
Evolving optimal humanoid robot walking
patterns using genetic algorithms

Anders Johansson

May 25, 2006



Sammanfattning

Syftet med detta projekt är att utveckla ett sätt att med genetiska algoritmer
automatiskt generera knärörelser som gör att människoroboten WABIAN-
2 går så människolikt som möjligt. Bakomliggande teori inom genetiska
algoritmer, robotik i allmänhet och WABIAN-2 i synnerhet presenteras.

Arbetet är uppdelat i fyra steg: Först läggs grunden för den genetiska
algoritmen genom val av datarepresentation och implementation. Sedan
definieras målet genom konstruktion av en fitnessfunktion som anger op-
timeringskriteriet, dvs. vad som anses människolikt. Varje funktion testas
genom skapande av knärörelser som är så bra som möjligt enligt funktionens
kriterium, och den funktion som skapat mest människolika mönster används.
Det visar sig att en kombination av moment och rörelsemängdsmoment ger
bäst resultat. Efter detta finjusteras den genetiska algoritmen genom att
testa en mängd olika genetiska operatorer och parametrar tills en bra inställ-
ning hittats. Slutligen tillämpas metoden genom att använda ett mönster,
som inspirerats av tidigare projektresultat, på roboten. Mönstret visar sig
ge en jämnare och energisnålare gångstil.

Abstract

The purpose of this project is to develop a method of generating knee patterns
making the humanoid robot WABIAN-2 walk as human-like as possible, using
genetic algorithms. Relevant theory from the fields of genetic algorithms and
Robotics, with special emphasis on WABIAN-2, is introduced.

The project is divided into four parts: First, the base of the genetic
algorithm is built by choosing data representation and implementation. Then
a fitness function specifying the optimization criterion, i.e. what is considered
human-like, is constructed. Each function is tested by creating as good knee
patterns as possible, according to the function criterion, and the function
resulting in the most human-like patterns is used. The tests reveal that a
combination of torque and angular momentum gives the best results. After
this, the genetic algorithm is fine-tuned by testing different genetic operators
and parameters until a good setup has been found. Finally, a walking pattern
inspired by earlier project results is used on the robot. The pattern turns
out to give a smoother and more energy efficient walking style.



I would like to thank Professor Atsuo Takanishi for making this project
possible by accepting me to his laboratory at Waseda University in Tokyo,

Japan. I would also like to thank Sweden-Japan Foundation for their
generous donation making it possible for me to live in Japan, Stiftelsen
Telefondirektören H. T. Cedergrens Uppfostringsfond for continuously
supporting my university studies, and ABB Sweden for showing their

interest in this project through their financial support.



4



Table of Contents

1 Background 7

2 Introduction 7

3 Problem specification 8

4 Theory 9
4.1 Notes on conventions . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Human locomotion . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Genetic algorithms . . . . . . . . . . . . . . . . . . . . . . . . 14

5 WABIAN-2 and Pattern Generation 19
5.1 Robot design . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Robot control . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Experiments and Results 22
6.1 Building a base . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.1.1 The class structure . . . . . . . . . . . . . . . . . . . . 22
6.1.2 Introducing genetic code . . . . . . . . . . . . . . . . . 23
6.1.3 The laws of physics . . . . . . . . . . . . . . . . . . . . 24

6.2 Finding a fitness function . . . . . . . . . . . . . . . . . . . . 24
6.2.1 Angular velocity . . . . . . . . . . . . . . . . . . . . . 26
6.2.2 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2.3 Spin Angular Momentum . . . . . . . . . . . . . . . . 29
6.2.4 Final tweaking . . . . . . . . . . . . . . . . . . . . . . 31

6.3 Running and fine-tuning . . . . . . . . . . . . . . . . . . . . . 35
6.3.1 The selection operator . . . . . . . . . . . . . . . . . . 36
6.3.2 The survival operator . . . . . . . . . . . . . . . . . . . 37
6.3.3 The mutation operator . . . . . . . . . . . . . . . . . . 37
6.3.4 The crossover operator . . . . . . . . . . . . . . . . . . 38
6.3.5 Population size . . . . . . . . . . . . . . . . . . . . . . 39
6.3.6 Mutation and Crossover probabilities . . . . . . . . . . 39
6.3.7 The inversion operator . . . . . . . . . . . . . . . . . . 40
6.3.8 Individuals vs. Generations . . . . . . . . . . . . . . . 41

6.4 Real-world application . . . . . . . . . . . . . . . . . . . . . . 42

7 Discussion 44

8 Conclusion 49

5



References 51

Bibliography 51

6



1 Background

The Japanese are very interested in robots. Nowhere else can you find as
many robot companies and expositions, and beside their original business
area, large Japanese companies such as Sony, Toyota, and Honda also make
robots. One reason for the interest of these mechanical devices might be the
comic book culture of Japan, where robots have figured as heroes and villains
for decades. But serious robotics research is also performed.

Waseda University in Tokyo, Japan, has performed robotics research since
1964. In 2000, a group of professors formed the Humanoid Robotics Insti-
tute (HRI), with the goal of researching humanoid robotics, the interaction
between humans and robots, and everything related to the field. Takanishi
Laboratory, led by professor and HRI board member Atsuo Takanishi, has
developed a robot capable of speaking like a human by means of an anatom-
ically correct vocal tract and lungs, a walking wheelchair capable of climbing
and descending stairs, and many other robots. But his most interesting robot
project might be his humanoid robot.

2 Introduction

Robots can be very useful. They can perform tasks that are dangerous,
difficult, or boring to humans, often faster and with greater precision. Many
industrial robots exist today, building cars, computers, airplanes, and many
other things. However, they generally need very special tools and well-defined
non-changing work environments. They would hardly be useful in a home or
office environment.

A humanoid robot, by contrast, has the basic anatomy of a human. Thus,
it can work in environments designed for humans, using existing tools. A
humanoid robot would be vastly more practical in a human society than the
industrial counterpart. Theoretically, it should be capable of actions such
as vacuum cleaning, lawn mowing or grocery shopping. But this introduces
great engineering and controlling problems. Even one of the most basic
human motions, walking, is extremely difficult to achieve. After decades
of research, there are a number of walking robots, like Honda’s Asimo and
Sony’s QRIO, but their walking is a far cry from human-like. A mathematical
singularity present in all two-legged systems (also humans) prevent them
from fully stretching their legs, thus impacting the range of possible motions.
While humans can circumvent the problem, these robots are doomed to walk
with bent knees, which uses more energy, puts more strain on the joints and
reduces their maximum speed.

7



Figure 1 – The humanoid robot WABIAN-2

Takanishi’s humanoid robot WABIAN-2 (WAseda BIpedal humANoid-2,
see Figure 1), is a humanoid robot capable of knee-stretched walking. The
long-term project goal is to explore the possibility of using a biped humanoid
robot as a human motion simulator, specifically to help in developing a new
walking assistance machine for elderly or handicapped people.

There are several advantages to using a robot instead of human test sub-
jects. The testing task might be dangerous to people; it is also difficult to
collect quantitative data such as joint torques or energy consumption from
a human, but it is easy from a robot; and it is difficult for healthy people to
simulate being handicapped well enough to develop walking assistance ma-
chines from their movements, while it is easy to just turn off or even remove
a limb from a robot.

However, using a robot also presents a serious problem: It has to be
programmed, and it is very difficult to program it to walk just like a human.

3 Problem specification

One way of circumventing the problem of manually programming a robot
is to not program it at all, but instead automatically generate the desired
movement. This was the purpose of this project, whose original assignment
statement was “to develop a GA (genetic algorithm) software to compute
the optimal lower-limb walking pattern in knee-extended bipedal walking
under external force disturbances”. Optimality in this case is the somewhat
subjective notion of human-likeness, and the foot and waist motions are given
as inputs, leaving the knee angles as the only free parameters of the walking

8



pattern. The external force disturbances are any external forces such as the
forces exerted on the robot by a walking assistance machine, but initially
external forces were not considered for simplicity, and later for lack of time.
Also, development of a full, stand-alone software was not necessary, because
software for programming the robot (the pattern generator) was available,
already implementing a kinematic model of the robot.

Thus, more specifically, the assignment was to extend an existing robot
programming program by adding the capability of automatically generating
human-like knee angles using genetic algorithms.

4 Theory

Building and controlling a robot is an interdisciplinary project, requiring
knowledge from fields such as mechanical engineering, electronics, computer
science, control theory and others. Theory relevant to this project is human
walking, robotics, and genetic algorithms.

4.1 Notes on conventions

Some notes has to be made about the symbols and expressions used in this
report. First of all, there is bound to be confusion about the knee angles.
By convention from the robot design, the knee angles are measured by neg-
ative angles from 0◦ (straight leg) to a maximum knee bend of −160◦, while
the more intuitive measure of knee bending amount uses positive angles.
Therefore, when this report talks about increasing the knee bend or the knee
angle, the real angle value is actually decreased. The text in this report uses
the intuitive measure while graphs show the design measure for correctness.
Perhaps it is easiest to think of absolute values of all angles. Also, some-
times the curious expression “stretched knee” is used, meaning stretched leg.
This is also by convention, and to remind the reader that the knee angle is
responsible.

Another word commonly and knowingly misused is “waist” instead of
pelvis. This is originally a translation mistake made by the Japanese design-
ers. The waist link in the robot connects the hips to each other and to the
upper body. Following this convention, expressions such as waist position
and waist movement are used in this report.

Boldface is used to indicate vectors and matrices, such as v or R. All
matrices, but also some vectors (F and N for force and moment), are written
with upper case letters; the type should be clear from context. Because we
will be dealing with many different coordinate systems, a leading superscript

9



is used to specify the frame of reference of the quantity, and indices are
following subscripts. Examples are r3 4 (the position of joint 4 expressed in
the coordinate system of joint 3) or Ic7

5 (the moment of inertia matrix of link
5 expressed in the coordinates of the center of mass of link 7). The index
ci stands for the center of mass of link i. Rotation matrices R and frame
operators T have their indices on the left to save space, for example R34
(the rotation of the coordinate system of joint 4 as seen from the coordinate
system of joint 3) instead of R3 4.

