

Automated platform testing using input

generation and code coverage

Authors

Per Heed

Alexander Westrup

Examiner from Lund University, Faculty of Engineering

Per Runeson

Advisor from Sony Ericsson Mobile Communication

Erik André

Lund, 2009

Automated platform testing using input generation and code coverage

 Page ii

Abstract

When using a Java platform it is important to test all aspects of it thoroughly. In this

thesis an attempt to test the stability and overall function is presented.

The method is to test the platform by running a large number of Java applications on

the platform and see if anything goes wrong. To stress the platform as much as

possible it is important to not only start the application but to attempt to explore it as

well. This makes sure that as much of the platform as possible is tested.

The focus of the thesis is to compare different ways to generate input to the

application and try to find the most efficient method. Four different input generation

methods are evaluated, random, adaptive and both with a constant startup sequence

and compared to a manual reference.

To compare the input generators performance, ten games were selected and run a

number of times. During these runs the code coverage of the games was calculated.

Factorial design was applied to the code coverage values to determine if there were

any statistically significant differences between the input generators.

The results show that the startup sequence give good code coverage values by quickly

going through the menus and start the game. The adaptivity gives somewhat better

code coverage in some games than simply random but requires code coverage to

function which decreases the performance of the phone.

From the results it can be concluded that no input generator is the best for all

situations. However in the test environment used in the thesis, the random with startup

sequence was deemed the best because it reaches the second highest code coverage

values and does not require to be run in debug mode, which causes a big performance

loss.

Automated platform testing using input generation and code coverage

 Page iii

Acknowledgments

We would like to thank Erik André for answering all our questions and supporting us

through the process, Per Lilja for giving us the opportunity to do this thesis and

everyone else at Sony Ericsson who helped us with technical questions.

Also a big thank you to Per Runeson for showing great interest in our work and giving

valuable input throughout the thesis.

Automated platform testing using input generation and code coverage

 Page iv

Table of contents

1 INTRODUCTION 1

2 BACKGROUND 2
2.1 MIDLETS, JAVA PROGRAMS ON A MOBILE PHONE 2
2.2 COMMERCIAL JAVA PROGRAMS 2
2.3 TESTING A JAVA PLATFORM 3
2.4 CREATING TEST CASES 3
2.4.1 BLACK BOX 3
2.4.2 WHITE BOX 4
2.5 EVALUATING TESTS 4
2.5.1 CODE COVERAGE 5
2.5.2 MUTATION TESTING 5
2.6 COMMUNICATION BETWEEN COMPUTER AND PHONE 6

3 PROBLEM DESCRIPTION 7
3.1 QUESTIONS 7
3.2 METHOD 8

4 DETAILED METHOD 9
4.1 INPUT GENERATORS 9
4.2 TERMINATION TIME TEST 9
4.3 INPUT GENERATOR PERFORMANCE TEST 10
4.4 MUTATION TESTING 10

5 SETUP 12
5.1 PROGRAM FLOW OVERVIEW 12
5.2 CHOOSING THE MIDLETS 12
5.3 PREPARING THE MIDLETS 14
5.4 THE PHONE 16
5.5 INPUT GENERATOR PARAMETERS 16

6 RESULTS 18
6.1 TERMINATION TEST 18
6.2 INPUT GENERATOR PERFORMANCE TEST 19
6.2.1 CODE COVERAGE GRAPHS 19
6.2.2 AVERAGE RUN TIME GRAPH 21
6.2.3 BOX PLOTS 21
6.2.4 GRAPH ANALYSIS 24
6.2.5 FACTORIAL DESIGN 25
6.3 MUTATION TESTING 28

7 DISCUSSION 29

8 CONCLUSIONS AND FUTURE WORK 31

REFERENCES 32

APPENDIX A: CODE COVERAGE END VALUES 34

Automated platform testing using input generation and code coverage

Introduction Page 1

1 Introduction
Sony Ericsson, as other companies, has a Java platform implemented in their mobile

phones. This is used to run various applications with games as the most common type.

When a new version of a platform is released it is important to thoroughly test it since

a lot of the phone’s functionality requires a working Java platform. Today a lot of the

testing is fully or partly automated, such as function testing and performance testing.

But another important aspect is stability which is currently tested by manually running

games and other applications. This is of course not ideal as it is expensive and rather

slow; running applications takes a large amount of time. This is why it would be good

to automate this process and be able to run long over night tests.

There is much literature written about how to test the functionality of Java platforms

and to see that everything works according to specifications [5],[6]. However there is

very little written about how to test quality attributes such as stability.

This report describes an approach to stress testing a Java platform on a mobile phone

using third party applications running automatically. The focus is on how to run the

applications in a way that tests the most of the Java platform in as little time as

possible. To achieve this, different problems have been examined including input

generation, variation across applications and coverage measures.

In this report it is first described what has been done in this field and a few key

theories that are applied and what potential problems follow them, see Section 2.

Then the main questions that this report will try to answer are presented followed by a

detailed description of the approach taken to answer them, see Section 3 and Section 4.

In Section 5 it is described more in detail about the specific test setup used. At the end

of the report all results from the tests run are presented as well as a factorial design

analysis, see Section 6. In Section 7 there is a discussion about the results and a

recommendation is given to Sony Ericsson. Lastly, in Section 8, it is presented which

conclusions can be made and where it would be interesting to continue on the work

done in this thesis.

Automated platform testing using input generation and code coverage

Background Page 2

2 Background

2.1 MIDlets, Java programs on a mobile phone

Many mobile phones can today run third party applications, for example games. To

do this in a smooth way, the phones have a Java platform able to run Java programs

made in the Java Micro Edition (Java ME) version. For a more elaborate description

of Java ME refer to Suns webpage [1]. This Java version has been specifically made

with mobile devices in mind. As with other versions of Java, applications created will

be able to run on every mobile phone that has implemented a Java ME runtime

environment.

A Java ME environment is made up of two different parts. The first part contains the

basic components to make a virtual machine possible and is called Connected Limited

Device Configuration (CLDC) [2]. On top of the CLDC it is possible to add a profile

which in the case for most mobile devices with displays is the Mobile Information

Device Profile (MIDP) [3]. Applications that conform to the MIDP specification are

called MIDlets.

Figure 1 shows the different layers of the phone. It starts with the MIDlet layer,

second is a Java ME layer and third a native layer, down to the hardware. The purpose

of the native layer is to connect the high level Java with the hardware.

Figure 1: Layers of the phone.

2.2 Commercial Java programs

When compiling a Java program the compiler does not generate machine code;

instead it generates bytecode that a virtual machine can understand. In the bytecode a

lot of information can be preserved to enable debugging and code analysis, for

example finding bottlenecks. The information preserved is for example references to

source lines, unused variables and the same name of classes, methods and variables as

in the source code. All this information makes it very easy to decompile a Java

program, reverse engineer bytecode to source code.

If a Java program is commercial and is sold to a number of different customers it is

often not wanted that anyone except the owner are able to decompile the program and

do their own modifications and potentially call it their own.

Automated platform testing using input generation and code coverage

Background Page 3

To prevent decompiling of commercial Java programs there are two actions to be

taken. First and most easily done is to compile the code without debug information;

this will for example remove source line references and unused variables. Secondly an

obfuscator can be used on the compiled code. An obfuscator takes bytecode and alters

as much information as possible to reduce readability without altering the behaviour

of the program. It can also change names of classes, methods and variables and the

structure of the code in ways that are not accepted by the standard Java compiler but

are accepted by the virtual machine. So if you try to decompile the obfuscated code

you will get code that is not possible to recompile without some work. [4]

2.3 Testing a Java platform

There has already been work done on how to test different aspects of a Java platform

on a mobile phone. A technique that is close to this thesis work is to create specific

MIDlets which stress tests a certain function of a Java ME platform to make sure it

works properly [5]. This technique is aimed at testing one function at the time

whereas the method presented in this thesis is focused on testing the entire platform at

once. However both methods use MIDlets to test functions of the layers below, see

Figure 1. When studying this test technique one problem emerges, the problem of not

knowing what is actually being tested, the test MIDlet or the platform.

There has also been work done in testing the performance of a Java ME platform by a

similar approach and that is to produce benchmark MIDlets, for example JBenchmark

[6] that focuses on graphics and gaming. These MIDlets use functions that are

performance critical and do time measurements of how long a function or a sequence

of functions take to execute. This approach is mainly usable to compare different

platforms or compare versions of a platform to see if the performance has increased or

decreased.

