and registering of tasks and native pro-
cesses, although some functionality is delegated to other classes. There is
also a class called TaskRegister which acts as a storage class that contains
information about all the tasks in the system as well as references to objects
that should exist in a single copy in the whole system. The TaskRegister is
a singleton class, to make sure that there is only one instance storing this
valuable information, making it possible to for example create new Pro-
gramLoader objects without losing the information about the system and
the running tasks. Both these classes have restricted visibility to prevent
other tasks in the system to access them.

The launch system keeps track of which tasks were created, but also
which windows were created by these tasks. This is because the windows
must specifically be closed when a task is terminated, otherwise they will
still be visible after terminating the rest of the task. First the windows are
closed, then the Task is closed. The JKernel system takes care of much of
the different things that should be fixed when terminating a Task, such as
revoking capabilities, terminating threads etc. However, since the JKernel
system was not prepared for tasks using windows based on the java.awt
functionality4, this feature was added in the launch system instead. The
window-tracking is extensively described in the next section.

5.2.3 The window-tracking system

One necessary add-on to the JKernel system to make the prototype work
properly was to add a system that keeps track of created windows and the
tasks that created them. During testing of the JKernel system, it turned
out that when a task created a window, this window would stay on the
screen even after the task was terminated. A window can be disposed of
by calling the method dispose() in the java.awt.Window class. This func-
tion cannot be trusted to the individual task, but must be performed from
the launch system. To accomplish this, the launch system must keep track
of every window created in the tasks, as well as information about which
task a specific window belongs to5. The launch system cannot be aware of
which windows the tasks running in the JKernel will create. Registering
new windows cannot be assigned to the individual task, since that code
is not trusted with such responsibility and not necessarily originally de-

4AWT also acts as a base for other GUI systems such as Swing or SWT
5Keeping track of which task a window belongs to is only necessary when a single ap-

plication should be terminated.

48 CHAPTER 5. THE PROTOTYPE SYSTEM

signed for use in the JKernel system. This means that the registering func-
tionality has to be located somewhere in the standard library classes. As
described in section 4.1.3, "Extra isolation in the System class", there are
ways to extend the functionality of standard library classes in the JKernel
by creating a wrapper class with the same name, which the classloader sys-
tem then returns instead of the original class. However, a task can create
windows using a lot of different classes, of which some, such as in the case
of swt, might not even be located in the standard library. This means that
very many classes would have to be wrapped, and also that if one class is
forgotten or was unknown when the system was implemented, this class
would create windows that were not registered. All of these classes share
the common property that they inherit the java.awt.Window class, which
makes that class the natural place to implement the functionality. There
is only one major problem: Since the classes inheriting the Window class
often are standard library classes, they will use the system classloader to
load the Window class, without querying the JKernel classloading system.
Therefore, if the method used for replacing the System class was used, the
wrapper class would never load and the functionality would not work.

Since there is no way for a wrapper for the Window class to be imple-
mented and loaded with the JKernel classloader system, the alternative that
is left is to make the system resolver return a version of the Window class
that implements the desired functionality. Luckily, this can be done by pro-
viding the JVM at startup with directives of extra locations to look for the
standard library classes, and if there is a class called java.awt.Window in
such a location, that will load instead of the original Window class. The
problem with doing so is that when this has been done there is no way to
retrieve the original Window class any longer. This means that the new
Window class cannot be implemented as a wrapper for the old one, but in-
stead it needs to contain the entire functionality of the class. Since the Java
Runtime Environment that is used in the development setup uses the GNU
ClassPath standard library, which is open source, a new version could be
created using the original code with the desired functionality added to it. It
must, however, be noted that this cannot be done with all standard library
implementations, since the source code is not always available for this, as
well as the licensing rules might not permit such changes. The prototype
does, however, use this solution to introduce a modified version of the Win-
dow class into the standard class library. It is necessary to use directives
when starting the virtual machine to set a new path where the modified
Window class can be found, rather than having installed a modified ver-
sion of GNU ClassPath, since the modifications should only be there when
using the JKernel and not when running other java programs.

5.2. JKERNEL MODIFICATIONS AND EXTENSIONS 49

The most important part of the modifications to the Window class is
the functionality for storing references to all windows that have been cre-
ated. This is stored as a static data structure within the class, in which refer-
ences to new window objects are stored when their constructor gets called.
Another thing that should be stored is some sort of knowledge of which
JKernel task created each window. This is more difficult to store. Since
java.awt.Window is a standard library class, it is preferred not to make it
depend on the JKernel implementation, which means that it cannot have
any knowledge of the task concept. One thing that it on the other hand can
know about is the concept of classloaders, since this is a feature that is built
in into Java. The approach therefore is to store the classloader that the task
it belongs to uses, and then let the JKernel system figure out which task
this corresponds to. The Window class, being a standard library class, is
of course always loaded with the system classloader, so storing that infor-
mation is of no use. What is needed is a reference to a JKernel classloader,
which actually can be retrieved.