Symbols are used with their normal meaning, for example position r,
velocity v, and acceleration a. The one-dimensional joint angular velocities
and accelerations are written θ̇ and θ̈ while the three dimensional link angular
velocities and accelerations are ω and α.

On a final note, a GA consists of functional blocks called operators by
convention, such as the selection operator and the mutation operator. Al-
though called operators also in this report, their implementation will be as
normal functions. In C++ operators are just functions with special calling,
so the GA operators could have been implemented as actual operators, for
example operator+ for crossover or operator! for mutation, but this would
only be unintuitive and create confusion.

4.2 Human locomotion

It is difficult to define what “normal” human walking is. Every person has
his or her own walking style, but there are some common characteristics.
Ayyappa [1] describes normal walking from the perspective of prosthetics
and orthotics research, but the ideas are general.

The gait cycle is the period of time between two identical events in the
walking cycle. Stance is defined as the time when the foot is in contact with
the ground, and swing is when the foot is in the air. Single support is when
one foot is in contact with the ground, and double support is when both feet
are in contact with the ground. Using these terms, the gait cycle for one
leg can be divided into four phases: Initial double support, single support,
terminal double support, and swing. During normal walking, double support
constitutes about 25% of the gait cycle. With increased velocity, the amount
of double support decreases; running constitutes forward motion with no
period of double support. The forward distance between a floor-contact
point of a foot and the same floor-contact point of the other foot is called
the step length; the distance between two successive floor-contact points for
the same foot is the stride length. Thus the stride length is about twice the
step length.

The waist and ankles are also largely involved in the smooth continu-

10



le
ft

k
n
ee

a
n
g
le

ri
g
h
t

k
n
ee

a
n
g
le

0 2 4 6 8 10 12

time
-80◦

-60◦

-40◦

-20◦

0◦

time
-80◦

-60◦

-40◦

-20◦

0◦

Figure 2 – Human knee trajectories for starting, walking eight steps and
stopping. The marked regions are the swing phases; double support is not
indicated.

ous motion of walking, keeping balance and minimizing the movement of
the center of gravity and therefore the energy expenditure. Lateral pelvic
displacement (sideways waist motion) improves the position of the center of
gravity above the supporting limb, and lateral pelvic tilt (waist roll motion)
prevents an excessive rise in center of gravity during midstance by dropping
on the unsupported side. Pelvic transverse rotation (waist yaw) moves the
waist forward on the swing side and backward on the stance side, effectively
extending the step length. Ankle pitch motion also smooths the pathway of
the center of gravity and extends the step length by stretching the foot to
allow for early heel support during initial stance and the other way for extra
toe support during final stance.

The bending of the knees during walking is closely related to the ankle
motion, with the purpose of smoothing the movement of the center of gravity
but also to absorb some of the shock forces from the foot hitting the ground.
Stretching the leg allows it to function as an inverse pendulum, moving the
body forward. Thus the knee bends during loading response, extends during
midstance and terminal stance, and bends to its maximum angle during
initial swing to clear the foot from the ground. This characteristic knee
pattern is called double knee action because of the two bends during each
gait cycle. A typical knee trajectory for walking eight steps (including start,
walking and stop) are shown in Figure 2. This data was collected using
Motion Capture on a Japanese male lab member.

11



4.3 Robotics

Link orientation is very important in robotics1. Therefore, rotations are a
central part of robotics theory. Any rotation can be described by an axis-of-
rotation vector and an angle. The axis vector is constrained by the require-
ment that it is of unit length, meaning that in R3 a rotation is defined by
only three parameters. Equivalently, the three parameters can be the angles
in a composition of rotations about three predefined axes (Euler Angles).

However, rotating an object by an angle θ around some axis k is also
equivalent to rotating the coordinate system by −θ around k. The rotated
base vectors can be written as column vectors in a 3× 3 rotation matrix R,
which acts as a matrix operator. Matrix multiplication of such a matrix with
a vector will map the vector onto the inversely rotated space, equivalent to
performing the desired rotation by θ around k. Because rotation matrices
consist of vectors that by definition are orthogonal and of unit length, the
matrix is orthonormal, which means it is invertible and that R−1 = RT .
Generally, rotations do not commute, which is to be expected since they are
described by non-commuting matrix operators.

A very common type of rotation is around a base vector of a coordinate
system. To refer to such rotations, special names adapted from aeronautics
are used. A rotation around the longitudinal (front-back) axis is called a roll,
a rotation around the lateral (right-left) axis is called a pitch and a rotation
around the vertical (up-down) axis is called a yaw.

A robot can be constructed in almost any way imaginable. Many robots
consist of a chain of rigid links i, connected by revolute joints j (rotational
joints with one degree of freedom θj). Several joints can be connected by
links with zero length along the axis of rotation, effectively creating a several-
degrees-of-freedom rotational joint. One end of the link chain is firmly at-
tached to the ground while the position and orientation of the other end can
be controlled by varying the joint angles. The joint controlling a specific link
is called its actuating joint.

To define and relate the positions and orientations of the links of a robot,
each link i has its own coordinate system {j} located at the position of its
actuating joint j. This coordinate system can be described as a rotation Rj0

j

and translation rj0
j of any other coordinate system {j0}. This combination

of a position vector rj0
j and a rotation matrix Rj0

j is called a frame and is
written Tj0

j . A frame completely describes the position and orientation of a

1Consider, for example, a robot trying to fix a screw with a screwdriver. Even with the
tip of the screwdriver touching the dent in the screw, the robot might fail if the screwdriver
is not oriented parallel to the screw axis!

12



link in relation to those of another link (or to the universe frame, {U}).

Frames are used as operators with the properties

TB
A vA = RB

A vA + rB
A = vB ,

TA
B TB

C = { RA
B RB

C , rA
B + RA

B rB
C} = { RA

C , rA
C} = TA

C ,
TA −1

B = { RA T
B , − RA T

B rA
B} = { RB

A , rB
A} = TB

A .

These relations can be derived and compactly expressed by writing frames
as 4× 4 matrices and vectors as 4× 1 vectors in homogeneous coordinates,

TB
A =

[
RB

A rB
A

0 1

]
, uA =

[
vA

1

]
,

however the explicit relations are computationally more efficient. Strictly
speaking, a frame could be completely defined using only six parameters:
three for the rotation, three for the position. Therefore, the minimum number
of degrees of freedom required for a robot to be able to achieve any (reachable)
position and orientation in R3 is 6.

Many robots with one-dimensional revolute joints use electrical motors
to actuate the joints by applying torques, which means that the robot is
controlled by modifying the joint angles θj spanning the joint space. However,
the desired motion is usually defined by T0n , the position and orientation of
the last link as seen from the base, in Cartesian space. It is relatively easy
to construct all the frames from the joint angles, a process called direct
kinematics. The reverse process, calculating the angles needed to position
the end link correctly, is called inverse kinematics. It is a nonlinear problem,
and is much more difficult to solve.

The workspace is defined as the space of all frames reachable by the end
effector. When the robot reaches the edge of the workspace, or when two or
more axes of rotation line up, the number of degrees of freedom is effectively
reduced. This is called a singularity of the mechanism. Near a singularity,
inverse kinematics cannot be solved and the joint velocities go to infinity.

To compute the joint forces and torques for a robotic link system, the
Iterative Newton-Euler Dynamic formulation (INED) can be used [4]. The
calculation is split in two parts, first outward starting at the base and prop-
agating velocities and accelerations to the free end, then inward from the
end link propagating the joint forces and torques back to the base. For each

13



outward iteration step we have to calculate the quantities

ωj j = Rjj−1 ωj−1
j−1 + θ̇j ẑj j

αj j = Rjj−1 αj−1
j−1 + Rjj−1 ωj−1

j−1 × θ̇j ẑj j + θ̈j ẑj j

aj j = Rjj−1

(
αj−1

j−1 × rj−1
j + ωj−1

j−1 × ( ωj−1
j−1 × rj−1

j) + aj−1
j−1

)
aj ci

= αj j × rj ci
+ ωj j × ( ωj j × rj ci

) + aj j

Fj i = mi aj ci

Nj i = Ici
i αj j + ωj j × Ici

i ωj j,

and the equations for each inward iteration step are

fj j = Fj i + Rjj+1 fj+1
j+1

nj j = Nj i + Rjj+1 nj+1
j+1 + rj ci

× Fj i + rj j+1 × Rjj+1 fj+1
j+1

τj = nj T
j ẑj j.

ω and α are the total angular velocity and acceleration vectors, θ̇ and θ̈ are
the scalar joint angular velocity and accelerations, ẑ is the axis of rotation,
r is the position vector, a is the linear acceleration, m is the link mass, F
and N are the force and torques on the link due to its motion only, f and n
are the final joint force and torque vectors, and τ is the scalar torque that
actually does work. I is the moment of inertia tensor and R is a rotation
matrix.

But humanoid robots are more complicated than conventional robots in
that they do not have a fixed base frame: It alternates between the left and
right foot during walking, and when the robot is standing it instead has two
base frames. Also, they do not consist of a single link chain. At the waist,
the chain splits in two, one down the swinging leg and one up the upper
body. For these reasons, the numbering of links and joints is complicated.

Therefore, in the above Iterative Newton-Euler equations, j − 1 concep-
tually means “the preceding joint”, and j + 1 means “the succeeding joint”,
as seen from the base. This is important because the base, where iterations
start, can be the right or the left foot, and the directions of “outward” and
“inward” iterations depend on which one. The directions change for each step
of the robot, because it is then supported by the other foot. The link index i
is the link actuated by joint j, which also depends on what foot is currently
supporting the robot.

4.4 Genetic algorithms

A genetic algorithm (GA) is a method of solving an optimization problem
by searching the space of possible solutions S for solutions that minimize

14



or maximize a given objective function f : S → R. For many real-world
problems, the search space is incredibly large and an exhaustive search is
impossible. A common approach is to traverse the search space more or less
randomly, following some heuristic to try to get to good solutions quickly.
The heuristics guiding a GA are inspired by Darwin’s biological theory of
evolution.