2.4 Creating test cases

When creating tests for a program it is quickly discovered that it is not possibly to test

every possible use case, for example a method taking a 32-bit number as argument

has 2
32

 possible inputs. Not being able to test everything means there is a need to

choose wisely how to create the test cases. There are two different view points for test

cases, black box [7](pp. 61-88) and white box [7](pp. 97-127).

2.4.1 Black box

When doing black box testing the tests are created in a manner where the actual

structure of the tested software is ignored, only the input and output is considered.

When constructing these types of tests a specification is used to find out what the

possible inputs are and what the expected outputs should be. When selecting which of

the possible inputs should be used for the tests there are a number of different

methods. The easiest way is to randomly select a number of possible inputs; there are

many thoughts on if this is a good or bad way to choose inputs, for example [8]. A

more structured way to choose inputs is to create equivalence classes within the

possible inputs. These classes are groups of inputs for which the same behaviour from

the software is expected which means only one input from each class needs to be

Automated platform testing using input generation and code coverage

Background Page 4

tested. A method that is similar to equivalence classes is boundary value analysis. In

this method the inputs that are in the boundary of the equivalence classes are tested as

these values more often cause problems for the software than inputs in the middle of a

class.

When using COTS (Commercial of-the-shelf) components, these need testing as well

and most of the time the source code is not provided so this testing will always be

black box testing. When testing COTS, it is often good to test the most commonly

used features the most. How the program is used in a live environment is called its

operational profile, this is created by watching the product being used or with

knowledge about how the product is used. It has been proposed that using it to create

test cases is an efficient way to get good reliability in the software by only running a

rather small amount of tests [9].

2.4.2 White box

The difference between black box and white box testing is that in white box testing

the internal structure of the program is known, that means that the source code is

available. This has a lot of benefits and results in several new ways of testing it.

The goal with white box testing is to be certain that the internal components are

working as they should. This can for example result in test cases being created to

make sure all branches are executed. When testing with a white box approach it is

needed to have some sort of framework that tells you which elements to focus on,

what test data to choose and when you have tested enough. Such a framework is

called test adequacy criteria.

Black box testing can be started as soon as something primitive is created as long as

the input-output is the same. White box testing often starts a lot later in the process

because of the close relationship with the actual source code. It is very important to

notice that it is not a question of choosing one of the approaches when you start to test,

but instead use both because they complement each other and can be used at different

times.

There are some different test evaluation methods you can apply when testing with a

white box approach, two of the main techniques are code coverage, see Section 2.5.1,

and mutation testing, see Section 2.5.2.

2.5 Evaluating tests

To automatically test a program it is not enough to just write tests for it. It is also

needed to make sure the tests can be trusted by evaluating how thoroughly the tests

actually test the program. For example, all parts of the program need to be tested and

all possible use scenarios should be tested. Since even small programs can be used in

an almost endless number of ways it is not possible to test every possible scenario

[10]. Instead there should be test cases that cover them good enough. To know if the

test cases do cover them well enough there are a number of different techniques that

can be used depending on the situation of which two are described below.

Automated platform testing using input generation and code coverage

Background Page 5

2.5.1 Code coverage

A common way to evaluate tests is to measure code coverage [11]. Code coverage

means that the tests are run and the percentage of source code executed during the run

is measured. There are many different elements in the code that can be covered,

methods, source lines, branches or statements are some common elements. If the

coverage percentage is high, it indicates that the test suite exercises most of the

program but if it is low, there are parts of the program that are not tested thoroughly

enough or not at all.

On the surface, code coverage seems to be all that is needed to evaluate the tests but

many studies have shown that a good code coverage value does not mean the tests are

good enough [10],[12]. This is due to the fact that just because some code has been

run without it crashing does not mean it will not crash the next time it is run. There

might be specific input values or states of a class that make the code crash.

Figure 2 shows the structure of a code snippet with an if-statement and two branches.

Assume that the if-statement always fires the left branch in the executed test cases,

then the code coverage when counting the branches will be 50%. A statement code

coverage will reach 4/5, 80% with the same execution.

Figure 2: Code structure.

2.5.2 Mutation testing

Mutation testing is an evaluation method that injects faults in the source code, called

mutants. These mutants can be anything from changed variables to changed operators,

for example “>” to “<=”.

A large amount of variants of the source code is produced with one or more mutations

in each variant. Then the test cases are run to see which mutations can be found and

which can not. If all mutations are detected the test cases are good. If most of the

mutations go by undetected, more or better test cases should be written. [7](pp. 116-

118)

Automated platform testing using input generation and code coverage

Background Page 6

There are many things to think about when mutating code, for instance if the

behaviour is actually changed, for example changing x/y to x*y when y=1 or y=-1

does not alter the behaviour. If there is a mutation that does not change the behaviour

of the code the results will show it as if the tests failed to detect it, when in fact it is

impossible to detect the mutation. This will give an incorrect rating of the test cases. It

is also important to make sure the code compiles after the source code has been

mutated since it is needed to run the code through the tests. There are some mutation

tools which uses compiled code, for example Jumble [13].

2.6 Communication between computer and phone

Controlling a phone from a computer can be done in a few different ways but the

easiest is done by connecting the phone to a computer with an USB cable. Then an

Attention (AT) connection is established between the program running on the

computer and the phone. When this is done AT commands can be sent to the phone

[14], these can be anything from “Start MIDlet X” to “Press key 1”. When controlling

a phone in this way it is important to realize that commands can be sent very fast from

the computer but the phone might need a while to process the command. If commands

are sent faster than they can be processed they will be put in a queue until the queue

overflows.

To be able to access the phone’s file system to transfer and delete files for example,

an Object Exchange (OBEX) connection is needed [15]. OBEX is a protocol used by

many different portable devices to exchange data in a simple way.

When running a MIDlet on the phone it is done according to Figure 3. First the

MIDlet is transferred using the OBEX connection ○1 . Once the MIDlet is on the

phone it is installed and started by sending AT-commands to the phone ○2 . When the

MIDlet is running, input can be given with AT-commands simulating key presses,

also debug info is sent from the phone to the computer ○3 .

Figure 3: Communication between computer and phone.

Automated platform testing using input generation and code coverage

Problem description Page 7

3 Problem description

3.1 Questions

The problems involved in this master thesis are about how to use third party

applications with no access to source code to test the stability of a platform. The

testing should be as effective as possible and test as much of the platform as possible

in as little time as possible.

There are three main issues to investigate.

RQ1. How can we give good input, in the form of key presses, to the

applications running on the platform?

Is it good enough to give random input or do we need to

implement some sort of intelligence? An option that would

probably be successful is to write specific instructions on how to

control each application. In this thesis we want to enable

controlling applications in a general way and will not investigate

this option.

RQ2. How do we know when to quit an application?

Each application only has a certain amount of code and can only

exercise the platform to a certain extent. After a while it will be a

waste of time to try to find more to explore as it will be too little

new things found each second.

RQ3. Is code coverage a good way to measure fault detection

capabilities in this specific case?

As discussed in 2.5.1 code coverage might not be a very good

way to measure how good a test suite is. It was decided to use

code coverage to measure how good the input generators are, so

we need to investigate what a good code coverage value actually

means in this particular case.

Automated platform testing using input generation and code coverage

Problem description Page 8

3.2 Method

To answer the questions in Section 3.1 the following steps are taken.

1. Develop a prototype test tool. An overview of the program can be seen in

Section 5.1.

2. Select a number of commercial MIDlet games with as different control

systems as possible. The criteria used can be found in Section 5.2.

3. Develop a set of input generators with different characteristics. The input

generators are described in detail in Section 4.1.

4. Run tests to see when the increase of code coverage is very low or stops to

determine when to terminate the application. The test is described in Section

4.2.

5. Run tests to determine the performance, described in Table 1, for each input

generator. The test is described in Section 4.3.

6. Run tests to validate the use of code coverage by comparing code coverage

with mutation testing. The test is described in Section 4.4.

When evaluating which input generator should be used there will be a number of

criteria used described in Table 1. Since it is also important to see which benefits and

drawbacks that can be observed compared to the current manual solution some criteria

that only differs between manual and automated input generation will be used in the

evaluation as well, these are cost, scalability and applicability.

Table 1: Description of the evaluation criteria.

Criteria Description

Performance
Average code coverage value an input generator is able to

reach

Portability
The amount of work needed to make the input generator work

with a different phone and possibly different types of games.

Run speed

The input generation method might require additional

information from the phone that will decrease the performance

of the phone and thus reduce the run speed of the application.