The SecurityManager class contains a method called getClassContext(),
which returns an array of the classes that were passed on the way to the cur-
rent point in the program, in a way similar to how exception stack traces
work. That method has the "protected" visibility grade, which makes it
only visible internally in the SecurityManager class and in classes inher-
iting that class, but by creating a class that inherits the SecurityManager
class, this can be accessed through a retriever method6. Using the retrieved
array of Class objects, the classloaders of these classes could be examined
in order, and the first classloader that is not the system classloader is as-
sumed to be the classloader of the initiating task. Thus, a pair consisting of
a Window object and a ClassLoader object can be stored in the data struc-
ture for later retrieval by the prototype’s launch system. The launch system
can thereafter associate a window with a task by comparing the classloader
associated with the window with that associated with the task. The Task
class in JKernel does for security reasons not allow the retrieval of a refer-
ence to its classloader, but it has been extended with a method that, given
a classloader reference, can tell whether this is the classloader belonging to
the task or not.

6To prevent misuse of this class, it is implemented as a private inner class of the Win-
dow class. However, there is nothing stopping an application programmer from creating a
similar class by himself.

50 CHAPTER 5. THE PROTOTYPE SYSTEM

5.2.4 New resolvers

To provide som extra functionality related to class loading, three new re-
solver classes have been implemented. These add features that were miss-
ing in JKernel, but with simple implementations provide very useful func-
tionality.

ZipResolver

The ZipResolver is a resolver that much resembles the FileResolver class
provided with the original JKernel package. Whilst the FileResolver re-
trieves bytecode from files in the filesystem, the ZipResolver retrieves byte-
code from files stored in a zip file. Zip files are archives to store other files,
thus packaging a number of files into one single file suitable for e. g. down-
loading over the Internet, and the zip format also gives the possibility of
compressing the files stored within. The ZipResolver can store a list of zip
files which are searched in the order they appear for a requested file. The
most common format used for storing java classes today is however the jar
file. Luckily, the jar format is compatible with the zip format, which means
that the ZipResolver can be used also for jar files.

JarResolver

The JarResolver is quite similar to the ZipResolver. It is specialized in read-
ing bytecode from jar files, and, contrary to the ZipResolver, it can only
handle one jar file in an instance of the JarResolver class. The jar format
is quite similar to the zip format, but one difference is that jar files can be
configured to be "runnable". That is, a jar file can be used as an input pa-
rameter when starting a virtual machine, and then a main() method in a
file inside the jar file, that was registered as the main class, would be run.
The content of the jar file would be put on the class path. The JarResolver
has the capability of extracting the info about the main class of the package,
and when requested to resolve the name of the jar file, this class would be
returned. Otherwise, it works like the ZipResolver.

InvertedFilterResolver

The JKernel package contains a resolver called the FilterResolver. When a
FilterResolver is created it is supplied with another resolver and a list of
names of classes. When the FilterResolver is called with a request, it for-
wards this to its internally stored resolver only if the name of the requested
class is in the supplied list, this way creating a filter with a whitelist. It

5.2. JKERNEL MODIFICATIONS AND EXTENSIONS 51

is frequently used within the JKernel implementation, but is useful any-
where resolvers may be created. The InvertedFilterResolver is similar to
this resolver, it only inverts the condition determining whether the request
should be passed on to the internal resolver or not. Thereby a blacklist func-
tionality is created where requests are only passed on if the name is not in
the list. This is very useful in some situations, but it should be noted that
the blacklisting will leave any class that is not on the list free to be loaded,
including classes unknown to the resolver, when the FilterResolver on the
other hand blocks everything that is unknown. Therefore, the InvertedFil-
terResolver should always be combined with some resolver that prevents
unknown classes from loading, such as a File- or ZipResolver pointing to
a folder or archive file with known content, a FilterResolver or something
similar.

5.2.5 Security Managers

There are some different classes inheriting the SecurityManager class pro-
vided with the extensions to the JKernel package. These are Java 1.1 style
security managers. Nowadays, the security system has been replaced, but
the SecurityManager still acts as a frontend for the new system. All calls
to the SecurityManager from the other standard library classes go through
the old interface, which is necessary to provide backwards compatibility
with older software and SecurityManager implementations. The JKernel
originally disallowed any installation of security managers. This was nec-
essary to change to fix the problem when calling the System.exit() method
(see section 4.1.3).

BaseSecurityManager

The BaseSecurityManager disallows any attempt to terminate the JVM, and
also disallows replacing the current security manager. Otherwise, every-
thing is passed on to the SecurityManager that it inherits, which is the
EmptySecurityManager. The BaseSecurityManager is the default security
manager and is installed when the prototype starts up.

EmptySecurityManager

The EmptySecurityManager class is a security manager that basically al-
lows everything that is asked to it. This way, it emulates the previous situ-
ation where there was no security manager as closely as possible. By using
this security manager, there is technically a security manager installed, al-
though it will never stop any applications from doing anything.