In nature, individuals with beneficial genetic traits (highly fit individuals)
are more likely to survive and reproduce, thus increasing the frequency of
those traits in the next generation. To simulate this process, a GA keeps
a population of virtual individuals, each of which has a potential solution
encoded in its genes. The solutions are evaluated by the objective fitness
function, assigning a fitness value to each individual. Based on the fitnesses,
some individuals are selected for mating and allowed to reproduce. The
offspring form a new population and the process is repeated, producing better
and better solutions with each generation.

A gene is the smallest unit of information encoded in the solution. The
genes are arranged in one or more chromosomes in the individuals, and its
total collection of genes is its genome. The position of a gene is called its
locus, and is usually important for the decoding of the gene (for example, if
the genes encode a number by its digits, rearranging the genes changes the
number). Locus-independent encodings are called “messy” encodings because
the genes can be arranged in any way possible.

Genetic algorithms were invented by John H. Holland and his colleagues
at the University of Michigan in the 1960s. They encoded data as binary
strings in the genes, and invented several genetic operators to work on them:
The roulette wheel selection operator chose the individuals allowed to mate,
and reproduction was performed by a one point crossover operator, combining
the genes of two individuals, and a random mutation operator, introducing
random changes to the offspring. An inversion operator reordered the genes
to try to form short-order schemata. This GA setup is called the Simple
Genetic Algorithm, or SGA.

Goldberg [5] describes the theoretical basis for genetic algorithms by the
building block hypothesis. Introducing schemata as partially defined binary
strings representing the subset of all strings that share the same character-
istics, calculations about the evolution of the genes under the GA operators
were made. The idea is that partial solutions should form short schemata
and combining them should make a better solution. Statistically, if the solu-
tion can be built by short-order (i.e. specialized) high fitness schemata, these
building blocks will form better and better solutions each generation. Long,
general schemata have a large probability of being destroyed by crossover and
mutation operations and thus do not contribute much. The undefined parts

15



of the schemata allow for an implicit parallelism. Of course, if the solution
to the problem can not be constructed by partial solutions or if there are no
meaningful short-order schemata, the GA would perform no better than a
random search through the search space. To accelerate the potential creation
of short-order schemata, the inversion operator, shuffeling the genes, is used.

Binary strings are not always a good choice for data representation. Many
problems are real-valued, suggesting a real-valued representation, but some
purists point out that larger alphabets require a larger population size to have
individuals representing all strings and that binary representation should
always be used. One disadvantage of using binary strings is that a single
binary mutation might change the value by a very large amount, where a
real-valued representation can control the mutation more.

The selection operator chooses an individual for mating. The choice of se-
lection operator controls the selection pressure: too low pressure means slow
convergence, too high pressure may lead to premature convergence (i.e. loos-
ing diversity and getting stuck in a local optimum). Holland originally used
fitness-proportionate selection, commonly implemented as “roulette wheel se-
lection”: A virtual roulette wheel is spun, each individual representing a slice
equal in size to the proportion of its fitness to the total fitness of all indi-
viduals. The probability for individual k to be selected is P (k) = fk/

∑
i fi.

But roulette wheel selection, or fitness-proportionate selection in general, has
several large disadvantages. Firstly, it selects individuals that maximize the
fitness, while many problems need minimization. This is not trivially circum-
vented, because the two common fixes F ′ = −F violates the requirement of
only positive fitnesses, and F ′ = 1

F
changes the fitness distribution, more

strongly favoring very low F . More importantly, any early super-fit individ-
uals will get selected most or all of the time, eliminating diversity, leading
to premature convergence in a local maximum. Also, toward the end when
most individuals are similar, or if there is a fitness offset reducing the relative
difference between fit and unfit individuals, the selection pressure is lowered
making convergence slow.

An alternative selection operator without these shortcomings is tourna-
ment selection, in which k randomly sampled individuals compete to be se-
lected. The best of them is selected with probability p, the second best with
probability p(1− p), the third p(1− p)2 etc. In the unlikely event of proba-
bility (1− p)k that they are all rejected, a new random sample of k is chosen
to compete for the selection. The parameters k and p become parameters of
the GA. Other selection methods include sexual selection, in which individu-
als are pairwise selected because they are fundamentally different, leading to
cooperative specialization (e.g. males hunt, females care for children); or ran-
dom selection which randomly selects an individual regardless of the fitness

16



distribution.
Often, to stabilize the progress of the GA, one or more of the best indi-

viduals of each generation are inserted unchanged into the new generation,
avoiding any potentially damaging crossover, or mutation operators. This
makes sure that the best individual of the next generation is at least as good
as the previous generation. Thus, once a certain best fitness is achieved, it
cannot be lost and the fitness can only improve further or remain unchanged.
These individuals are called elite individuals. However, in this project, the
elite individuals will be subject to the survival operator, to give even better
children a greater survival chance.

The crossover operator is responsible for combining the chromosomes of
two (or more) individuals to produce offspring. The most common example
is one point crossover, in which the genome of each parent is cut at a random
position, before which the child get the genetic material from one parent
and after which it gets it from the other. Often, a second child is also
created, getting the complementary genes, so that no genetic material is lost
between the populations. Another common method is uniform crossover,
in which the child gets each gene from one parent or the other with equal
probabilities, thus copying random pieces of the chromosomes of both. The
complementary bits are again given to the second child. Other crossover
operators are arithmetic crossover, in which the genes are not distributed
but arithmetically combined, for example through averaging the parents’
genes. n-point crossover is similar to one point, but n cuts are made in the
genomes and the child gets pieces alternately from the parents. Multisexual
crossover is also possible, where more than two parents share their genes to
create offspring.

If the individuals have two chromosomes having the same basic structure,
it might be beneficial to be able to share genetic material between the them.
This can be done by a swap operation before crossover. If enabled, there is a
50% chance that the first chromosome of one parent is crossed over with the
second chromosome of the other parent, and vice versa. In the other 50%,
or if swap is not enabled, a first chromosome is always crossed over with a
first, and a second with a second. This argument can also be generalized to
more than two chromosomes.

The mutation operator randomly changes or introduces new data in the
chromosomes, partly to introduce new good changes and partly to make sure
no good changes are lost for good, if accidentally removed during crossover or
the individual is not selected. Mutation operates on each single gene with a
certain probability pmut. The modification can typically be random, changing
the gene to a completely new setting, or creeping, applying a small change to
the gene. A mutation operator specifically invented for the problem in this

17



report is “block mutation”, where the same creeping mutation is applied to a
random range of genes. In addition to these modification algorithms, genes
can also be randomly added to or removed from the genome, by repeatedly
deleting random genes with probability pmut, and then repeatedly insert new
genes with probability pmut.

The survival operator determines who gets to form the next generation.
This is usually considered part of the selection operator, but survival has a
completely different function and is in this report separated as an operator of
its own. The most commonly used form of survival is Children, in which all
individuals in a generation die, and all their children form the next. Another
survival operator is Invasion, in which only children survive but are then
invaded by new, random individuals, killing and replacing the lowest-fitness
individuals. The parameter p determines how many of the original individ-
uals survive the attach, typically set at p = 50%. This should add diversity
for small populations. The (µ + λ)-survival operator lets the old generation
and the children together compete for space in the next population, allowing
fit parents to survive and reproduce again.

To add further diversity to small population sizes, the differentiation oper-
ator can be used as a last step of the survival operator. It kills all individuals
having the same fitnesses to within 1010, assumed to be clones, except one.
The holes in the population are filled with new, random individuals just like
with invasion survival.

The inversion operator reverses a random portion of the genes, in the hope
of randomly bringing related genes close so they can form building blocks. It
has been discussed whether this operator contributes to the performance of
the GA or not, and it seems any effects would be visible only in long GA runs.
Two positions are randomly chosen and the genes between them are reversed
by repeatedly swapping genes and moving inward. If the gene has length n,
a linear inversion operator would reverse position k with probability P (k) =
(1+k)(n−k)

n2 , thus reversing the midsection more often than the ends. Instead,
a uniform distribution was achieved using a circular inversion operator (i.e.
connecting the ends of the genome, to allow wrapping around the edges). In
this case, each position is reversed with equal probability P (k) = n(n+1)

2n2 .
Usually, crossover and mutation are performed with certain probabilities,

to allow some individuals to enter the new generation unchanged. Typi-
cally, the crossover probability pcro is rather high, around 60–70%, because
crossover is needed to advance the evolution. The mutation probability pmut

is usually low, around 1% or less. A higher mutation probability introduces
more changes, which might be beneficial early in a GA run, but might also
destroy already good individuals. A too high mutation probability makes

18



the GA work more like a random walk, randomly traversing the search space
without direction.

Several research teams have used this method to generate optimal gait
patterns for robots before. For example, Capi et al used a genetic algorithm
to generate a gait pattern for a five-link biped robot and trained a Radial
Basis Function Neural Network with the results [3], and Bessonet et al used
another optimization technique but used a similar evaluation function, tar-
geted at minimizing the joint torques for a seven-link planar biped [2]. Using
a GA to solve this kind of problem might work well, because GAs are es-
pecially well suited to solve difficult problems without prior knowledge of
the shape of the solutions. However, there are important design choices af-
fecting the effectiveness or the method, such as fitness function design, data
representation, and the GA parameters.

5 WABIAN-2 and Pattern Generation

5.1 Robot design

WABIAN-2 is a humanoid robot with 41 degrees of freedom (DOF): 7 in each
leg, 2 in the waist, 2 in the trunk, 3 in the neck, 7 in each arm and 3 in each
hand. “He” stands 1.53 m tall and weighs 64.5 kg with batteries.

Figure 3 shows the joint and link design of the lower limbs of the robot.
Only links 3, 4, 9, 10 and 14 have non-zero lengths. Note that link 14
(waist) rigidly connects joints 6 and 7 (hips); joints 14 and 15 only control
the orientation of the upper body.

The world frame for the robot is a right-handed coordinate system with
the positive x axis pointing in the robot’s forward direction, the y axis point-
ing to its left and the z axis pointing up. A rotation around the x axis is a
roll, around the y axis is a pitch and around the z axis is a yaw.