Cost Cost to run a test.

Scalability
How the cost scales when running multiple tests at the same

time.

Applicability
The type of applications the input generation method can

handle.

Automated platform testing using input generation and code coverage

Detailed method Page 9

4 Detailed method

4.1 Input generators

For the tests five different input generators were used, described below. Exact settings

for the different input generators are described under Section 5.5.

Manual

This is not an automated input generator but instead a person running the same

programs as the automated variants. The person tries to achieve as high code coverage

by exploring as much of the MIDlet as possible. This approach will of course not be

used in the final solution but will be used as a reference value to what is used at the

moment.

Random

This input generator looks at all the keys available and selects the next key to push

randomly.

Startup random

This input generator has a predefined startup sequence that is used to try to get the

game to start by clicking the specific keys defined in Section 5.5. After the startup

sequence is done the input generation is performed in the same way as for the random

input generator.

Adaptive

This input generator is programmed to have some adaptive behaviour, based on

feedback from the debug information. It does this by having a number of predefined

key sets where a key set is a subset of all the keys to choose from. When the input

generator selects the next key to push, it selects a random key from within the current

key set. When the program is running the generator observes code coverage change

and if it is below a threshold it changes key set. Key sets also have a predefined

minimum number of key presses before the generator should change key set to

prevent the input generator from changing key sets too often. A maximum value is

also defined to prevent unwanted behaviour.

Startup adaptive

This input generator works in the same way as the adaptive input generator but has a

predefined startup sequence. The startup sequence is exactly the same as the startup

random input generator uses.

4.2 Termination time test

The first test runs were made to determine how long it is reasonable to run the

applications and still get some increase in code coverage. The run time for each

application was set to 20 minutes as it was thought to be long enough. All four input

generators were run on all ten applications. This test corresponds to step 4 in Section

3.2. The result from this test is presented in Section 6.1.

Automated platform testing using input generation and code coverage

Detailed method Page 10

4.3 Input generator performance test

This test was divided into two test batches. First all input generators were run on all

applications to get a good overview of the performance of the input generators.

Having dedicated two weeks to the first test batch and wanting as much confidence as

possible in the results, it was decided to run each input generator 20 times on each

application. The time each application should be run was decided by the termination

time test described in Section 4.2.

To see if there were any statistically significant difference between the different input

generators the method of factorial design [16] was used on the end code coverage

values, see Section 6.2.5.

After analysing the results from the first test batch, see Section 6.2.5, it was decided

that there was a need to get more confident results on the difference between the two

best performing input generators, startup adaptive and startup random. For this second

test batch, one week was dedicated and on this time an additional 30 runs were done.

To have a reference value to the current practice with manual testing there were also

four runs with manual input generation done for each application. The manual input

generation was done by the authors.

This test corresponds to step 5 in Section 3.2. The results from this test are presented

in Section 6.2.

4.4 Mutation testing

To validate if the code coverage values are a good measure of how good an input

generator tests the platform, mutation testing was used on the application. This makes

sure that the applications are explored in a good way and, in the end if it uses the

application to its full potential to exercise the platform.

As before there was no access to the application source code and the mutations had to

be done on bytecode level. To do mutation testing you need to know if the mutation

was detected or not. The way this is normally done is by looking at the output, but the

way it was done in this thesis was by looking at exceptions thrown by the MIDlet.

First the application was run a number of times without any mutations to see which

exceptions were to be expected and not caused by a mutation, then 50 variants of the

application were created with one mutation in each. All mutated variants were run for

the time decided in the termination test, described in Section 4.2, and the exceptions

thrown were recorded.

The mutations were done on bytecode level and the possible mutations are described

below.

Automated platform testing using input generation and code coverage

Detailed method Page 11

Mutations of conditional instructions were done according to Table 2.

Table 2: Mutations of conditional instructions

Before mutation After mutation

IFEQ IFNE

IFNE IFEQ

IFNULL IFNONNULL

IFNONNULL IFNULL

Mutations of calculation instructions for integer, long, float and double values were

done according to Table 3.

Table 3: Mutations of calculation instructions

Before mutation After mutation

Add (+) Sub (-)

Sub (-) Add (+)

Mul (*) Div (/)

Div (/) Mul (*)

This test corresponds to step 6 in Section 3.2. The results from this test are described

in Section 6.3.

Automated platform testing using input generation and code coverage

Setup Page 12

5 Setup

5.1 Program flow overview

For step 1 in Section 3.2 a test tool was developed and it consists of several

distinguished states. The transitions between the different states are shown in Figure 4.

To be able to give an overview of the tool the different states are described below.

 Modify the MIDlet(s): Prepares the MIDlets so it will be able to generate the

information needed, see Section 5.3. For the mutation testing the mutations

were done in this state as well.

 Transfer, install and start MIDlet: Makes the phone ready to run the MIDlet

and start it.

 Generate input: Generate a new input to the phone by using an input

generator, see Section 4.1.

 Calculate Code Coverage: Reads the received debug information from the

phone and calculates code coverage values.

 Save information: Saves different kinds of information for report and re-

creation purposes.

 Stop, uninstall and delete MIDlet: Stops the MIDlet on the phone and makes

the phone go back into original state ready to receive a new MIDlet.

 Print report: Print different kinds of reports into text files.

Figure 4: Program flow

5.2 Choosing the MIDlets

For step 2 in Section 3.2 it was decided only to use games for the tests, for two main

reasons. Firstly games are by far the most commonly downloaded type of MIDlet.

Secondly games are rather easy to control as they usually do not need to connect to

the internet and log in, they do not need text input and the menus are rather similar.

Automated platform testing using input generation and code coverage

Setup Page 13

Before choosing the games an important issue is to determine how many games that

should be included in the test suite. Variables taken into account were the number of

ways to control the game, different types of games and that the total test time should

be reasonably long. It all landed in ten different games.

However there are a lot of different games to choose from, around 2000 available to

Sony Ericsson for use in this thesis, so it needs to be narrowed down to a lot fewer.

There are many ways to figure out which games should be run. Randomly selecting is

the easiest way and could prove to be good enough but it was decided to use a

different method to make sure games with different characteristics would be

represented.

To select the specific games the ideal would be to analyze all 2000 games and write

down their characteristics and then take decisions based on these. As this was not

feasible due to the number of games, the games were chosen on more subjective

grounds. We looked at what groups of games we could find and then chose one to

represent each group. The games chosen are presented in Table 4, and below is also a

short description of the characteristics of each game.

Table 4: List of the games chosen as well as a link to where the game is described in more detail

(accessed 18 dec 2008).

Game Website

3D Need For Drift www.falconmobile.com/games.html

NHL 5 on 5 2007
www.1up.com/do/gameOverview?cId=3

156264

Pro Golf 2007
www.gameloft.com/mobile-games/pro-

golf-2007-feat-vijay-singh/

Karpov 2
www.microforuminternational.com/gam

es_Board_karpov3dadvancedChess.html

Tetris Pop
www.eamobile.com/Web/mobile-

game/tetris-pop

Indiana Jones and the Kingdom of the Crystal Skull
http://us.thqwireless.com/category.html?i

d=602

Cooking Mama
www.eamobile.com/Web/UK/en/mobile-

games/cooking-mama

Virtua Fighter Mobile 3D www.southend.se/games/index.php

Prehistoric Tribes
www.pocketgamer.co.uk/review.asp?c=6

424&sec=0

AMA IQ Booster
www.pocketgamer.co.uk/r/Mobile/AMA

+IQ+Booster/review.asp?c=3453

 3D Need For Drift is a car game where the car auto accelerates and you only

have to steer the car.

 NHL represents a classic hockey or football game where you can control all

players and you pass and shoot the puck or ball. You can move your player in

any direction.

 Pro Golf is a golf game where you aim with the joystick and then press a key

twice to determine the power of the stroke.

 Many games goes under board game category, this is represented by the chess

game Karpov 2.

Automated platform testing using input generation and code coverage

Setup Page 14

 Tetris Pop is a classic Tetris game where the blocks fall automatically and you

only have to rotate and move the block.

 Indiana Jones is an adventure, platform game where you move your player

horizontally and can make him jump by pressing upwards.

 Cooking Mama represents games with many smaller games added into it and

the controls are different depending on the mini game.

 Virtua Fighter is a 3D fighting game where you steer your player in three

dimensions and try to defeat your opponent by using different attacks.

 Prehistoric Tribes represents strategy games where you control a lot of units

and can move them anywhere and give them orders.