52 CHAPTER 5. THE PROTOTYPE SYSTEM

LoggingSecurityManager

The LoggingSecurityManager is really a tool that was used during develop-
ment of the prototype system. This security manager logs all requests that
it gets, including input parameters for security checks that have such. The
LoggingSecurityManager has been useful for determining possible places
to fetch different events that the JKernel system might want to be aware of,
debugging purposes and similar usages, but is not useful to an end user
of the system. It is still included with the prototype, since it displays what
would happen if applications were allowed to install their own security
managers. With a security manager like this one an application running
in the system could retrieve very much information about other running
applications. This shows why applications cannot be let to install custom
security managers. It might be possible to implement a Task-aware security
manager system, so that requests to the security manager would be sent to
another security manager associated with the task, but no such functional-
ity has been implemented yet.

5.3 Remaining problems

There are some problems remaining that have not fully been addressed in
the prototype system. These are presented here, along with the effects each
one of these has on the prototype system.

Problem with the Classloader approach

The use of classloaders to provide isolation between tasks running simul-
taneously in a single Java Virtual Machine has a major flaw, which is that
this separation is not possible when using standard library classes. Such
classes will have a single instance of every static field that is shared among
all running tasks in the virtual machine. This problem has been described
thoroughly in section 4.1, "Isolation in JKernel". The problem could be seen
as the biggest problem with the approach, as it cannot be solved with the
way Java Virtual Machines currently work. The effect of the problem in
practice might be quite small, however, which means that the system prob-
ably still could be useful for certain tasks.

Missing functionality in the JVM

The Java Virtual Machine used in the development platform had some
missing features which should normally be included in a Java Virtual Ma-
chine. The missing features are associated with termination of running

5.3. REMAINING PROBLEMS 53

threads, which means that the only way a thread can be terminated is
by running to an end voluntarily. This makes it impossible to implement
proper functionality for terminating tasks. Due to this, the system for ter-
minating tasks is not very well tested or developed. Also, any task that
tries to exit itself by using a call to the method System.exit() will proba-
bly not terminate correctly when running in the JKernel system as long as
this problem persists. Since this problem would go away if the system was
used on a proper JVM, this problem could be considered less serious that
the previous one.

Problems when tasks have access to other tasks classloaders

If a task gets access to a classloader belonging to another task, it can use this
classloader to load its own classes so that they partially belong to the other
task. For example, the method Class.forName() can take an arbitrary class-
loader as an argument and use that for loading classes, or the classloader
object itself could be used to create classes. A class loaded this way can
access static methods and fields in classes loaded by the other task, which
clearly is a security violation. Also, depending on how the other task is
designed, other data may be extracted from the other task using the static
fields and methods. This problem was discovered in a late stage in the
project. Some different possible solutions to the problem has been studied,
but none have been implemented in the prototype.

Trouble using some functionality in ActionListeners

Classes implementing the ActionListener interface have a method called
actionPerformed(), which is called automatically as a result of for example
clicks on buttons in AWT- or Swing-based windows. In this method, some
JKernel functionality does not work, such as calling methods on capabili-
ties. The exact reasons for this happening are unclear, but it seems like the
executing thread is not considered as a part of any task. The thread was
initialized from somewhere in the standard library classes, and thus, by-
passes the Thread wrapper class in the JKernel system, which work much
like the System class described in section 4.1.3, and instead directly creates
a thread by using the original Thread class in the standard library. That
way, the thread has not been associated with any task, which affects the
possibility to use capabilities. It should be noted that, since the fields Sys-
tem.out, System.in and System.err are passed through capabilities, these
do not work in that special thread either. A workaround until the problem
is fixed is to make the actionPerformed method synchronized with another

54 CHAPTER 5. THE PROTOTYPE SYSTEM

method in the same class, in which another thread is waiting, and letting
that thread react to the event instead.

Performance problems due to bytecode analysis

The JKernel goes through all bytecode that is loaded by its own classload-
ers. This is a process that is quite time consuming, currently making the
startup time of applications roughly equal to when running them in a sepa-
rate JVM, and in some cases even slower. The technology is in itself promis-
ing since no JVM startup is required for starting a new program, as well as
letting the system load standard library classes only once even when used
by several applications. The bytecode analysis and repacking is not really
necessary to use the classloader approach for isolation. The reasons for re-
working the bytecode is probably to remove finalizers, do some renaming
of certain classes as well as to add some functionality for a resource ac-
counting interface. That interface in itself is not a part of JKernel but rather
implemented in some other products based on JKernel, which means that
it is not of any practical use in the prototype. Also, the capability system
might be partially dependant on the rewriting. Removing the rewriting,
however, seems difficult, so therefore it is currently left in the JKernel. Sig-
nificant performance gains could however be expected if it was removed.
The performance is further discussed in section 6.2, "Performance".