To be able to place the foot in any (reachable) position and orientation,
a minimum of six degrees of freedom is required. Therefore, a common setup
for a robot leg has three degrees of freedom in the hip (roll, pitch, yaw),
one in the knee (pitch), and two in the foot (roll and pitch). But when
the knee is stretched, one degree of freedom is lost because the foot can no
longer be moved radially from the hip. Division by zero makes other joints’
angular velocities go to infinity in an attempt to compensate; a singularity
has occurred. To avoid this singularity, most robots walk with bent knees.
WABIAN-2 instead uses predetermined knee trajectories, so that the legs can
be considered rigid structures at any point in time. This effectively reduces
the lower limbs by 2 degrees of freedom and avoids the singularity because

19



11

9

10

7

13

4

2

15

12

6

8

14

3

0

5

1

y

z

x

(a) Axes of rotation

12

10

9

8

14

13

11

7

15

1

5

2

0

6

3

y

4

z

x

(b) Mass points (c) Actual model

Figure 3 – Design of the lower limbs of the robot. Figure 3a shows the axis
of rotation for each joint, and Figure 3b shows the center of mass position for
each link. Figure 3c shows the actual model.

inverse kinematics is not used for the knee joints. To mimic human anatomy,
WABIAN-2 also has two extra degrees of freedom in the waist (roll and yaw)
and one for each foot (yaw). The waist roll can be used to compensate for
the loss of degrees of freedom in the knees, the waist yaw can extend the step
length like in humans, and the foot yaw can be used for obstacle avoidance.
Thus WABIAN-2 has 16 degrees of freedom in the lower limbs.

However, there is one large difference between a human and WABIAN-2.
A human uses the toes, heel and foot pitch to create a smooth walking, while
the robot has solid, flat feet that are typically (although not necessarily)
parallel to the ground.

5.2 Robot control

WABIAN-2 carries a computer, running a tight loop that controls the robot
motors. Time is discretized into regular intervals (usually set at 30ms) called
phases. There are typically 512 phases in a normal walking pattern, thus
lasting 15.36s. The movement of a joint is called its trajectory, describing
the relevant joint properties at each phase. Several trajectories combined as
a functional unit constitute a pattern. For example, a left foot trajectory and
a right foot trajectory form a gait pattern, describing the steps to be walked
by the robot. The combination of a gait pattern, a knee pattern, and a waist
pattern (together with upper limb patterns such as hand, trunk and head

20



patterns, which are not considered in this report) completely describes the
motion of the robot and is called a walking pattern.

Walking patterns for WABIAN-2 are created in the pattern generator
(PG) program. First, the gait pattern is defined by specifying key foot posi-
tions and orientations, and the trajectories are constructed by interpolation
resulting in smooth movements. The waist position and orientations are au-
tomatically calculated, but can be modified if specific waist movements are
desired. Next, the knee trajectories are set by specifying key left and right
knee angles and interpolating. The goal of this project is to replace this
step with an automatic GA calculation. After setting the knee pattern, the
Zero Momentum Point (ZMP) trajectory, used for balance, is automatically
calculated. As an optional final step, the waist and trunk compensatory mo-
tions can be calculated. This is necessary for real-world patterns because
the movements of the legs during walking exert momentums on the robot,
making it twist or even fall over. This can be compensated by exerting an
opposite momentum, e.g. by moving the arms. However, patterns intended
for computer simulation only can make an approximation by skipping this
computationally expensive step.

For each phase in the control loop, the foot positions and the knee angles
(along with knowledge of shin and thigh link lengths) are used to calculate
the hip positions. The waist link is then positioned between the hips at
the correct angle, giving the full posture for the phase, on which inverse
kinematics is used to find the required joint angles. Because of this, however,
it is possible to create “impossible” patterns, where the distance between the
hip joints is larger than the waist link length. Thus it is important to make
sure that the foot positions and the knee angles always result in a valid
posture.

During double support, the robot supports its weight on both the right
and left foot. This makes the mechanical system overdetermined and the
finite element method or another similar method has to be used to calculate
the forces and torques. This lies outside the boundaries of this project, but
double support could not be ignored because the robot might collapse if
totally unconstrained. Therefore, an approximation was made by running
the Iterative Newton-Euler calculations twice for each double support phase:
First as if the robot is actually standing on the right foot, then again as if it is
standing on the left. To avoid relying too much on this crude approximation,
gait patterns keeping double support a minimum were used in this project.

21



6 Experiments and Results
The project was divided into four different steps. First, the GA base was
built by designing the data structure, representation and interface to the PG
program. Then, a fitness function with the desired properties was constructed
and implemented. After that, the GA was fine tuned to produce as fast
and reliable results as possible. Finally, a GA-constructed knee pattern was
tested on the robot, comparing it with an existing, manually constructed
knee pattern.

6.1 Building a base

The Pattern Generation program is written in C++ using the programming
environment Borland® C++Builder™ 6. Several classes were constructed to
keep the different data structures.

6.1.1 The class structure

The class CGeneration contains a STL2 vector of pointers to CIndividual
objects, thus describing a full population of individuals and providing a vir-
tual environment for them to reproduce and generate increasingly better
solutions. The class CIndividual represents an individual.

Every individual holds a potential solution; in this case two knee trajecto-
ries, one for the left and one for the right knee. Each trajectory defines a knee
angle for every phase, but most walking patterns have more than 300 phases,
so encoding the angles as an array and optimizing every angle independently
would make the problem more than 600-dimensional. Instead, trajectories
are encoded in the individuals as a series of midpoints, each specifying a phase
and an angle. These are then connected by cubic spline interpolation and
sampled at every phase to create the full angle sets only when needed. Thus,
a trajectory is a chromosome in an individual, and a midpoint is a gene in a
chromosome. Using this messy gene encoding also simplifies the implemen-
tation of some genetic operators, because the genes are independent of their
locus.

Implementation-wise, a trajectory is represented by the class CTrj. It
contains a STL vector of pointers to MPnt midpoint objects, each containing
a (phase, angle)-pair for the trajectory. The trajectory class has functions
for counting, adding, retrieving and removing midpoints from the vector, as
well as setting and getting the changed status used to avoid recalculating
the fitness if no changes has been made to the trajectory. The interface

2Standard Template Library

22



to the rest of the pattern generator program is though the updateTrajBase
function, which updates an existing CTrajectryBase<Vec1d> (an internal
PG data type) with the CTrj trajectory data. This is unfortunately needed
before every fitness calculation, to create the sampled spline data from the
midpoints.

6.1.2 Introducing genetic code

The CGeneration class has functions for getting the size of and reserving
space in the population, and for adding and retrieving individuals. But there
are also genetic functions: select chooses an individual for mating through
roulette wheel or tournament selection. The crossover function passes on
to the CTRj::crossover function to perform crossover on the individual tra-
jectories. The most important function, evolve, is the heart of the GA.
It creates a new generation from the current by first cloning the elite indi-
vidual(s) to a child pool, then repeatedly selecting two parents, performing
crossover to create two new child individuals, performing mutation on each
child, and adding them to the child pool, until the same number of children
and parents exist. Finally, it calls the survive function with child pool and
the parent generation as arguments, which returns the survivors as a new,
hopefully better, generation.

Most of the genetic operator code is in the trajectory class CTrj. The
crossover function takes pointers to two parent and two child CTrj trajec-
tories, and performs one point or uniform crossover by adding copies of the
parent MPnt midpoints to the child trajectories. The mutate function per-
forms random, creeping or block mutation on the trajectory. For creeping
and block mutation, the midpoints are randomly moved by |∆θ| ≤ 5◦ and
|∆p| ≤ 2 phases. The invert function simply chooses two points and swaps
the pointers for all indices between them, effectively reversing a part of the
genome.

Finally, some pass-on functions exist in the class CIndividual: The
mutate and invert functions pass on to CTrj::mutate and CTrj::invert
for each trajectory. This is because the functions should be called for the
individual, but the actual calculations work on the trajectories.

Controlling the operators and parameters used by the GA is done by
global variables, which are changed throughout this report. Some parameters
are set in run-time by the user on the GA form of the PG program (not
discussed in this report); these are the population size (default 20), the elite
size (default 1), crossover probability (default 60%) and mutation probability
(default 1%).

23



6.1.3 The laws of physics

The GA-specific class GALowerLimb is a modified version of the PG class
CWABIAN2LowerLimb, a complete kinematic model of the lower limbs of the
robot. The purpose of this modified class is to calculate the fitness for a
given walking pattern by simulating the robot motion and recording the ap-
propriate quantities. When a GALowerLimb object is created, which is done
only once after the foot and waist trajectories have been set, the construc-
tor extracts necessary kinematic data from the provided CWABIAN2LowerLimb
object, and foot and waist trajectory data from the CGaitGenerator object.
Then any knee pattern evaluation can be made by updating the angles ma-
trix with knee angles and calling the getFitness function: For each phase,
the posture is updated by using inverse kinematics to find all joint angles,
then direct kinematics to find the resulting frames (i.e. all link positions and
orientations). Fitness function specific code then gathers data and calculates
the fitness.

GALowerLimb internally uses the specialized data types vec, mat and frm
to make its calculations. vec is a 3 × 1 vector, mat is a 3 × 3 matrix and
frm is a frame (containing a rotation matrix and a position vector). The PG
program has similar data types Vec3d and Mat3x3d, but they are implemented
as special cases of more general array data types and are too general and too
slow to be used in the large number of calculations needed for simulating
thousands or millions of robot positions during a single GA run.

6.2 Finding a fitness function

Before any optimization can be done, the optimization criterion has to be
mathematically defined to reflect the desired outcome. For genetic algo-
rithms, the criterion is the fitness function, and in this case, we want to
achieve “human-like walking”. However, human-likeness is not a mathemat-
ically well-defined quantity. Instead, several fitness function guesses based
on assumptions about human walking were tested. Given four gait patterns,
low-fitness knee patterns were generated according to each fitness function,
and the function giving the most human-like patterns was chosen. The gait
patterns used were

(a) Right foot lift. The right foot is lifted 5 cm and then put down again.
This trivial pattern is expected to result in some bending of the right
knee.