 IQ Booster is a sort of quiz game where you are given a question and different

answer alternatives.

5.3 Preparing the MIDlets

In this thesis it was decided to use code coverage as the method to determine how

good the tests perform. A problem to calculate code coverage on commercial Java

programs without access to the source code is that there is no debug information

available. Normally when you test Java programs you compile them with a debug flag,

which adds line number instructions to the bytecode that are used as reference to

source code lines. The tool used to calculate code coverage in this thesis needs these

instructions to work.

This led to an extension of the test tool to be able to inject bytecode into class files

inside a jar file. As it is not possible to know which bytecode lines corresponds to a

source code line it was decided to measure bytecode coverage rather than source code

coverage. When the MIDlet is running on the phone, the Java VM sends an event to

the test tool at every line number instruction. Because each event takes a while to

prepare and send you want to have as few line number instructions as possible while

still able to get an accurate result.

The bytecode injection is done according the following steps.

 A line number instruction with a unique number is added at the start of every

possible path the program can take.

 The weight of the line numbers is calculated by counting the number of

bytecode instructions the program is certain to execute after each line number

instruction.

 All the weights are saved in a file along with the total amount of line number

instructions and the total amount of bytecode instructions in the program.

 When the program is run it identifies which line number instruction was run

and looks up its weight in the file.

 The weights of the line number instructions run so far are summed up and

divided with the total number of bytecode instructions to get the current

bytecode coverage.

Automated platform testing using input generation and code coverage

Setup Page 15

An example of how the injection works is shown in Figure 5. The method “example”

is injected with a label and a line number at the start of the method, a line number

after the existing label and a label and line number after the if instruction. The code

has been modified to be a good example and does not have any useful functionality.

Injected rows are marked with a “!” at the start.

Original bytecode Bytecode after injection
 // access flags 17
 public final example()V
 FRAME FULL [] []
 ALOAD 0
 GETFIELD h.f : Z
 IFNE L0
 RETURN
 L0 (6)
 RETURN

 MAXSTACK = 3
 MAXLOCALS = 3

 // access flags 17
 public final example()V
! L0 (0)
! LINENUMBER 1 L0
 FRAME FULL [] []
 ALOAD 0
 GETFIELD h.f : Z
 IFNE L2
! L1 (5)
! LINENUMBER 2 L1
 RETURN
 L2 (6)
! LINENUMBER 3 L2
 RETURN

 MAXSTACK = 3
 MAXLOCALS = 3

Figure 5: Bytecode injection example.

The total number of bytecode instructions for his method is six (6) and the weights for

the injected line number instructions are listed in Table 5.

Table 5: Line number weights for the method “example”.

Line number Weight

1 4

2 1

3 1

If line numbers 1 and 3 have been run the code coverage value would be:

 (4 + 1)/6 = 0.8333

The code coverage values presented in Section 6 are not actual source code coverage

but bytecode coverage of the generated source line references. This measure does not

take into account if an exception is thrown in the middle of a statement and always

assumes it was successfully run.

Automated platform testing using input generation and code coverage

Setup Page 16

5.4 The phone

All tests are done on physical phones of the model Sony Ericsson C905, shown in

Figure 6. The phone used has the following key setup:

 Soft key 1 and Soft key 2.

 Joystick up, down, left, right and middle key.

 C-key.

 Numpad: 0-9, * and #.

 Green, red and switch window key.

 Volume up and down.

 Camera keys.

Figure 6: Key mapping on the C905

5.5 Input generator parameters

All input generators have access to all keys except the green, red, switch window and

camera keys. These are not used since they can not (to our knowledge) be used by an

application.

The time between each key press is 5 seconds. This time corresponds to

approximately one key press every second when running in normal mode, but the

MIDlets are run in debug mode, which makes the phone send events when certain

bytecode instructions are encountered. Debug mode reduces performance and the time

set is to compensate for it.

To allow the MIDlet to fully load before the generator starts pushing keys there is a

20 second pause after sending the start command to the phone.

Automated platform testing using input generation and code coverage

Setup Page 17

Key sets

Each key set has specific keys available and also a minimum number of times it must

press these keys before it is allowed to change to another key set. There is also a

maximum amount of times allowed to press keys from the same key set. When it is

time to change to another key set the generator pick one of the other two at random.

The key sets used are described in Table 6.

Table 6: Properties for the key sets

The code coverage threshold for changing key set is set to 0.2% increase over 20

seconds.

Startup sequence

The startup sequence is a static sequence that is the same for every game. The

sequence is derived from our best knowledge with the purpose of getting through the

menus often found in MIDlet games and gets the game started, and it is defined as:

1. Soft key 1

2. Joystick middle key

3. Joystick middle key

4. Soft key 1

5. Numpad 5

6. Joystick middle key

7. Soft key 1

8. Joystick middle key

9. Joystick middle key

 Joystick Soft keys Numpad

Keys
Joystick left, right, up,

down and middle key
Soft key 1 and Soft key 2 0-9, *, #

Min presses 10 2 5

Max presses 50 2 30

Automated platform testing using input generation and code coverage

Results Page 18

6 Results

6.1 Termination test

In the termination test described in Section 4.2, 20 minute runs were done on all

games and the average of all these runs is shown in Figure 7.

When looking at the results the increase in code coverage after 10 minutes is very

slow. To have a safety buffer it was decided to set the time for each run in the input

generator performance test to 15 minutes.

Figure 7: 20 min test, average of all apps on all generators

Automated platform testing using input generation and code coverage

Results Page 19

6.2 Input generator performance test

These results come from the test described in Section 4.3, 20 runs on each application

for the random and adaptive input generators, 50 runs for the startup random and

startup adaptive input generators and 4 runs for the manual input generation. Each run

is set to last 15 minutes. All code coverage end values for the runs in this test suite

can be found in Appendix A.

6.2.1 Code coverage graphs

Figure 8-Figure 10 shows the code coverage over time for all four input generators

and the manual reference value. If an input generator manages to quit the application

before the 15 minutes are over it is considered to keep the end value for the remainder

of the time.

Figure 8 shows the average for the entire test. It can be seen that the two input

generators with startup sequence performs a lot better than the other two in the

beginning. When looking at the end of the graph, all input generators land in an

interval of around ten percentage points. It can also be seen that the startup adaptive

performs best, followed by startup random, adaptive on third place and random last.

As seen in the graph the manual input generation performs much better than the

automated input generators.

Figure 9 shows the normal case for the average code coverage for a single game. The

two input generators with a startup sequence perform better than the ones without.

Figure 10 shows a special case where the two input generators using adaptivity

performs better than the random input generators.

Figure 8: Average for all runs for all input generators.

Automated platform testing using input generation and code coverage

Results Page 20

Figure 9: Average for Prehistoric Tribes

Figure 10: Average for Virtua Fighter Mobile 3D

Automated platform testing using input generation and code coverage

Results Page 21

6.2.2 Average run time graph

Figure 11 shows the average run time for each input generator for every game. All

runs were set to last 15 minutes but the input generators sometimes managed to quit

the game which results in shorter runs. For example it can be seen that the input

generators often tends to quit Indiana Jones early but they almost always run NHL for

the full 15 minutes.

Figure 11: Average run time.

6.2.3 Box plots

Figure 12-Figure 21 shows the box plots [17] for each of the ten games tested. These

box plots are created out of the tests end values found in Appendix A. The box plots

shows the median value with the black line inside the box, the grey box shows 25% of

the values above and below the median and the black lines outside the grey box show

the maximum and minimum values. This means that if the box is big, the end results

of the input generator have a big spread and if the box is small the input generator

mostly gets to the same result.

Automated platform testing using input generation and code coverage

Results Page 22

Figure 12: 3D Need For Drift, adaptive and

random has a large spread and lower medians.

Figure 13: AMA IQ Booster, all four has small

spread and similair median.

Figure 14: Cooking Mama, all four rather similar.

Figure 15: Indiana Jones and the

Kingdom of the Crystal Skull, all four has similar

medians, random has many runs with lower end

values

Automated platform testing using input generation and code coverage

Results Page 23

Figure 16: Karpov 2, random is not as good as

the others.

Figure 17: NHL 5 on 5 2007, all four are similar.

Figure 18: Prehistoric Tribes, both with startup

are much better than the two without.

Figure 19: Pro Golf 2007, all four are similar.

Automated platform testing using input generation and code coverage

Results Page 24

Figure 20: Tetris Pop, all four are similar but the

startup adaptive has a very small deviation.