Potential other problems

During the work with the prototype, different problems affecting the func-
tionality or the security of the JKernel has shown up. It is impossible to
claim that the isolation system is perfectly secure without knowing every
detail about Java and carefully studying all classes and methods in the stan-
dard library. Therefore, even if all the problems that have been presented in
this report were solved, this is no guarantee that the system actually deliv-
ers proper isolation between tasks. Also, more extensive studies than the
project has allowed for would be needed for the prototype to reach a state
where the quality of the isolation could be determined with confidence.

5.4 Future work

To turn the prototype into a useable product there are still some things that
need to be done. These things can basically be divided into some different
categories, which are presented in this section.

5.4. FUTURE WORK 55

Problems that need to be fixed

In section 5.3, "Remaining problems", some different problems left to be
solved in the prototype are described. The first problem mentioned, the
problem that custom classloaders cannot be used to load standard library
classes, will persist as long as the current solution for isolation is used. If
this cannot be accepted, then another approach has to be used. The other
problems could however be solved, which will be necessary to make the
prototype really useful. Especially, the problem with missing functionality
in the JVM must be solved, since it makes task termination impossible to
perform correctly. After that, the task termination system will need to be
checked and further developed, which can not be properly done as long
as the problem persists. Also, all problems concerning the security of the
isolation system should be addressed, while issues creating difficulties for
task programmers and seemingly irrational behaviour, such as the trouble
concerning the ActionListener interface described above, have to be evalu-
ated if these need to be corrected or not.

Undiscovered problems

To provide good security and functionality in the JKernel, the standard
class library should be inspected for java features that could potentially
let a task with malicious intent interfere with other tasks or the JKernel
system. Some problems that could threaten the system security have been
discovered and most of them are also addressed in the prototype system.
However, a complete review of the standard class library would be neces-
sary to make certain that there is no functionality creating such problems
left that the prototype does not take into consideration. When such func-
tionality is discovered, countermeasures ranging from disabling a class in
the resolver system to switch out the entire class in the class library for a
patched version are available, so preventing the dangerous functionality
from running should be easy in most cases. However, since the problem
must be known to be addressed, the big problem are the unknown parts of
the standard library, which therefore need to be explored. Also, the resolver
system needs to be configured properly, as to provide as much standard li-
brary functionality as possible, while hiding away those classes that tasks
cannot be allowed to use.

Tailoring for a specific need

Before using the prototype for any specific purpose, there will be a need to
review the system to make it behave in the preferred way. There are a lot
of details that could be configured differently depending on the intended

56 CHAPTER 5. THE PROTOTYPE SYSTEM

use of the system. An example of such a detail is the way the resolver
system works. Here, the set of allowed classes, packages and search paths
where code can be loaded from should be defined in the desired way. If
the resolver system cannot be configured as preferred, it might be desired
to implement new resolvers with the preferred functionality. Other aspects
where it might be interesting to change the default behaviour include the
access to the launch system, where it might be desired to grant more than
one task the extended privileges, as well as the security manager system,
where the default security settings could be changed or it might be decided
to extend the system with a solution to provide different security managers
for different tasks.

Other work

There is also the possibility that other things might be desired to change in
the prototype to turn it into a useable product. The prototype was designed
to demonstrate the technique, and it is not a finished product. Turning the
prototype into a finished product would be a project of greater magnitude
than this project, and it could be expected that many things in the prototype
would be considered for modification and extension if they should be used
in a finished product.

Re-implementation of the system

As described in section 5.3, the JKernel-based prototype does not live up to
the technique’s promises of reduced application launch time. This is due
to features of the JKernel which can be debated whether they are useful
enough to the system to motivate the heavy load that they create. None
of the features requiring bytecode rewriting are central to the classloader-
based isolation concept, so it might be possible to create a software that
excludes this step but still brings the desired functionality, with potential
performance gains primarily concerning startup time as a result. Remov-
ing the bytecode rewriting features from JKernel would require a major
rewrital of the software, but it could be interesting to evaluate the possibil-
ity to write a new software without those components. The JKernel could
act as a model for such a software, providing a good structure that could
be reused, but with a rewrital from scratch, there is an opportunity to fix
things which are not optimal in the prototype implementation. The de-
velopment of the prototype has also brought attention to many different
problems which would not have been obvious if work was started from
scratch without any previous experience of this kind of products. If such a
re-implementation is done, it also could be investigated if the new features

5.4. FUTURE WORK 57

added to Java since the JKernel was originally written could be used to im-
plement the JKernels functionality in better ways. The primary reason for
doing such an implementation is however to retrieve the potential perfor-
mance gain primarily in application startup time described earlier, which
the prototype does not deliver.

58 CHAPTER 5. THE PROTOTYPE SYSTEM

Chapter 6

Results

This chapter presents an overview of the results achieved during this project.
First, the functionality of the prototype system described in chapter 5 is
evaluated. Then, the results of performance measurements on the proto-
type are presented and analysed. Finally, the general aspects of the project,
such as choice of approach, lessons learned from the project and other as-
pects concerning the topic in general are summarized. This chapter wraps
up the content of the report. Final conclusions are however presented in
chapter 7, "Conclusions".