(b) Both feet lift. The right foot is lifted 5 cm and put down, followed by
a left foot 5 cm lift and put down. This pattern is a simple coordination

24



test. The symmetry of the pattern is expected to result in symmetric
knee trajectories.

(c) Six 20 cm steps. Starting with the right foot, six 20 cm steps are taken.
Note that the stride length for steps 2–5 is 40 cm, making all step lengths
20 cm. This is the gait pattern commonly used in demonstrations of
WABIAN-2. Here it tests start, continuous walking and stop motions.

(d) Six 40 cm steps. Starting with the right foot, six 40 cm steps are
taken. Like the previous pattern, stride lengths 2–5 are 80 cm. This
is designed to be a more human-like gait pattern, because 20 cm steps
might be too short for requiring any significant bending of the knees.

Each gait pattern starts and ends with 5 still phases to give the model time
to prepare for and gracefully end the compensatory motion. Each step lasts
for 20 phases, with a single midpoint at phase 10 having height z = 5 cm
and forward displacement of half the stride length, to allow for a smooth
movement. For simplicity, there are no phases of double support.

However, the GA could not be used to test the fitness functions, as its
precise implementation depends on the choice of function. Therefore, another
method had to be used for creating the knee patterns. Obvious candidates
were alternatives to GA like random walk or simulated annealing, but these
methods are random and in this case a deterministic, apprehensible method
was preferred. The following “midpoint sweeping” algorithm was invented:

Starting with an empty knee pattern, a new midpoint is added to the
right trajectory. The midpoint space is probed at regular intervals3 by sys-
tematically moving the midpoint and calculating the resulting fitness value.
The midpoint is then placed at the position giving the lowest fitness: the cur-
rently best position to add a midpoint. Alternating between the left and right
trajectories, the process is repeated by adding midpoints until the addition
of a midpoint at any position does not lower the fitness more.

This method will undoubtedly not find the optimal solution, because
midpoints are added and then fixed, while their would-be optimal positions
might change as more midpoints are added and the shape builds up. Also,
adding midpoints alternately to the right and left trajectories might not be
the optimal sequence. However, it should give a hint about the shape of
solutions considered “good” by the different fitness functions.

3Phases p ∈ {2, 3, . . . , np − 3}, angles θ ∈ {0◦, −1◦, . . . , −160◦}, where np is the
number of phases. The first and last two phases are not considered for continuity reasons.

25



6.2.1 Angular velocity

Based on the idea that keeping the joint angular velocities low should prevent
unnecessary movements, the first fitness function candidate was one of the
simplest imaginable, also serving as a test of the procedure. The fitness
function was

F =
∑

p

∑
j

θ̇2
j (p),

using θ̇j(p) =
θj(p+1)−θj(p)

∆t
for simplicity.4 Angular velocity squared ignores

the direction (sign) of the angular velocity, and gives larger angular velocities
bigger impact on the fitness. The summations are over all phases p and all
joints j.

The resulting knee trajectories and visualizations of the legs during the
simulated walking, stick diagrams, are shown in Figure 4, where (a) to (d)
correspond to the previously defined test gait patterns. For each gait pattern,
the top graphs show the left leg and the bottom graphs show the right leg.
In the trajectory graphs, circles indicate midpoint locations.

The generated patterns (a) to (c) have all knee angles identical to zero,
while the (d) pattern (40 cm steps) have small angular deviations for the right
knee but remains very close to zero. All patterns have stretched knees with-
out significant bending, even for the trivial (a) pattern. The stick diagrams
show that the hip positions are not smooth, resulting in a jerky walk.

6.2.2 Energy

The assumption that humans walk as they do because it is energy efficient
suggested that the next fitness function candidate should be a measure of en-
ergy. Since the joints are actuated by motors applying a torque proportional
to the energy input, the total sum of the joint torques was used as the next
fitness function.

Early experiments calculated the dynamic torque at joint j using τ(d)

j =
Ij θ̈j ẑj, where Ij is the moment of inertia tensor, appropriately translated by
the parallel axis theorem, θ̈j is the joint angular acceleration and ẑj is the
axis of rotation. However, this model only takes motion into account, not
“static” torques like those needed to maintain the posture due to gravity. A
gravity compensation torque term was calculated by τ(g)

j = rci
×mi(aci

−g),
where rci

is the position of the center of mass of i, mi is the link mass, aci
is

the acceleration of the center of mass and g is the gravity acceleration vector.
4Because the trajectories consist of splines, which are piecewise polynomials, the exact

angular velocities and accelerations could be calculated. However useful, such a modifica-
tion of the pattern generation program lies outside of the scope of this project.

26



le
ft

k
n
ee

ri
g
h
t

k
n
ee

0 2 4 6 8 10 12

phase
-80◦

-60◦

-40◦

-20◦

0◦

phase
-80◦

-60◦

-40◦

-20◦

0◦

(a) Right foot lift

le
ft

k
n
ee

ri
g
h
t

k
n
ee

0 2 4 6 8 10 12

phase
-80◦

-60◦

-40◦

-20◦

0◦

phase
-80◦

-60◦

-40◦

-20◦

0◦

(b) Both feet lift

le
ft

k
n
ee

ri
g
h
t

k
n
ee

0 2 4 6 8 10 12

phase
-80◦

-60◦

-40◦

-20◦

0◦

phase
-80◦

-60◦

-40◦

-20◦

0◦

(c) Six 20 cm steps

le
ft

k
n
ee

ri
g
h
t

k
n
ee

0 2 4 6 8 10 12

phase
-80◦

-60◦

-40◦

-20◦

0◦

phase
-80◦

-60◦

-40◦

-20◦

0◦

(d) Six 40 cm steps

Figure 4 – Knee trajectories and walking patterns using angular velocity as
fitness function (F =

∑
p

∑
j θ̇2

j (p))

27



These early models made an approximation by calculating the torque for
each link individually. It was realized that the complete calculation depends
on the interaction between all the links in the chain, so the Iterative Newton-
Euler Dynamic formulation described in the theory section was used instead.

Because of the split link chain of the robot, the iterations have to split
paths and join again. The outward iteration starts at the supporting foot,
goes up the supporting leg and down the swinging leg, then an inward iter-
ation goes up the swinging leg. After this, another outward iteration starts
from the the supporting hip and goes up the upper body, and an inward
goes down to the hip again. Finally, the inward iterations from the swinging
leg and the upper body are combined, and a final inward iteration down the
supporting leg completes the calculations.

The right foot is connected to joint 0 and the left foot is connected to joint
13. The joints 0–13 are the leg joints and 14–15 are the waist joints. The
Iterative Newton-Euler dynamic equations require a joint and link preceding
the first, and succeeding the last. In the implementation, therefore, there are
“virtual” joints and links i = j = −1 for the right foot, and i = j = 16 for the
left foot. Virtual joint and links i = j = 17 are also added after joint j = 15 to
represent and end the upper body chain. The base of the robot is not rotating
so we can set ωbase = αbase = 0. Thanks to Einstein’s theory of General
Relativity, we can set abase = −g to cleverly include gravity effects in the
calculations without any extra effort. Finally we set f free ends = nfree ends = 0
because there are no external forces or torques acting on the swinging foot
or the upper body. Base in this context is the index of the virtual link
preceding the supporting foot, and free ends are the two other virtual links:
the swinging foot and the upper body.

The fitness function used was

F =
∑

p

∑
j

τ 2
j (p),

using τj from the Iterative Newton-Euler equations. Again, the square makes
the values positive no matter the direction of the torque, and gives larger
torques bigger impact on the fitness. The resulting trajectory plots and stick
diagrams are shown in Figure 5.

In the (a) pattern, the right knee bends just the right amount to keep
the hip position constant, however there is also some unexpected bending of
up to about −10◦ of the left leg. The (b) pattern bends to the maximum
angle during the swing phases but there is also some stance bending, and the
trajectories are not entirely symmetric. Pattern (c) looks more like human
knee trajectories, however there are some irregularities, and toward the end
the right knee stretches to 0◦ and remains stretched through the last step.

28



Pattern (d) quickly bends to about −60◦ and stays there for most of the
pattern, but small variations representing the double knee action can be
seen.

6.2.3 Spin Angular Momentum

Recent research in human walking suggests that humans walk not only in an
energy-minimizing way, but also in a way that conserves the total angular
momentum L about the center of mass during a walking cycle, ∂LCM

∂t
= 0.

But the derivative of angular momentum is torque, which is already involved
in the fitness function as an energy consumption measure. The researchers
instead suggest minimization of spin angular momentum and the total sum of
joint torque squared for generating biologically realistic leg joint movements
[7].

The angular momentum is calculated as a last step of the outward itera-
tions of the Iterative Newton-Euler calculations by

Lj j = Ici
i ωj j,

λj = 103 | Lj j|,

where λj is a scalar value for the angular momentum, comparable to τj for
the torque. The factor 103 comes from the fact that the total torque values
by experiment are about 103 times larger than the total angular momentum
values, which will drown if not scaled to the same order of magnitude as the
torques.

Trying to optimize using an objective function with several terms of dif-
ferent units (such as adding a torque and an angular momentum) can give
unpredictable results. Unbeneficial changes to one term might still result in
a better overall fitness value because of the other term, preventing the ge-
netic algorithm to find good solutions. Therefore, some different forms of the
fitness function combining torque and angular momentum had to be tested,
to find a good cooperation between the terms.

First, the fitness function F =
∑

p

∑
j λ2

j(p) was used to see how the
angular momentum by itself worked as a fitness function. The resulting
trajectory plots and stick diagrams are shown in Figure 6.