Figure 21: Virtua Fighter Mobile 3D, the two

with adaptive behaviour are much better than the

two random.

6.2.4 Graph analysis

From the graphs it can be seen that there are different reasons for low average code

coverage values.

In Prehistoric Tribes for example the reason the adaptive and random input generators

give low average code coverage, see Figure 9 and Figure 18, is because the average

run time is low, see Figure 11. Low average run time is caused by poor input

generation that quits the application early rather than explores the application as much

as possible.

Another reason for low code coverage values is when the input generator manages to

keep the application running but is unable to explore it in a good way. For example

this is the case for startup random and random input generators in Virtua Fighter, see

Figure 10, Figure 11 and Figure 21.

Automated platform testing using input generation and code coverage

Results Page 25

6.2.5 Factorial design

Doing factorial design [16] over all the end values from the input generator

performance test, described in Section 4.3, gives the following results. The actual

calculations were made automatically and only the results are presented here.

First the calculations were made on the initial 20 runs with each of the four automated

input generators, the values can be found in Appendix A. The results from these

calculations are presented in Table 7.

Table 7: All four input generators, ten applications and 20 runs on each application.

Source of

Variation

Sum of

Squares

Degrees of

Freedom

Mean

Square F0 P-Value

Application 171224.74705 9 19024.97189 178.52880 << 0.01

Input Generator 11343.00636 3 3781.00212 35.48062 < 0.01

Interaction 14650.13915 27 542.59775 5.09169 < 0.01

Error 80989.61259 760 106.56528

Total 278207.50515 799

Lookup in the F-table gives:

F0.01,9,760 = 2.41

F0.01,3,760 = 3.78

F0.01,27,760 = 1.79

As all F0 values are larger than the F-values gotten from the F-table, it can be

concluded that there are, with more than 99% probability, significant differences

between all three factors. This means that the code coverage values depend on which

applications are run, which input generator is used and also the combination of

application and input generator. Further calculations needs to be made to determine in

what way they make an impact. Since the interaction is significant there is a need to

compare the input generators for each application individually to get a proper result.

The comparison between all the input generators is presented in Table 8. The values

are the average code coverage value of the first input generator for the specific

application subtracted by the average code coverage value of the second input

generator. If the absolute value of the result is above a threshold there is, with 95%

probability, a significant difference. The threshold is:

 T0.05 = 8.37914

Automated platform testing using input generation and code coverage

Results Page 26

Table 8: Comparison of all input generators over all applications. Yellow colour means no significant

difference, blue colour means the input generator presented on top is significantly better and orange

colour means the input generator presented on the bottom is significantly better.

 Startup

adaptive

Startup

adaptive

Startup

adaptive

Startup

random

Startup

random
Adaptive

vs vs vs vs vs vs

Startup

random
Adaptive Random Adaptive Random Random

3D Need for Drift -0.79498 18.48753 20.0617 19.28251 20.85668 1.57418

AMA IQ Booster 1.54873 2.44268 4.02541 0.89395 2.47668 1.58273

Cooking Mama 0.96042 2.27392 4.79169 1.3135 3.83127 2.51777

Indiana Jones … 3.07457 1.9579 14.55424 -1.11666 11.47968 12.59634

Karpov 2 1.66703 4.13777 18.64421 2.47074 16.97717 14.50643

NHL 5 on 5 2007 2.36675 6.69706 6.1166 4.33032 3.74985 -0.58046

Prehistoric Tribes 0.47035 15.36457 18.61958 14.89422 18.14923 3.255

Pro Golf 2007 4.5725 0.06999 0.89066 -4.50252 -3.68184 0.82067

Tetris Pop 1.20505 2.97884 2.81123 1.77379 1.60618 -0.16761

Virtua Fighter Mobile 3D 16.00768 0.32459 12.60406 -15.68309 -3.40362 12.27947

 No difference First is better Second is better

In Table 8 four different cases can be observed.

Case 1: For 3D Need For Drift and Prehistoric Tribes the significant

difference is between the two input generators with the startup

sequence and the two without.

Case 2: For Indiana Jones and Karpov 2 the random input generator is

significantly worse than the other three input generators.

Case 3: For Virtua Fighter Mobile 3D the two input generators with adaptive

behaviour are significantly better than the two random.

Case 4: For the rest of the games there is no significant difference between

the input generators at all.

To be able to make a better distinction between the two highest performing input

generation methods an additional 30 runs on each of the ten applications were made.

The results from calculations with these additional runs are presented in Table 9.

Games

Input generators

Automated platform testing using input generation and code coverage

Results Page 27

Table 9: Two input generators with startup sequence, ten applications and 50 runs on each application.

Source of

Variation

Sum of

Squares

Degrees of

Freedom

Mean

Square F0 P-Value

Application 234694.25332 9 26077.13926 477.60789 << 0.01

Input Generator 2347.12281 1 2347.12281 42.98801 < 0.01

Interaction 6320.37493 9 702.26388 12.86210 < 0.01

Error 53507.48355 980 54.59947

Total 296869.23461 999

Lookup in the F-table gives:

F0.01,9,980 = 2.41

F0.01,1,980 = 6.63

F0.01,9,980 = 2.41

As all F0 values are larger than the F-values gotten from the F-table, it can be

concluded that there are, with more than 99% probability, significant differences

between all three factors. This means that the code coverage values depend on which

applications are run, which input generator is used and also the combination of

application and input generator. Further calculations needs to be made to determine in

what way they make an impact. Since the interaction is significant there is a need to

compare the input generators for each application individually to get a proper result.

The comparison between the two startup input generators is presented in Table 9. The

values are the average code coverage value of the first input generator for the specific

application subtracted by the average code coverage value of the second input

generator. If the absolute value of the result is above a threshold there is, with 95%

probability, a significant different. The threshold is:

 T0.05 = 2.89460

Automated platform testing using input generation and code coverage

Results Page 28

Table 10: Comparison of two input generators over all applications. Yellow colour means no

significant difference, blue colour means the input generator presented on top is significantly better and

orange colour means the input generator presented on the bottom is significantly better. Notice that in

this table startup adaptive always is better then startup random and therefore there are no orange

markers.

 Startup

adaptive

vs

Startup

random

3D Need for Drift -0.55839

AMA IQ Booster 1.70335

Cooking Mama 0.75501

Indiana Jones … 2.97028

Karpov 2 1.07657

NHL 5 on 5 2007 0.99872

Prehistoric Tribes 0.36425

Pro Golf 2007 2.41152

Tetris Pop 3.13913

Virtua Fighter Mobile 3D 17.7802

 No difference First is better Second is better (no occurrence)

In Table 10 it can be seen that the startup adaptive performs better in three games and

that there is no significant difference in the other seven. This means that the startup

adaptive input generator is proved significantly better than startup random on two

additional games compared to Table 8.

6.3 Mutation testing

These results come from the mutation testing described in Section 4.4. From the 50

variants made, only three can be definitely said to be found by the tests. Code

coverage values achieved from the test runs are around 50-60 percent, which means at

most 50-60 percent of the mutations can be found. Hence the conclusions that can be

made from this test are none. It is too hard to determine if a mutation has been found

simply by looking at exceptions when it is not known if the mutation can produce an

exception. As seen in Section 4.4 normal calculations are mutated, this could mean an

“Index out of bounds” exception will be produced but it could also mean that a

character in the game moves to the left instead of to the right and since this does not

throw any exception it will not be detected.

Games

Input generators

Automated platform testing using input generation and code coverage

Discussion Page 29

7 Discussion
To answer RQ1 in Section 3.1 the criteria presented in Section 3.2 needs to be

discussed.

Looking at the data you can see that there is a small difference between all the input

generators. Manual proves to give best performance by far, however the problem with

manual is as stated before that it is very costly and does not scale up in a good way,

double the test time and you also double the cost.

An important aspect when deciding which input generator to choose is what

performance loss you get when running in debug mode to get code coverage

calculations. Manual and random can be used without debug mode but adaptive input

generation requires code coverage. In our case the debug mode reduced the

performance in a significant way but this could very well differ depending on the

specific implementation and amount of information gathered in the debug mode.

When looking at the automated input generators we can see that the startup sequence

is the most important to get good code coverage value. The startup sequence has a big

flaw however that does not show in the results of these tests but that was noticed

when running other games. In one game tested the soft key usage was switched

compared to all other games which for our startup sequence meant that the game was

terminated as quickly as possible. This means that you have to check if the startup

sequence works for your selected applications in the intended manner.