6.1 Prototype functionality

The prototype presented in chapter 5 provides means to run multiple ap-
plications in a single instance of a Java Virtual Machine. It shows that the
goal to some extent was achievable using the selected approach. There are
however some things that do not work as good as intended.

The major flaw of the system is that static fields in classes belonging
to the standard class library are shared between applications running in
the system. There is no way around this problem with the approach of
classloader based isolation such as in the JKernel.

Another, smaller flaw is the one concerning the termination of threads,
which currently is not possible in the JVM used in the development en-
vironment. The problem in practice makes the system unusable, but the
problem should be easy to fix with either a patched version of the JVM or
by using a different JVM, therefore making it a less important problem than
the previous.

Other than that, there are a number of smaller defects making the sys-
tem insecure or affecting the way programs that interact with the prototype
system must be designed. These are described in more detail in section 5.3

59

60 CHAPTER 6. RESULTS

of this report. Especially issues concerning the security of the isolation be-
tween application must be solved for the prototype to be considered as
properly working.

To verify that the prototype actually works as intended a bigger evalua-
tion of it must be done. This evaluation must include verifying the function
of all classes in the standard class library, to check that they cannot be used
to breach security of the system and that they are safe to be allowed for use
by applications running in the system.

There are also currently some performance issues with the prototype.
This is primarily due to some features that are present in the JKernel soft-
ware, which are not necessary for the intended usage of the prototype, but
cannot be removed without a major rewrital of the JKernel code. It might
therefore be a good idea to view the prototype as a demonstration system
and a source of experience rather than as a useful product. If it is decided
to use this technology in a product, creating a new implementation using
the prototype as a model should be considered.

6.2 Performance

To illustrate the savings of system resources that the prototype can and
cannot achieve, some simple benchmarks have been performed. All val-
ues have been measured using a single run, which means that there are
no guarantees of the repeatability of these results. The measurements are
shown here to provide a simple demonstration of the possibilities of the
used techniques, and should not be viewed as a good analysis of the per-
formance of the system. The results are likely to depend on a large number
of factors, such as the applications that are tested, the Java Runtime Envi-
ronment that is used and other factors. However, the results show clearly
that significant savings of RAM footprint can be made with the prototype
in some cases, although no such effects could be seen concerning startup
time.

Testing was performed using small applications, which tend to gain
more from a system such as the prototype than larger applications, since
the overhead for the Java runtime is a proportionally larger part of the sys-
tem when running smaller applications. However, since the target platform
is a mobile phone, most applications in the system might be expected to be
of a fairly small size similar to the applications used in the benchmarks. The
tests were performed using two programs. One is the EmptyBench, which
is a program that does nothing except for what is necessary to measure
its performance. It therefore investigates the special case of running pro-
grams with exceptionally low own footprint, making the JRE as large part

6.2. PERFORMANCE 61

of the total footprint as possible. It is used in two slightly different versions,
where the measurements of memory consumptions are performed using a
version that halts itself when started. The other program is called JCalc.
It is a simple program working as a simple pocket calculator, and it’s size
could be somewhat comparable to normal applications running on mobile
phones. JCalc uses Swing for its graphical user interface.

In the tables presenting the measured results, sometimes a value is de-
noted as DNF. This means "Did Not Finish", which means that the test
for one reason or another was not possible to perform. The typical rea-
son for this is that the mobile platform runs out of memory before the test
is finished. A workstation PC has so-called swap memory, which means
that if the memory gets full, the system can move parts of the information
stored in RAM to the harddrive, which lets the system continue working,
although with lower performance. A mobile platform does not typically
contain a hard drive, but rather a flash memory or some other memory for
data and program storage. Such memories are not suitable for use as swap
devices, and therefore the amount of memory that can be allocated can-
not exceed the amount of physical RAM in the device. When the RAM is
depleted, and no memory can be freed, no operations needing to allocate
memory will be possible, such as starting new processes. In the case of a
Linux-based mobile phone, this will probably result in the phone software
crashing or hanging. To illustrate the amount of memory that would have
been required to perform the measurements triggering such behavior, the
same tests were performed on a workstation PC.

In the tests, a number of instances of the same applications were used.
A more correct approximation of the expected use of the prototype in a
real mobile phone environment would be to start a number of different ap-
plications together and perform the measurements on that. However, this
brings factors into account such as the size of the programs compared to
eachother, and the overlap in use of standard library classes between the
applications. When studying the loading of application-specific classes the
difference here does not matter, since these classes will be loaded once for
each task anyways, as the prototype currently works. On the other hand,
when studying loading of standard library classes, the use of multiple in-
stances of the same application will introduce a 100% overlap among these
classes, which of course is not true in most cases where different applica-
tions are used. The overlap could however be large between applications,
especially if two applications use the same system for the graphical user
interface, since those systems typically contain large numbers of classes
which are interconnected through inheritance and interfaces, and are prob-
able to be used in most applications using such systems.