The (a) pattern correctly bends the right knee just enough not to move
the hip, while keeping the left leg straight. The (b) pattern results in a
symmetric pattern with adequate bending, but at the midpoint just between
the lifts, both knees are bent instead of stretched. In (c), the pattern has
the right attributes (traces of double knee action can be seen), but it fails
to stretch the legs between the steps. Pattern (d) looks much like a human

29



le
ft

k
n
ee

ri
g
h
t

k
n
ee

0 2 4 6 8 10 12

phase
-80◦

-60◦

-40◦

-20◦

0◦

phase
-80◦

-60◦

-40◦

-20◦

0◦

(a) Right foot lift

le
ft

k
n
ee

ri
g
h
t

k
n
ee

0 2 4 6 8 10 12

phase
-80◦

-60◦

-40◦

-20◦

0◦

phase
-80◦

-60◦

-40◦

-20◦

0◦

(b) Both feet lift

le
ft

k
n
ee

ri
g
h
t

k
n
ee

0 2 4 6 8 10 12

phase
-80◦

-60◦

-40◦

-20◦

0◦

phase
-80◦

-60◦

-40◦

-20◦

0◦

(c) Six 20 cm steps

le
ft

k
n
ee

ri
g
h
t

k
n
ee

0 2 4 6 8 10 12

phase
-80◦

-60◦

-40◦

-20◦

0◦

phase
-80◦

-60◦

-40◦

-20◦

0◦

(d) Six 40 cm steps

Figure 5 – Knee trajectories and walking patterns using torque as fitness
function (F =

∑
p

∑
j τ2

j (p))

30



pattern, however also fails to fully stretch the right leg during support after
step 2.

In their article about spin angular momentum regulation in humans,
Popovic, Hofmann and Herr successfully used the torque squared plus spin
angular momentum, or F =

∑
p

∑
j τ 2

j (p) + λj(p), as an evaluation function
to test their predictions on a planar (i.e. two-dimensional) biped model [7].
Inspired by this and despite the model differences, the same fitness function
was tried on this WABIAN-2 simulation. The results are shown in Figure 7.

In pattern (a), the right knee bending is adequate but the left knee again
has some movements. Pattern (b) bends well but again has bent knees be-
tween the foot lifts, and is not entirely symmetrical. Pattern (c) looks human
yet somewhat irregular; the first left leg swing has larger bends than the rest,
and the double knee action is reversed for the third right leg swing which
results in the hip bump seen in the right stick diagram. In pattern (d), like
in the pattern in Figure 5d, the knee quickly bends to −60◦ with only small
hints of double knee actions visible, resulting in a a jerky walk. All patterns
look similar to the torque-only fitness function patterns, except that pattern
(c) does not fail in the end.

Both
∑

p

∑
j τ 2

j (p) and
∑

p

∑
j λ2

j(p) seem to give good results, so the
next fitness function tested was their sum, F =

∑
p

∑
j τ 2

j (p) + λ2
j(p). The

results are shown in Figure 8.
Lifting the right foot in pattern (a) again bends the right knee correctly

but has some irregularities for the left. Pattern (b) has good knee bending
that keeps the waist level, but are not entirely symmetric. However, the (c)
pattern produces a smooth pattern having all the expected elements, such
as double action and knee stretching. Pattern (d), Six 40 cm steps, also
produces a good pattern despite a failure to fully stretch the left leg after
the first step.

This is the only fitness function that gave good results both for (c) and
(d), which are the most important patterns because they constitute walking.
The small errors and irregularities were blamed on the “midpoint sweeping”
algorithm, and the torque squared plus lambda squared,

F =
∑

p

∑
j

τ 2
j (p) + λ2

j(p),

was chosen as the fitness function for the genetic algorithm.

6.2.4 Final tweaking

The fitness values returned for typical walking patterns turned out to be
in the order of 106 or 107. Numbers this large are difficult for humans to

31



le
ft

k
n
ee

ri
g
h
t

k
n
ee

0 2 4 6 8 10 12

phase
-80◦

-60◦

-40◦

-20◦

0◦

phase
-80◦

-60◦

-40◦

-20◦

0◦

(a) Right foot lift

le
ft

k
n
ee

ri
g
h
t

k
n
ee

0 2 4 6 8 10 12

phase
-80◦

-60◦

-40◦

-20◦

0◦

phase
-80◦

-60◦

-40◦

-20◦

0◦

(b) Both feet lift

le
ft

k
n
ee

ri
g
h
t

k
n
ee

0 2 4 6 8 10 12

phase
-80◦

-60◦

-40◦

-20◦

0◦

phase
-80◦

-60◦

-40◦

-20◦

0◦

(c) Six 20 cm steps

le
ft

k
n
ee

ri
g
h
t

k
n
ee

0 2 4 6 8 10 12

phase
-80◦

-60◦

-40◦

-20◦

0◦

phase
-80◦

-60◦

-40◦

-20◦

0◦

(d) Six 40 cm steps

Figure 6 – Knee trajectories and walking patterns using spin angular momen-
tum as fitness function (F =

∑
p

∑
j λ2

j (p))

32



le
ft

k
n
ee

ri
g
h
t

k
n
ee

0 2 4 6 8 10 12

phase
-80◦

-60◦

-40◦

-20◦

0◦

phase
-80◦

-60◦

-40◦

-20◦

0◦

(a) Right foot lift

le
ft

k
n
ee

ri
g
h
t

k
n
ee

0 2 4 6 8 10 12

phase
-80◦

-60◦

-40◦

-20◦

0◦

phase
-80◦

-60◦

-40◦

-20◦

0◦

(b) Both feet lift

le
ft

k
n
ee

ri
g
h
t

k
n
ee

0 2 4 6 8 10 12

phase
-80◦

-60◦

-40◦

-20◦

0◦

phase
-80◦

-60◦

-40◦

-20◦

0◦

(c) Six 20 cm steps

le
ft

k
n
ee

ri
g
h
t

k
n
ee

0 2 4 6 8 10 12

phase
-80◦

-60◦

-40◦

-20◦

0◦

phase
-80◦

-60◦

-40◦

-20◦

0◦

(d) Six 40 cm steps

Figure 7 – Knee trajectories and walking patterns using torque squared and
spin angular momentum as fitness function (F =

∑
p

∑
j τ2

j (p) + λj(p))

33



le
ft

k
n
ee

ri
g
h
t

k
n
ee

0 2 4 6 8 10 12

phase
-80◦

-60◦

-40◦

-20◦

0◦

phase
-80◦

-60◦

-40◦

-20◦

0◦

(a) Right foot lift

le
ft

k
n
ee

ri
g
h
t

k
n
ee

0 2 4 6 8 10 12

phase
-80◦

-60◦

-40◦

-20◦

0◦

phase
-80◦

-60◦

-40◦

-20◦

0◦

(b) Both feet lift

le
ft

k
n
ee

ri
g
h
t

k
n
ee

0 2 4 6 8 10 12

phase
-80◦

-60◦

-40◦

-20◦

0◦

phase
-80◦

-60◦

-40◦

-20◦

0◦

(c) Six 20 cm steps

le
ft

k
n
ee

ri
g
h
t

k
n
ee

0 2 4 6 8 10 12

phase
-80◦

-60◦

-40◦

-20◦

0◦

phase
-80◦

-60◦

-40◦

-20◦

0◦

(d) Six 40 cm steps

Figure 8 – Knee trajectories and walking patterns using torque and spin
angular momentum as fitness function (F =

∑
p

∑
j τ2

j (p) + λ2
j (p))

34



overview and compare. Therefore, a scaling factor of 10−6 was applied to the
fitness function.

Also, many of the trajectories in Figures 4 – 8 show excessive amounts of
midpoints located close to each other. Preliminary test runs showed that the
same problem exists for the GA. These formations are unwanted because a
large number of midpoints have a smaller probability of all being positioned
well in a certain amount of time. Often, a slight change in the position
of a midpoint would lead to lower fitness, however the probability of the
appropriate mutation occurring is very small and it is more likely that a
midpoint is added there though crossover or mutation. In a try to counteract
this and to favor patterns with fewer midpoints, a third term 10−3nmp was
added to the fitness function. nmp is the total number of midpoints in the
right and left trajectories. The factor 10−3 makes the effect small, so that
actual changes in midpoint setup are prioritized.

The final fitness function was

F = 10−3nmp + 10−6
∑

p

∑
j

τ 2
j (p) + λ2

j(p).

6.3 Running and fine-tuning

To find a good setup of genetic operators and parameters, standardized com-
parison tests were run. Gait pattern (d), Six 40 cm steps, from the Sweeping
Midpoint experiments was used as the base, because it constitutes normal
walking while the longer step length should require more knee bending than
shorter step lengths, thus making any effects easier to see.

There is a vast amount of possible setups, some of which produce reli-
able patterns quickly and and others that do not. The parameters are not
independent, and to find the best setup would be an non-linear optimization
problem5 in itself. Not knowing the underlying connections between the pa-
rameters, the most structured subdivision of parameter testing was chosen:
To test several different settings for each parameter while keeping all other
parameters constant, finding the best setting for each parameter in turn. In
each test, the GA was run for 300 generations, saving all fitnesses and the
best trajectory after each generation. Because the method is random, each
test was run 30 times to get representative average values. The setting with
the best evolution was used in all subsequent experiments, gradually improv-
ing the GA setup. In the event that several different settings were equally
good, the one requiring the least amount of computer power was chosen in
order to keep the GA as fast as possible.

5Perhaps a meta-GA could be used to solve this problem.

35



-80◦

-60◦

-40◦

-20◦

0◦

-80◦

-60◦

-40◦

-20◦

0◦

0 50 100 150 200 250 300
14

14.5

15

15.5

generation

fi
tn

es
s

phase

le
ft

k
n
ee

a
n
g
le

phase

ri
g
h
t

k
n
ee

a
n
g
le

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

k = 1, p = 1.0
k = 2, p = 0.8
k = 2, p = 0.6
k = 5, p = 0.8
k = 5, p = 0.6
k = 10, p = 0.8

Figure 9 – Selection operators – best is tournament selection (k = 5, p = 0.8)

The experiment results were visualized by a generation plot, showing the
average fitness of the best individuals for each generation, for each setting
of the parameters, and a plot showing all 30 trajectories generated from the
winning setting to visualize the coherence of the results. Optimally, the GA
should reach the same result each time and the trajectories should all be
equal.

6.3.1 The selection operator

Because of the many drawbacks of roulette-wheel selection, only tournament
selection was used. Different combinations of the parameters tournament
size k and selection probability p were tested. The other (constant) parame-
ter settings were the somewhat arbitrary initial setup, inspired by the SGA:
Children survival without differentiation, creeping mutation without add/re-
move, one point crossover without swap, population size of 20 individuals,
crossover probability of 60%, mutation probability of 1%, and the inversion
operator enabled.