When grouping the two input generators with startup sequence and the ones without

you can also see that the adaptive approach gives slightly higher code coverage values.

When looking at which input generator is easiest to port to different types of mobile

devices different problems can be observed. The fully random input generator is easy

to port, all you need to do is define all the keys you wish to be pressed and you are

done. The startup sequence will require you to find out if there is a sequence that

starts most applications and if so which that could be. When you move on to the

adaptive input generation you also need to define the key sets.

To sum it all up Table 11 presents all the pros and cons with each input generation

technique. For each criteria the position for each input generator is presented in

parenthesis, manual has no position as it is only included as reference.

Table 11: Criteria table, position in parenthesis.

Manual

(reference)
Random

Startup

random
Adaptive

Startup

adaptive

Performance Very good Very poor (4) Medium (2) Poor (3) Good (1)

Portability Good Good (1) Medium (2) Bad (3) Very bad (4)

Run speed Fast Fast (1) Fast (1) Slow (3) Slow (3)

Cost Expensive Cheap (1) Cheap (1) Cheap (1) Cheap (1)

Scalability Bad Good (1) Good (1) Good (1) Good (1)

Applicability Everything Games (1) Games (1) Games (1) Games (1)

Automated platform testing using input generation and code coverage

Discussion Page 30

In this thesis we have taken a rather easy solution to RQ2 in Section 3.1, when to stop

running an application. We said we always stop after 15 minutes. This could of course

be done in more advanced ways such as looking at code coverage change and when it

is below a certain threshold the application should be stopped. However if time is not

extremely critical it should be enough to have a constant run time.

We have not been successful in finding an answer to RQ3 in Section 3.1 in this thesis

since the mutation testing did not show what we had hoped.

Our recommendation for Sony Ericsson is to use the startup random input generator.

This input generator provides good results on most applications tested and does not

require the applications to be run in debug mode.

Automated platform testing using input generation and code coverage

Conclusions and future work Page 31

8 Conclusions and future work
Conclusions

As a conclusion to the questions presented in Section 3.1 you could say that for most

games it is most important to make sure they start up in a good way to get good code

coverage, in other words a good startup sequence is essential to receive good code

coverage values.

Depending on the performance of your system you would want to choose either the

random method or the adaptive. If the performance of the device drops a lot when

running in debug mode it is probably not worth running adaptive, however if the

performance stays more or less the same you should probably use the adaptive input

generation.

Future work

If there is the possibility to do modifications on the platform in an easy manner it

would be good to do the code coverage and mutation testing measurements on the

platform code rather than the MIDlet code as in this thesis.

An area that would probably work well to improve the input generation would be to

implement some sort of real AI, like Genetic Algorithms. This would save data from

each run of a certain application and for each additional run it would learn how to run

that application better and better. This approach was not included in our thesis as we

did not have time to implement it.

Another area not covered in this thesis that would be interesting to explore is to run

non-game applications with features like internet access and need for text input and

see how input generation performs in such environments.

Automated platform testing using input generation and code coverage

References Page 32

References
[1] http://java.sun.com/javame/index.jsp. [Accessed: Jan 19, 2009]

[2] http://java.sun.com/products/cldc/. [Accessed: Jan 19, 2009]

[3] http://java.sun.com/products/midp/. [Accessed: Jan 19, 2009]

[4] Collberg C., Thomborson C., Low D., “Manufacturing Cheap, Resilient, and

Stealthy Opaque Constructs,” In Principles of Programming Languages, 1998,

pp. 184-196.

[5] Mazlan, M.A., “Stress Test on J2ME Compatible Mobile Device,” Innovations

in Information Technology, 2006, pp. 1-5.

[6] http://www.jbenchmark.com/index.jsp. [Accessed Jan 19, 2009]

[7] Burnstein Ilene, Practical Software Testing: A Process-Oriented Approach.

Springer, 2003.

[8] Chen Tsong Yueh, Yu Yuen Tak, “On the expected number of failures detected

by subdomain testing and random testing,” IEEE Transactions on Software

Engineering, 1996, pp. 109-120.

[9] Musa J.D., “Operational profiles in software-reliability engineering,” IEEE

Software, 1993, pp. 14-32.

[10] Elaine J. Weyuker, “How to judge testing progress,” Information and Software

Technology, 2004, vol. 46, no. 5, pp. 323-328.

[11] Mark Fewster, Dorothy Graham, Software test automation: Effective use of test

execution tools. Addison-Wesley Professional, 1999, p. 509.

[12] Fabio Del Frate, et al, “On the correlation between code coverage and software

reliability,” Sixth International Symposium on Software Reliability Engineering,

1995, pp. 124-132.

[13] Irvine, S.A., et al, “Jumble Java Byte Code to Measure the Effectiveness of Unit

Tests,” Testing: Academic and Industrial Conference Practice and Research,

2007, pp. 169-175.

Automated platform testing using input generation and code coverage

References Page 33

[14] Sony Ericsson Mobile Communications AB, “Sony Ericsson AT Commands

Online Reference,” November 2008. [Online]. Available:

https://developer.sonyericsson.com/site/global/docstools/misc/p_misc.jsp

[Accessed: Jan 19, 2009]

[15] Object Exchange Protocol (IrOBEX). ver. 1.4, Infrared Data Association (IrDA),

Walnut Creek, CA [Online]. Available: http://www.irda.org [Accessed: Jan 19,

2009]

[16] Douglas C. Montgomery, Design and Analysis of Experiments, 5
th

 Ed. New

York: Wiley, 2001, pp. 170-183, 642-646.

[17] Blom G., et al, Sannolikhetsteori och statistikteori med tillämpningar.

Studentlitteratur, 2005.

Appendix A: Code coverage end values
Below are all the end code coverage values from the input generator performance tests

used in the calculations and graphs. For the two input generators with startup sequence

there are 30 additional runs for each application and to show which values are used in

the factorial design calculations those runs are presented under “Additional runs” in

each table.

Manual

3D Need for drift

71,08119 74,23033 76,18451 77,01941

AMA IQ Booster
67,098 70,04352 73,50781 77,02067

Cooking Mama
44,77504 44,87366 51,48673 51,87563

Indiana Jones and the Kingdom of the Crystal Skull
38,81674 40,01268 40,23919 40,45965

Karpov 2
58,23718 58,66781 62,51311 62,78916

NHL 5 on 5 2007
21,04316 29,74848 34,62748 50,26211

Prehistoric Tribes
36,39433 37,45374 40,20019 40,52483

Pro Golf 2007
44,47576 46,34849 48,19574 48,57316

Tetris Pop
30,78299 32,62182 32,70382 34,00219

Virtua Fighter Mobile 3D
66,88321 66,9702 67,0137 68,33703

Random

3D Need for drift

59.26738 62.47391 5.73993 6.56178 61.74859 4.59716 64.58203 49.64256 6.46264 4.62847

55.93822 53.75444 5.82864 67.03193 64.07326 5.41901 59.41348 61.61814 61.45638 59.13171

AMA IQ Booster
64.95492 66.36939 59.29315 65.94777 60.19468 60.96021 60.02176 60.60465 61.71602 59.70312

61.0865 61.1001 59.95959 63.52102 60.51916 64.5197 59.71672 60.71151 63.06637 61.12342

Cooking Mama
7.00197 14.63288 20.10532 22.58755 12.13018 18.66324 11.06955 7.0243 19.84667 17.53935

17.3142 11.20539 12.48 11.17562 18.55904 18.39716 14.65334 22.02188 18.57207 17.97477

Indiana Jones and the Kingdom of the Crystal Skull
21.29741 22.65946 4.19787 4.49082 4.6086 4.49384 20.78099 4.55726 21.69002 37.10739

21.37896 4.52102 20.4669 21.91955 21.17359 4.6237 21.4756 21.31252 21.536 4.6237

Karpov 2
16.23696 16.85806 17.27765 16.70899 19.14371 17.40739 16.82769 20.41904 24.75846 17.36046

40.49026 20.12367 39.41092 36.04041 16.60686 15.80633 35.67879 15.8643 34.56909 16.12378

NHL 5 on 5 2007
25.49748 14.04819 39.83055 24.00212 10.92295 40.07307 36.5274 15.58591 14.17951 23.10405

35.09981 40.62166 36.43421 13.97723 35.92269 22.48769 22.74504 13.08764 9.72518 8.90972

Prehistoric Tribes
6.31533 14.91072 7.42127 7.87036 6.31858 6.32832 29.5823 6.33157 7.67558 6.29802