62 CHAPTER 6. RESULTS

6.2.1 Memory footprint

Prototype Shell script Test app instances
79826 DNF HaltingEmptyBench 100
36491 92496 HaltingEmptyBench 10
DNF DNF JCalc 100
41180 DNF JCalc 10
34844 92116 JCalc 5
32183 24834 JCalc 1
23694 0 None 0

Table 6.1: Memory usage in kB on the mobile platform

Prototype Shell script Test app instances
80873 1347888 HaltingEmptyBench 100
33697 134789 HaltingEmptyBench 10
101091 2695776 JCalc 100
40436 269577 JCalc 10
37066 134789 JCalc 5
33697 26958 JCalc 1
23588 0 None 0

Table 6.2: Memory usage in kB on a workstation PC

Measurements of memory consumption are displayed in tables 6.1 and
6.2. The tests have been performed using the prototype to launch a number
of instances of a single applications simultaneously, and then noting how
much memory the entire JVM process uses according to the operating sys-
tem. The values are given by the "top" program in Linux, which can display
system resource consumption for all processes running in a Linux system.
The program gives the values in percent of the total available amount of
ram in the system, with three significant digits, which then has been con-
verted to kilobytes. Since the PC used for the measurements in table 6.2
has about 4 GB of available RAM, compared to 128 MB on the openmoko
phone, this means that the values in table 6.2 have a significantly lower
precision than those in table 6.1. These measurements have then been com-
pared to measurements when an equal number of the same applications
are started in separate JVM instances. The measurements on the PC are
included in this report to display the amount of memory that would have
been needed to actually run the tests which could not finish on the mobile
platform.

It can be seen from the values in table 6.1 that when several instances of
an application are created, there are considerable savings in the amount of

6.2. PERFORMANCE 63

RAM needed for JVM processes. The biggest saving displayed in table 6.1
is 62%, which takes place when running five simultaneous instances of the
JCalc program. However, table 6.2 shows that in the cases when the tests
could not run on the openmoko phone, the savings are even greater. In
the extreme case of running 100 multiple JCalc instances, as much as 96%
of the ram is saved by using the prototype. In that case the test could not
performed either using the prototype or the shell script when running on
the phone. The memory consumption is however when using the proto-
type just beyond the point of what the mobile device can handle, while the
shell script test consumes more memory than what many modern work-
station PC:s have accessible today. A more reasonable task would be to
run ten simultaneous JCalc instances, in which case the prototype would
reduce the memory consumption by 85%. What the numbers would be if
ten different applications similar in size to the JCalc application is hard to
determine. The savings would be smaller, since there would no longer be
a 100% overlap between the standard library classes used by the applica-
tions. However, since JCalc uses Swing for its graphical user interface, it
loads a lot of different classes associated with this that other application
using the same system for the GUI would reuse to a large extent.

An idea of the proportion between memory use for the virtual machine,
the standard library classes and the application classes and instance data
can be created from the statistics in table 6.1. It can be seen that the virtual
machine along with the prototype system consumes a large part of the used
memory when the prototype is running, at least when running a moderate
number of applications in it. The amount of memory required for only the
virtual machine and the prototype system, including its main application
can be seen in table 6.1 as the bottom-most result, where the number of ap-
plications is specified as zero. This number is roughly equal to the memory
consumption of a single JCalc instance running in its own virtual machine.
Running one instance of the JCalc application in the prototype increases the
needed amount of memory with a couple of megabytes, but the increase is
still rather small compared to the startup footprint of the prototype. After
that, creating more instances of the JCalc application adds on even smaller
parts to the overall memory consumption. It can be seen that also with
five running JCalc instances the system still has a lower footprint than two
virtual machines running the JCalc side by side. Therefore, it is obvious
that the prototype provides memory savings already with only two appli-
cations running in the system. A reasonable conclusion on this is that the
prototype can be expected to deliver memory savings in all cases where
more than one application is run at the same time.

64 CHAPTER 6. RESULTS

6.2.2 Application startup performance

Prototype Shell script Test app instances
4m4s DNF EmptyBench 100
25s 22s EmptyBench 10
1m19s DNF JCalc 10
46s 55s JCalc 5
12s 12s JCalc 1

Table 6.3: Startup time on the mobile platform

Some measurements of application startup performance are displayed
in table 6.3. As presented in this report, the use of a system letting multiple
applications share a single Java Virtual Machine has the potential of reduc-
ing startup time for applications, since there would be no delays waiting
for the JVM to initialize before starting to run the application. Also, many
classes that an application needs to load could already have been used by
another application, which would make it unnecessary to load these again.
When using classloaders to provide isolation the way it is performed in
the prototype, application classes have to be loaded individually for each
application, while standard library classes are loaded only once and then
reused. This means that the startup penalty that every application will have
to pay every time it starts is only the loading of application classes, which
should be a small job compared to also loading standard library classes and
initializing the virtual machine.