The settings tested were (k = 2, p = 0.8), (k = 2, p = 0.6), (k =
5, p = 0.8), (k = 5, p = 0.6) and (k = 10, p = 0.8). For comparison,
(k = 1, p = 1.0), equivalent to random selection, is also included. The
results are shown in Figure 9.

The random selection performs worst, while k = 5 outperforms k = 2.
k = 10 eventually reaches the same low fitness, but converges slower. (k =
5, p = 0.8) and (k = 5, p = 0.6) are very similar, but with p = 0.8
there is a larger chance of getting faster results. The winning setup is thus
(k = 5, p = 0.8), and the trajectories generated using this setting are also
shown in Figure 9. Some trajectories have the correct form but a larger
number does not.

36



-80◦
-60◦
-40◦
-20◦

0◦

-80◦
-60◦
-40◦
-20◦

0◦

0 50 100 150 200 250 30013

13.5

14

14.5

15

15.5

generation

fi
tn

es
s

phase

le
ft

k
n
ee

an
gl

e

phase

ri
gh

t
k
n
ee

an
gl

e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Children
Invasion p = 50%
Invasion p = 25%
(µ + λ)

no differentiation
differentiation

Figure 10 – Survival operators – best is invasion p = 50% with differentiation

6.3.2 The survival operator

The survival operators Children, Invasion p = 50%, Invasion p = 25%, and
(µ+λ) were all tested with and without the differentiation operator, designed
to keep diversity high. The other parameter settings were: Tournament
selection (k = 5, p = 0.8), creeping mutation without add/remove, one
point crossover without swap, population size of 20 individuals, crossover
probability of 60%, mutation probability of 1%, and the inversion operator
enabled. The results are shown in Figure 10.

Children selection performs worst, followed by (µ+λ). Invasion p = 50%
and Invasion p = 25% perform about the same. Generally, using differen-
tiation is better than not using it. Invasion p = 50% with differentiation
converges slightly faster than p = 25%, and the larger child survival per-
centage p means fewer invading, new individuals, and it thus requires less
computing power. Invasion p = 50% with differentiation was chosen as the
survival operator. Trajectories generated using this survival operator are
shown in Figure 10. A slightly larger number of trajectories have the right
shape, but many deviate largely from the expected.

6.3.3 The mutation operator

The Random, Creeping and Block mutation operators were tested in combi-
nation with and without the ability to randomly add or remove midpoints.
The other parameter settings were: Tournament selection (k = 5, p = 0.8),
invasion p = 50% survival with differentiation, one point crossover without
swap, population size of 20 individuals, crossover probability of 60%, muta-
tion probability of 1%, and the inversion operator enabled. The results are
shown in Figure 11.

Block mutation performs the worst, followed by creeping mutation. Ran-
dom mutation unexpectedly performs well. For block and creeping mutation,

37



-80◦
-60◦
-40◦
-20◦

0◦

-80◦
-60◦
-40◦
-20◦

0◦

0 50 100 150 200 250 30013

13.5

14

14.5

15

15.5

generation

fi
tn

es
s

phase

le
ft

k
n
ee

an
gl

e

phase

ri
gh

t
k
n
ee

an
gl

e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Random
Creeping
Block

no add/remove
add/remove

Figure 11 – Mutation operators – best is random without add/remove

-80◦
-60◦
-40◦
-20◦

0◦

-80◦
-60◦
-40◦
-20◦

0◦

0 50 100 150 200 250 30013

13.5

14

14.5

15

15.5

generation

fi
tn

es
s

phase

le
ft

k
n
ee

an
gl

e
phase

ri
gh

t
k
n
ee

an
gl

e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

One point
Uniform

no left/right swap
left/right swap

Figure 12 – Crossover operators – best is uniform without swap

using add/remove is better, while for random mutation, it is slightly better
not to use add/remove. The best mutation operator is thus random muta-
tion without add/remove. Trajectories from using this mutation operator
are shown in Figure 11. Not many of the 30 trajectories have the desired
shape, and the spread seems to have increased. For example, none of the
trajectories fully stretch legs between steps.

6.3.4 The crossover operator

The one point and the uniform crossover operators were tested in combination
with and without the ability to randomly swap material between the left and
right trajectories. The other parameter settings were: Tournament selection
(k = 5, p = 0.8), invasion p = 50% survival with differentiation, random
mutation without add/remove, population size of 20 individuals, crossover
probability of 60%, mutation probability of 1%, and the inversion operator
enabled. The results are shown in Figure 12.

Using left/right swap performs significantly worse than not using it, with
one point crossover slightly better than uniform. However, when not using
swap, one point and uniform crossover are very similar, but uniform crossover

38



-80◦

-60◦

-40◦

-20◦

0◦

-80◦

-60◦

-40◦

-20◦

0◦

0 50 100 150 200 250 30012

12.5

13

13.5

14

14.5

15

15.5

generation

fi
tn

es
s

phase

le
ft

k
n
ee

a
n
g
le

phase

ri
g
h
t

k
n
ee

a
n
g
le

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n = 10
n = 20
n = 50
n = 200
n = 1000

Figure 13 – Population size – best is n = 1000

is slightly faster and is conceptually simpler. Therefore, uniform crossover
without swap was chosen, and the trajectories generated from it are shown
in Figure 12. Most trajectories have the right overall shape, and almost all
trajectories correctly bend around midswing, but some fail to stretch during
early stance.

6.3.5 Population size

Population sizes of 10, 20, 50, 200, and 1000 individuals were tested. This
experiment was only run 10 times because of its extreme time consumption,
yet the results seem conclusive. The other parameter settings were: Tour-
nament selection (k = 5, p = 0.8), invasion p = 50% survival with differ-
entiation, random mutation without add/remove, uniform crossover without
swap, crossover probability of 60%, mutation probability of 1%, and the in-
version operator enabled. The results are shown in Figure 13.

It is clear that for larger population sizes, the convergence is faster and
the fitness reaches lower. The best results were acquired with n = 1000, but
the time consumption (a full weekend for just 10 runs) makes this setting
practically impossible. The population size for subsequent experiments was
left at n = 20, to allow for comparison with the previous experiments. The
trajectories generated using the best setting n = 1000 are shown in Figure 13.
All trajectories correctly follow the same shape, with only small deviations.
However, about half the trajectories still fail to stretch the left leg after the
first step.

6.3.6 Mutation and Crossover probabilities

The mutation and crossover probabilities are related, and are therefore tested
at the same time. All combinations of crossover probabilities 30%, 60% and
90% with mutation probabilities 0.1%, 1% and 10% were tested. The other

39



-80◦

-60◦

-40◦

-20◦

0◦

-80◦

-60◦

-40◦

-20◦

0◦

0 50 100 150 200 250 30013

13.5

14

14.5

15

15.5

generation

fi
tn

es
s

phase

le
ft

k
n
ee

a
n
g
le

phase

ri
g
h
t

k
n
ee

a
n
g
le

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pmut = 0.1%
pmut = 1%
pmut = 10%

pcro = 30%
pcro = 60%
pcro = 90%

Figure 14 – Mutation and Crossover probabilities – best is pmut = 1%, pcro =
60%

parameter settings were: Tournament selection (k = 5, p = 0.8), invasion
p = 50% survival with differentiation, random mutation without add/remove,
uniform crossover without swap, population size of 20 individuals, and the
inversion operator enabled. The results are shown in Figure 14.

Mutation probabilities of pmut = 10% perform the worst, closely followed
by pmut = 0.1%, but pmut = 0.1% with a crossover probability of pcro = 30%
performs slightly better. Using pmut = 1% with pcro = 30% or 90% berform
slightly better still, but pmut = 1%, pcro = 60% is significantly better, and
was chosen for subsequent experiments. The trajectories generated using
these probabilities are shown in Figure 14. Again, they seem more spread
out than Figure 12, for example. Some trajectories miss some bends or
stretches entirely, but most follow the overall shape.

6.3.7 The inversion operator

The GA was tested with inversion on and off. The purpose of the inver-
sion operator is to rearrange the chromosomes to form short-order schemata,
but this is hardly meaningful with uniform crossover and random mutation.
It is expected that inversion will have no effect. The other parameter set-
tings were: Tournament selection (k = 5, p = 0.8), invasion p = 50% sur-
vival with differentiation, random mutation without add/remove, uniform
crossover without swap, population size of 20 individuals, crossover proba-
bility of 60%, and mutation probability of 1%. The results are shown in
Figure 15.

As expected, inversion does not have any effect on the fitness evolution.
Since using inversion is more computationally expensive than not using it,
inversion is turned off. Trajectories generated with inversion turned off are
shown in Figure 15. As before, they follow the same general pattern but have
some deviations, with failure to stretch slightly more prevalent than failure

40



-80◦

-60◦

-40◦

-20◦

0◦

-80◦

-60◦

-40◦

-20◦

0◦

0 50 100 150 200 250 300
13

13.5

14

14.5

15

15.5

generation

fi
tn

es
s

phase

le
ft

k
n
ee

a
n
g
le

phase

ri
g
h
t

k
n
ee

a
n
g
le

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Inversion off
Inversion on

Figure 15 – Inversion operators – best is inversion off

to bend.

6.3.8 Individuals vs. Generations

A population size of ni = 1 000 individuals6 was clearly the setting giving
the largest impact on the evolution, and producing the best results. Over
ng = 300 generations, a total of 300 000 individuals were in existence, and
an even larger number of fitness evaluations were made because of rejected
individuals and the 50% invasion. By contrast, using a population size of
ni = 20 merely considered a total of 6 000 individuals, and the comparison
seems unfair. To give them equal chance, (ni = 1 000, ng = 300) was
compared with (ni = 20, ng = 15 000), i.e. using the same total number of
tested individuals. The other parameter settings were: Tournament selection
(k = 5, p = 0.8), invasion p = 50% survival with differentiation, random
mutation without add/remove, uniform crossover without swap, crossover
probability of 60%, mutation probability of 1%, and inversion turned off.
The results are shown in Figure 16, with number of tested individuals instead
of generations on the horizontal axis.