6.37377 8.63868 8.03484 29.552 8.57591 27.51109 8.66898 6.33698 7.83032 7.34553

Pro Golf 2007
34.04516 32.84604 31.70903 31.97974 33.54513 34.45124 31.87942 12.6266 34.01172 32.58329

30.98287 33.21231 33.39225 27.87757 13.22696 14.72705 12.41799 32.02752 33.81266 10.84942

Tetris Pop
22.70333 22.77042 23.90105 32.6181 15.61514 15.08585 23.18043 32.81937 16.37303 23.91472

22.79154 22.76669 15.75926 16.09845 16.65507 24.10481 16.29849 15.46604 22.80397 22.63002

Virtua Fighter Mobile 3D
65.3387 54.99075 20.96891 53.8784 56.75736 57.49954 53.98297 51.6315 20.48492 64.5956

58.25837 20.73478 20.57098 20.73108 20.79123 53.54063 20.73755 65.36924 20.78567 59.54192

Startup random

3D Need for drift

65.57608 64.42549 65.13515 59.59351 61.44855 58.97255 61.50856 62.84179 59.28042 59.29347

63.95585 56.854 62.76351 60.0527 64.14632 62.87831 61.79034 58.57076 64.25851 63.15748

Additional runs
63.91411 61.30766 64.24546 63.60363 65.16124 61.45899 63.36882 59.41348 64.63421 64.65769

63.23575 66.46838 64.39418 62.20518 61.02327 59.72135 65.17689 63.8828 61.76685 58.05156

62.75047 64.51419 61.85295 59.55698 62.46608 59.2752 60.89543 62.69829 59.46045 64.98643

AMA IQ Booster
61.30411 67.98788 65.13756 65.94 60.14611 65.92834 65.00738 65.52227 60.08394 64.84612

60.35595 63.556 63.71143 65.31048 63.66286 64.70234 64.92384 64.21271 65.72628 66.55786

Additional runs
64.26712 60.16554 66.65695 60.09365 65.76708 65.10647 61.44206 64.7004 63.95819 63.70172

62.21536 64.38175 65.3474 62.88373 61.07679 65.17059 66.40242 62.84293 60.14028 60.58716

64.06505 63.49188 64.98407 68.62517 65.68936 65.50284 61.61304 59.9285 60.5347 60.48807

Cooking Mama
19.52477 19.7983 14.61241 18.92747 20.03833 18.08269 19.26984 21.77254 21.84511 19.44475

17.4612 19.49872 21.66276 21.61252 18.65208 20.27651 17.57471 18.56648 20.06066 20.89799

Additional runs
14.79104 19.5043 21.33341 20.57609 19.03353 19.53779 22.28611 19.5043 18.75628 18.38041

17.76823 21.8693 20.36768 19.20472 20.01972 18.37297 18.44926 21.43947 18.27621 18.81582

19.61408 19.84295 18.19434 21.29991 19.77969 19.02237 21.74277 21.05244 21.22362 18.51066

Indiana Jones and the Kingdom of the Crystal Skull
21.12225 21.84706 21.91049 20.5424 33.89104 22.51148 21.46352 37.08323 22.29705 22.75006

20.42764 37.7718 22.30611 38.11005 37.23424 35.05376 21.46654 21.4303 38.31239 20.97729

Additional runs
21.16453 21.26721 23.86144 21.68398 37.22216 38.29729 21.11923 38.34561 37.75368 20.93501

36.1138 36.31614 21.21285 21.02863 22.25477 21.49674 21.39708 21.4756 21.43936 21.97995

21.36386 23.63192 20.85649 21.96787 21.44842 22.6957 37.80805 24.80068 34.58565 21.37594

Karpov 2
38.63799 38.14664 38.49997 35.29785 34.39795 38.38403 38.6518 35.44968 39.1404 38.73737

39.60691 58.45249 38.39231 39.01618 38.5469 38.86987 53.4478 37.10319 39.09347 35.38343

Additional runs
36.62563 39.14868 38.29846 39.34743 35.69536 38.38403 39.69525 39.23977 35.88583 37.99757

39.3916 39.29222 38.91128 38.35919 38.27362 53.76249 39.31983 36.17015 38.8119 34.06117

37.26605 34.65467 39.14868 38.65732 33.77408 39.46337 38.13559 39.38056 38.36195 55.46569

NHL 5 on 5 2007
23.12841 40.02754 22.41885 38.39449 36.62378 25.35769 40.95526 23.01297 22.78952 22.27694

23.38999 24.93513 22.45274 23.36458 34.75986 24.09955 22.83188 22.54699 24.17156 40.24146

Additional runs
38.71432 38.22187 25.19036 36.00212 38.68679 25.38205 16.54858 23.18666 22.13397 35.92587

24.62483 40.30606 22.71962 25.07281 22.80646 23.93222 24.4215 38.36696 37.54514 39.4207

22.70797 23.10087 25.37146 20.61848 33.83426 38.35107 22.9812 32.07413 22.39237 39.88774

Prehistoric Tribes
30.16448 28.946 29.47625 30.06926 28.33784 28.02511 28.68413 28.18634 25.97987 31.17844

29.98701 30.66227 29.82794 29.14295 26.76983 26.32074 29.59528 30.95552 29.61692 28.97847

Additional runs
28.02511 32.27897 29.00877 30.65902 30.12228 26.30668 27.15182 29.921 27.22757 28.02727

27.15291 29.47733 30.79537 29.51304 28.40602 28.32377 32.36013 30.3149 28.56076 27.7286

28.46553 28.89731 29.49681 28.00671 28.35083 28.77935 28.36381 30.74884 28.3162 30.23699

Pro Golf 2007
27.71514 32.59762 34.87483 11.01822 17.60303 34.00217 9.86209 12.90369 10.12963 9.96083

33.3397 32.21224 28.49545 31.89534 29.5608 33.52443 33.2139 14.09007 28.51615 13.05179

Additional runs
31.4192 32.07848 28.42219 30.2997 13.09478 31.53863 35.24588 12.84954 29.5608 29.63087

31.68673 11.14243 33.91299 13.21581 11.20454 9.88916 33.51647 28.09733 32.93363 36.824

11.05007 35.51341 35.17262 31.71062 10.35735 13.80183 31.52749 34.52768 32.33645 32.42563

Tetris Pop
15.41386 24.25515 24.56701 22.69587 23.31089 22.91579 23.86254 23.94205 22.24859 24.40176

24.05636 23.17173 24.57322 22.62754 15.65117 22.30202 24.22782 24.48128 23.77681 23.99796

Additional runs
15.07716 15.26849 22.54926 23.15558 16.52337 23.72214 16.33949 23.52086 15.20761 22.86236

15.20389 22.49087 22.51447 15.05976 15.5965 15.47847 22.80272 15.82263 15.37659 23.33325

15.09331 15.09331 24.61795 22.70954 24.29242 23.47862 22.49335 22.70705 15.11567 15.26352

Virtua Fighter Mobile 3D
20.69221 57.30983 54.51138 20.87636 55.18878 20.5136 20.95502 65.98464 54.51416 54.42254

20.48214 65.98464 20.63576 20.57005 57.53285 54.76217 20.85786 20.74496 66.00962 20.56913

Additional runs
20.98094 20.54692 54.32352 54.62428 21.00037 20.74033 54.4281 20.16935 20.7792 20.56265

20.48492 20.93096 54.82787 20.81251 54.25689 66.44734 20.62095 55.68573 20.68851 65.96706

64.46141 20.98834 20.70239 66.58708 54.30224 54.73348 20.69684 63.59708 54.63816 54.81029

Adaptive

3D Need for drift

53.35786 52.57514 62.03298 59.22563 53.34742 63.72887 60.08401 56.37393 6.44959 58.68034

60.32665 56.90357 57.32885 5.56773 64.29764 5.77124 5.96431 5.299 57.49061 6.0478

AMA IQ Booster
61.23416 60.96021 68.21714 66.19259 60.90192 65.44066 64.16414 64.2982 64.13111 61.00295

64.01065 65.07344 65.58638 61.62664 60.84946 60.92912 61.31771 60.29766 65.15505 65.35517

Cooking Mama
21.7037 20.14439 18.48461 21.39295 11.26307 20.19277 22.81084 11.19609 19.5992 11.22586

18.31901 19.30148 19.78155 11.22214 18.03989 20.68773 21.24037 13.14428 18.93491 24.62506

Indiana Jones and the Kingdom of the Crystal Skull
38.10703 21.15849 36.47922 22.09471 37.54832 21.8682 20.79609 21.4605 37.90469 21.68096