The numbers displayed in table 6.3 does not show any significant time
savings during application start. Savings are shown in some cases, while
in others the startup time gets longer. No certain conclusion can be drawn
from the numbers on whether the startup time in normal use cases would
be any better or not when using the prototype. The theoretical advantages
are there, however, which means that the result can be explained for one of
two reasons. Either the effect achieved by those advantages is minimal, or
something else consuming system resources has been introduced. It is not
likely that the effect really would be of such little significance that it would
not be visible in the measurements.

There is however another potential source of delays that has been in-
troduced with the prototype. The JKernel, which acts as a base for the
prototype, has built in facilities for analyzing and rewriting bytecode that
is loaded through the system. Basically, bytecode is translated into a data
structure and then transformed back to a stream of bytes again. During this
process, some changes are done to the bytecode. Due to lacking documen-
tation on the original code, it is not entirely clear what purpose all these

6.3. GENERAL RESULTS 65

changes serve. It does, however, seem like the changes include disabling
of finalizers, doing some renaming of certain classes as well as adding fea-
tures needed for a resource accounting system. The resource accounting
system is not useable unless support for it is implemented in an application
running on top of the JKernel, such as the task launch system described in
section 5.2.2, which means that modifying the bytecode for this currently is
pointless in the prototype. Doing such bytecode rewrital is a quite complex
task, which takes some time to perform. Since this must be done every time
a class not belonging to the standard class library is loaded, this acts as a
startup penalty affecting every application that starts, much like JVM ini-
tialization would do when performing normal application launch. It seems
like this penalty is so big that even with the removal of the other penalties,
the system is still not faster than starting every application in its own JVM.
Therefore, it must be evaluated if the bytecode rewrital really is necessary
and wanted in the product, since it is not really essential to the classloader-
based isolation concept in itself.

6.3 General results

As was seen in chapter 3, "Related work", there are some different ways the
task of running multiple applications in a single JVM can be performed.
The selected approach to use classloaders to provide separation between
applications is in its basic form a simple way of solving the problem. It
has the advantage of being platform independent, both with respect to the
Java Virtual Machine and the underlying operating system. However, the
method includes a number of problems that need different workarounds,
which makes the task more complex. The prototype, based on the JKernel,
is a large software with many classes, primarily to provide extra protection
system on top of the classloader-based isolation. Using a modified virtual
machine instead is an interesting approach, especially as the functional-
ity could be preferred to have integrated with the virtual machine. That
approach would also have provided better possibilities to provide proper
isolation between applications. However, a modified JVM would proba-
bly have been an even larger and more complex project than the JKernel.
Also, the system would not be portable between different platform, since
the JVM would have to be ported to each platform first, while the described
prototype is easily moved between platforms since it is an implementation
made entirely in java. For modifications to the Java runtime to become
popular and used, they should be a part of standardised Java, for example
by being implemented through a JSR. JSR 121 provides an API for a sys-
tem such as the one this project has attempted to create, although it does

66 CHAPTER 6. RESULTS

not define any properties regarding the implementation of the API. This
means that an implementation will not necessarily give the benefits that
this project is looking for. The JSR 121 is not a part of any major release
of Java SE either, which will be necessary for it to gain broad acceptance
among JVM creators. Implementing a solution not following the JSR 121
would be unwise, since this only further contributes to dividing the Java
world into more and more flavors which are more or less incompatible with
eachother. In the meanwhile a classloader-based solution creating a middle
layer between the JVM and the applications might be a good alternative.

The prototype described in chapter 5 shows that a system for running
multiple Java applications isolated from eachother in a single JVM can be
implemented by using only Java as the programming language. However,
it also shows that the isolation is not as complete as it could have been, and
that there still are some possibilities for applications to disturb each other.
Although there are problems persisting in the prototype, most of there are
believed to be solveable. The big problem that is clearly associated with
the method itself is the problem of using shared standard library classes.
As suggested in the IBM patent [11] described in section 3.2.2, this problem
might be possible to work around using bytecode rewriting techniques.
However, the bytecode rewriting taking place in the JKernel is currently
quite slow, resulting in slow startup performance of applications. Rewrit-
ing the bytecode of those standard library classes requiring this would of
course only add to this slowness. An implementation doing this would
need to have a faster bytecode rewriting system than what is available
in the prototype, alternatively making sure that only a small number of
classes would need this rewrite.

Apart for the prototype system, the project has also resulted in a certain
amount of knowledge concerning the subject. Working with the prototype
has brought attention to a couple of different pitfalls likely to show up dur-
ing development of this kind of systems. This knowledge would be useful
in for example an attempt to implement a new product solving the studied
task, which might implement only those features really wanted for a mo-
bile environment and leaving the rest out. Also, the classloader techniques
described in this report are used in different sorts of application servers
and other similar systems, which means that the knowledge would be of
value also when working with such systems, even though it might seem
very different from a mobile environment at a first glance.