22.01015 39.14593 22.49034 22.07659 21.90445 37.98925 37.21007 21.07997 36.20138 21.63566

Karpov 2
57.56087 57.59675 36.29437 17.61718 38.45581 39.82499 47.07116 58.40004 16.84426 38.85883

17.43775 17.82145 39.23701 39.11003 57.89488 39.6428 18.65511 16.8415 40.27218 48.40446

NHL 5 on 5 2007
14.85094 13.43712 25.44771 42.38496 38.50252 31.5838 36.35054 14.10326 21.65528 36.5973

9.50808 24.73603 13.22955 13.19884 23.54885 9.63728 22.39661 22.4771 39.16653 18.3606

Prehistoric Tribes
8.43632 8.37788 8.51531 8.60946 28.25235 23.42712 29.61584 28.0132 8.97522 8.77935

8.65815 8.57808 8.722 8.3649 8.57483 7.9288 8.64841 8.69495 23.5797 30.26837

Pro Golf 2007
9.66463 34.81113 11.06599 33.83655 35.65354 39.07255 37.30492 32.77438 11.0851 33.30945

35.14077 29.44774 35.80961 32.65495 9.9035 34.28085 9.67737 33.13746 34.33977 35.64717

Tetris Pop
22.58281 24.22409 23.83147 14.96534 15.0697 23.38046 15.78908 23.82029 15.17034 22.86112

24.12469 15.80896 22.3629 24.57073 24.48873 24.19924 22.26847 23.87496 15.29086 22.31941

Virtua Fighter Mobile 3D
61.23357 20.7394 62.17472 55.13048 65.07681 60.97261 64.5558 57.52637 20.31001 56.27614

20.77179 66.07996 61.7407 61.57135 65.33592 67.48751 61.06515 60.48769 61.55654 56.68703

Startup adaptive

3D Need for drift

63.64799 64.3133 59.55698 62.45043 63.18096 56.97923 65.69349 60.61365 57.4593 63.82801

55.73993 55.72688 64.07065 66.71624 58.11417 66.77886 58.18462 58.14809 61.02849 58.37247

Additional runs
67.49113 63.83584 65.2943 59.28564 61.81121 62.47652 65.29952 62.9905 58.59685 63.14705

56.83312 59.74744 64.90294 56.89835 61.85034 65.70131 60.49624 65.21864 64.81163 65.61783

58.69338 59.73179 61.76946 60.72323 66.16051 56.52526 63.31664 58.20027 65.00209 61.69902

AMA IQ Booster
66.64529 66.5598 68.37064 65.6641 67.37779 63.01197 67.33116 66.12458 66.61615 66.80462

64.17774 65.41152 66.56563 64.85583 66.07212 65.55724 61.48869 64.65959 67.16406 65.1395

Additional runs
62.64864 65.82731 65.11619 60.73094 67.07663 66.61421 65.02293 63.49576 66.31888 67.43025

67.09995 65.76902 66.79102 63.8455 67.07663 66.8221 65.26968 64.39535 65.95943 65.00155

68.91467 67.19515 66.62781 61.82482 66.07601 68.05199 60.29572 59.707 61.32937 67.68866

Cooking Mama
20.00856 22.2675 21.25712 24.43154 18.49019 18.33761 18.90514 19.49686 19.09866 21.83581

23.40069 21.08779 21.5139 19.24752 23.00994 18.64091 19.65316 18.29668 19.22891 20.57981

Additional runs
20.46816 18.02129 22.03119 18.72093 22.75129 19.24193 19.31264 19.16006 21.71486 19.23635

19.054 22.04607 20.93521 21.51018 21.45436 21.61066 18.90142 21.13803 22.16702 20.72867

20.03461 19.96018 22.07026 18.66138 17.87057 19.24566 19.37219 21.97536 19.00562 18.71162

Indiana Jones and the Kingdom of the Crystal Skull
37.35504 24.06076 38.8409 21.76854 36.79029 37.02283 21.78062 24.61645 24.46243 36.63928

21.7021 37.82617 37.86241 21.79874 21.01051 37.37618 21.54204 21.39406 38.08891 38.06173

Additional runs
38.17347 25.38959 39.12479 37.70536 37.23424 21.78666 36.66043 21.51486 21.88029 37.26444

21.99505 38.32749 37.69328 35.33462 37.37618 38.47246 21.40614 39.31807 21.68096 36.76613

24.84598 21.90747 21.08903 22.05847 37.49396 21.24909 4.60256 22.08263 22.71382 20.77495

Karpov 2
39.75598 52.98404 37.86231 38.59659 37.67736 37.75189 38.5745 37.56142 39.46061 52.97852

51.2284 39.81671 38.92232 51.78049 38.06106 38.55242 40.17004 39.60139 37.11147 38.1494

Additional runs
36.32474 37.08386 59.1012 40.35499 41.02578 38.72633 39.5241 37.47861 38.40888 38.59383

34.80649 38.49445 35.75885 35.80577 39.5241 53.30702 36.04317 37.61387 36.95412 38.82294

36.26125 39.83327 39.47441 36.84922 38.35919 38.55518 52.77425 38.52206 38.01965 39.06586

NHL 5 on 5 2007
22.42732 41.24649 41.36405 37.79931 41.8565 22.89012 36.71591 22.27482 22.55335 34.29177

22.10749 24.51258 23.62192 37.36087 25.09081 23.94069 23.04263 40.7551 36.98067 24.28171

Additional runs
22.53852 23.9947 22.71644 22.61583 22.32777 35.03945 32.91607 38.02701 37.90098 22.23775

22.56712 22.43897 39.09346 34.48133 22.56712 22.65925 22.20387 22.80964 24.17262 22.07572

30.80434 25.10882 38.28329 40.07307 38.62113 24.84512 33.2592 36.52105 38.85306 41.37675

Prehistoric Tribes
32.65339 29.85824 28.71984 29.66887 28.2069 31.2477 27.53382 28.96656 30.26404 30.9512

28.34866 30.17206 29.79656 28.27508 28.58998 32.2595 28.88973 32.06363 24.5731 29.27281

Additional runs
29.80954 28.58457 29.48707 29.2674 29.71865 29.20247 31.04751 28.03809 28.91029 28.24803

31.11676 28.54561 31.00855 28.801 27.81517 29.80305 31.22389 29.65047 32.03658 30.0909

25.24619 28.77502 29.07802 27.5652 28.98171 28.83346 28.97738 29.69267 30.86895 29.40483

Pro Golf 2007
29.10217 34.05631 9.67737 33.94484 9.99586 32.73298 33.88751 32.87789 32.27913 30.63252

34.69966 34.40187 11.06121 32.28072 32.39856 33.92573 31.01471 37.00076 9.95605 34.09134

Additional runs
10.81757 34.69648 32.7059 30.81884 14.29231 32.55781 32.58966 28.48908 34.01331 36.08988

35.30161 9.84776 33.20912 9.75062 28.55914 9.91624 32.69635 35.24747 11.30964 36.0851

34.48946 34.15663 31.98771 28.14033 9.79999 33.09606 32.2839 10.97522 34.47672 35.71247

Tetris Pop
23.42271 25.9511 23.19534 23.39165 22.26847 26.37974 22.2051 23.77681 22.758 23.09967

21.94295 34.93775 23.41152 23.91845 26.42323 22.43868 22.25356 22.66481 23.38419 22.75675

Additional runs
22.39644 22.46478 31.63283 22.02992 15.0374 28.75531 22.89591 24.50861 22.65984 22.35793

24.19178 24.0986 29.8437 22.66854 23.47986 22.16535 23.69977 23.8526 22.63623 22.26723

23.59292 22.24362 22.73315 23.34319 22.77787 22.45111 22.6996 22.66854 22.31817 33.15483

Virtua Fighter Mobile 3D
56.65001 20.56543 56.57042 66.36406 63.08717 67.00999 21.0781 67.50139 61.77864 20.75791

56.29835 57.42736 66.81288 56.50009 65.34981 66.11605 63.38516 57.89561 55.78105 66.34185

Additional runs
61.68517 58.20192 66.14381 57.77994 56.59541 61.49454 20.69961 64.42069 58.3611 64.14307

62.40885 61.51675 54.80289 67.61059 63.4851 67.742 62.60133 66.81011 20.15639 56.78234

58.6017 56.45382 55.29336 62.96594 56.43439 56.43716 67.48195 56.37979 66.45382 63.30835