Chapter 7

Conclusions

The project has shown that it is possible to, using the methods described
in this report, implement a system allowing different independent Java ap-
plications run in a single instance of a Java Virtual Machine without very
much disturbance between them. However, it has also been shown that the
isolation between applications is not complete. There are still ways appli-
cations may potentially disturb eachother and potential ways for malicious
code to gain access to data belonging to other applications running in the
system. Solutions and workaround for some problems associated with the
main isolation functionality have been described in this report, while some
other problems have been described, along with suggestions for possible
solutions or motivations to why these problems are likely to be solveable
and why they are not solved in the prototype described by the report. One
big problem, which the chosen approach cannot address easily, is also de-
scribed. Other approaches for a solution, which might be able to address
all the known problems, have been presented. However, only the approach
using classloaders for providing isolation was examined in greater detail,
since this was chosen as a base for the described prototype system.

The potential performance gains that motivated the project from the
beginning are partially present in the described prototype. As intended,
the prototype accomplishes significant savings in terms of overall memory
footprint when running multiple Java applications simultaneously. The re-
duction in startup time of applications that also was a motivation for the
project is however not present in the described prototype. This is however
related to implementation-specific details that are not directly related to the
use of classloader for isolation. The gains possible by not having to initial-
ize new JVM instances are present, but other things in the system slows the
prototype down to about the same level as when running application in
separate virtual machines. The prototype has an IPC system which draws
advantage from the fact that applications are running in the same operat-

67

68 CHAPTER 7. CONCLUSIONS

ing system process. This system is not freely useable for communication
between applications in its current form, and is presently only used for ini-
tializing new tasks in the prototype system. An interface for another IPC
system that takes advantage of this system should however be possible to
add.

Other than the performance issues, it is shown that the prototype sys-
tem works as intended for the most part. Problems do however persist
and, especially as the performance is not as good as i could have been, it is
suggested that the possibility to develop a new system using selected parts
of the structure of the prototype as a template is investigated. In such a
product, those features slowing down the prototype without providing ad-
equate value could be removed, leaving only the preferred set of features.
The prototype is however in itself not suitable for such a modification.

The project has also resulted in a knowledge base of typical problems
and issues when working with this kind of product. This could be a valu-
able resource, both if used for constructing a new application solving the
problem in a better way and for use in other products that might seem to
have an entirely different purpose but use the same technology, such as for
example application servers.

Bibliography

[1] SavaJe OS: Solving the problem of the Java Virtual Machine on Wireless De-
vices
SavaJe Technologies,
2002

[2] OpenMoko homepage
http://www.openmoko.org,
2008

[3] Jalimo
http://www.jalimo.org,
2008

[4] Cacao JVM homepage
http://www.cacaojvm.org,
2008

[5] GNU ClassPath
http://www.gnu.org/software/classpath/,
2008

[6] Thorsten von Eicken, Chi-Chao Chang, Grzegorz Czajkowski, Chris
Hawblitzel, Deyu Hu and Dan Spoonhower
JKernel: a Capability-Based Operating System for Java
Cornell University,
1999

[7] JKernel homepage
http://www.cs.cornell.edu/slk/jkernel.html,
2008

[8] Alex Kalinovsky
Covert Java - Techniques for Decompiling, Patching, and Reverse Engineering
2004

69

70 BIBLIOGRAPHY

[9] Echidna on SourceForge.net
http://sourceforge.net/projects/echidna/,
2008

[10] Echidna as a Java Shared VM surrogate
http://www.beanizer.org/site/index.php/en/Articles/Echidna-as-a-
Java-Shared-VM-surrogate.html,
beanizer.org,
2008

[11] Matthew Paul Chapman
US Patent No. 6851112 - Virtual Machine Support for multiple Applications
IBM Corporation,
2000

[12] JSR 121: Application Isolation API Specification
http://jcp.org/en/jsr/detail?id=121,
Sun Microsystems,
2008

[13] Grzegorz Czajkowski and Laurent DaynÃĺs
Multitasking without Compromise: a Virtual Machine Evolution
Sun Microsystems,
2001

[14] Janice J. Heiss
The Multi-Tasking Virtual Machine: Building a Highly Scalabe JVM
Sun Microsystems,
2005

[15] Godmar Back, Wilson C. Hsieh and Jay Lepreau
Processes in KaffeOS: Isolation, Resource Management, and Sharing in Java
School of Computing, University of Utah,
2000

[16] JanosVM User’s Manual and Tutorial Version 1.0
Flux Research Group,
School of Computing, University of Utah,
2003

[17] The Janos Project homepage
Flux Research Group,
School of Computing, University of Utah,
2008

BIBLIOGRAPHY 71

[18] Connected Limited Device Configuration HotSpot Implementation Multi-
tasking Datasheet
Sun Microsystems,
2004

[19] D-bus homepage
http://www.freedesktop.org/wiki/Software/dbus,
freedesktop.org, 2008

[20] Matthew Johnson
Java D-Bus Implementation Documentation
http://dbus.freedesktop.org/doc/dbus-java/
freedesktop.org,
2008