(ni = 1 000, ng = 300) reaches a lower final fitness, while (ni = 20, ng =
15 000) initially converges faster. The trajectories generated using the larger
number of individuals are shown in Figure 16. These are the same trajectories
as shown in the population size experiment in Figure 13. For comparison, the
trajectories generated using the larger number of generations are shown in
Figure 17. These trajectories deviate more from the expected knee trajectory
pattern, and are not much better than trajectories from previous experiments
using ni = 20, ng = 300. The conclusion is that larger population sizes
produce better results.

6An index i is added here to tell the number of individuals ni apart from number of
generations ng.

41



-80◦

-60◦

-40◦

-20◦

0◦

-80◦

-60◦

-40◦

-20◦

0◦

0 0.5 1 1.5 2 2.5 312

12.5

13

13.5

14

14.5

15

15.5

105 individuals

fi
tn

es
s

phase

le
ft

k
n
ee

a
n
g
le

phase

ri
g
h
t

k
n
ee

a
n
g
le

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ni = 1 000, ng = 300
ni = 20, ng = 15 000

Figure 16 – Individuals vs. generations – best is (ni = 1 000, ng = 300)

-80◦

-60◦

-40◦

-20◦

0◦

-80◦

-60◦

-40◦

-20◦

0◦

phase

le
ft

k
n
ee

a
n
g
le

phase

ri
g
h
t

k
n
ee

a
n
g
le

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 17 – The trajectories generated using (ni = 20, ng = 15 000)

6.4 Real-world application

It is said in some groups that “if you talked the talk, you gotta’ walk the walk”.
The genetic algorithm had been constructed and fine-tuned to produce as
good patterns as possible, and it was time to test the results on WABIAN-2.

The gait pattern normally used in demonstrations of the robot has 20 cm
steps. To compare a GA pattern with a reference pattern, a six 20 cm steps
pattern similar to the (c) gait pattern from the Midpoint Sweeping experi-
ments was used. Because the pattern was going to be really used and not just
simulated, 128 still phases was inserted in the beginning and the end of the
pattern to allow for the necessary waist and trunk compensatory motions.
The number of phases for each step was changed from 20 to 32 to allow for
better timing, and double support was introduced as the first two phases of
every swing interval because instantaneous foot switching is not physically
possible during walking. Thus, the final pattern length was 448 phases, or
13.44 seconds. The corresponding knee pattern, used in demonstrations with
the described gait pattern, is shown in Figure 18.

However, the GA does not produce reliable, clean results. Not a single tra-
jectory generated in the previous experiments is without noise or deviations.
Therefore, a knee pattern inspired by the results was manually created. Un-

42



le
ft

k
n
ee

ri
g
h
t

k
n
ee

0 2 4 6 8 10 12

phase
-80◦

-60◦

-40◦

-20◦

0◦

phase
-80◦

-60◦

-40◦

-20◦

0◦

Figure 18 – The previous knee pattern, used in demonstrations of the robot

le
ft

k
n
ee

ri
g
h
t

k
n
ee

0 2 4 6 8 10 12

phase
-80◦

-60◦

-40◦

-20◦

0◦

phase
-80◦

-60◦

-40◦

-20◦

0◦

Figure 19 – The new pattern, based on GA experience and output

fortunately, the waist roll angle has a mechanical limit of about ±10◦. While
the original GA-inspired knee pattern resulted in small waist roll angles only,
the waist compensatory motion needed to keep balance resulted in waist roll
angles of up to ±15◦, which is an invalid robot posture. The knee pattern was
manually modified to reduce this effect, mainly by decreasing the maximum
knee bend angle by 20◦ (from −60◦ to −40◦) and the smaller initial double
action bend angle by 20◦ (from −40◦ to −20◦). The final GA-inspired knee
pattern is shown in Figure 19.

The robot was programmed with the two walking patterns, and the walk-
ing experiments were performed three times each. Movies of the walking was
recorded for further study, and sensor data from the robot was collected.
Snapshots from the movie was taken at about 0.3 second intervals, shown in
Figures 20 and 21. The 20 frames in a Figure should be read left to right,
top to bottom. The differences between the patterns are very small.

Close inspection of the old pattern frames in Figure 20 show that when
the swing leg bends to take a step, the stance leg also slightly bends with
it, creating a somewhat bouncy walk. This is most clearly visible in frames
14–15–16, where the right leg takes a step but the left leg also bends visibly.
This effect can also be seen in the knee pattern in Figure 18. The new

43



pattern frames in Figure 21 show a smoother walking style, almost as if the
robot is sneaking. The waist roll movements are larger than for the old
pattern, however this is hard to see in the frames but easily visible watching
the movie. The human-likeness of the new pattern is very hard to judge.
The walk still looks artificial, but the somewhat bouncy walking style of the
original pattern has been smoothed out.

The robot sensors reported a lower limb energy expenditure of 20.4 kJ
using the old knee pattern, and 14.1 kJ for the GA-inspired, which is a saving
of 6.3 kJ, or 31%. The energy expenditure for the whole robot was 57.2 kJ
for the old pattern and 50.2 kJ for the GA-inspired, a total saving of 12%.
Thus, the new pattern is much more energy efficient.

7 Discussion

The task of optimizing is controversial when the optimization goal is not
clear. There is no obvious definition as to what is human-like, considering
that most people have gaits so different that you can tell people apart from
the movements alone. Even if you do choose a “standard gait”, it is very
difficult to describe the gait mathematically, and even harder to find a func-
tion that scores different gaits such that good gaits get the best scores after
passing through the GA. In this project, the fitness function was constructed
by making guesses based on assumptions on human walking. However, the
experiment results are not consistent, and the most probable error is the fit-
ness function. It would be a difficult and time consuming task to find better
fitness functions.

Also, the robot model is only somewhat human-like. The links have
approximately human proportions, and the robot has the same basic degrees
of freedom as a human. But humans use contractive actuators (muscles) and
the robot uses rotational actuators (motors). The contact between the lower
limbs and the physical world is largely though the feet, and humans have
soft feet with several degrees of freedom, using the toes, heels and foot pitch
motions to make a smooth walk. The robot, by contrast, has solid feet that
normally keeps parallel to the ground. This makes any pattern look slightly
unhuman, but more importantly it might also affect the energy consumption
so that an optimal, energy efficient pattern still does not resemble human
walking.

There is also the problem of genetic algorithms not easily reaching optimal
solutions. Usually, GAs are good at quickly finding an area close to a global
optimum, but slow at actually converging to the optimum. This is because
a GA is not as “geographically aware” in the fitness landscape as some other

44



Figure 20 – Snapshots of the video captured when using old knee pattern

45



Figure 21 – Snapshots of the video captured when using new knee pattern

46



optimization methods, such as gradient descent. Usually, a better way to
solve an optimization problem is to first use a GA to find the general area
of the solution, avoiding local optima, and then use another method that
more quickly converges to the global optimum. However useful, there was
not enough time to perform such experiments within this project.

The fact that the compensatory calculation changes the walking pattern
also impacts the effectiveness of the method. Having to manually modify
the GA patterns to be able to use them on the robot is not practical. These
compensatory movements might also change the torques and spin angular
momenta of the robot, counteracting the GA results. The solution would be
to include the compensatory calculation in the fitness simulation of the robot,
but this is not possible for two reasons. The workflow of the PG program
is to set the ZMP trajectory after the knee trajectory, actively hindering
an automated process. This could easily be changed by a slight redesign of
the program. But more importantly, the compensatory motion calculation is
extremely slow, usually taking 10 seconds or more for a single pattern. 300
generations with a population size of 20 individuals typically took 5 minutes
to complete; it would take an extra 17 hours to include the compensation.
Including compensation in the longer experiment with ni = 1 000, ng = 300
would put an additional 5 weeks to the 4 hour single GA run time7.

The results from the Sweeping Midpoint experiments show that approx-
imate trajectories can be constructed using this simple model. As pointed
out, the method did not produce optimal trajectories, because the added
midpoints were fixed while their would-be optimal positions might shift when
adding more midpoints. However, the trajectories obtained were similar to
the resulting GA trajectories of later experiments, and also similar to the
human knee trajectories. A possible improvement of this method might be
to also use a “shake” function, repeatedly randomly moving all midpoints
slightly but only keeping the changes that lead to better fitness. This is
analogous to shaking a box full of oranges to make them occupy the smallest
volume possible, and might shift the midpoints to their would-be best po-
sitions after adding more midpoints. If this method works, it would almost
certainly be faster than a genetic algorithm.

The reason that most of the trajectories generated in the GA experiments
deviate from the expected knee trajectory seems to be that there are too few
individuals in the populations. The experiments with n = 1 000 gave much
better trajectories, but still had variations and even errors in them. Possibly,
using large population sizes and larger number of generations might make the

7A 3GHz dual CPU computer was used; the program is single threaded and can only
use one CPU, but the system tasks were running on the other and thus not interfering.

47



trajectories converge. However, the time consumption required makes this
approach impractical. Another improvement approach might be to find and
use a fitness function that more clearly favors only really good trajectories.

It is interesting that the GA turned out to work best using uniform
crossover and random mutation. These operators resemble the random walk
optimization method more than genetic algorithms. Uniform crossover ran-
domly distributes the genes of the parents to the children, and random mu-
tation randomly replaces some genes. Although debated, the strengths of
genetic algorithms is said to be the combination of a crossover and mutation
operator, crossover providing possibility of combining the good properties of
both parents into a child, and mutation randomly introducing new better
material or reintroducing genes that have previously been lost. Goldberg
and Mitchell argue that some problems are not difficult enough for a GA.
Genetic algorithms uses short-order schemata to construct good solutions,
so if there are no meaningful short-order schemata for the problem, a GA
does not perform better than a random method [5][6]. If this is the case here,
changing the data representation or fitness function might make the GA take
more advantage of the GA operators.

The data representation of using midpoints was chosen to be flexible,
however other representations might give better results. For example, iso-
lating and optimizing a single step (a stance and a swing phase) and then
repeating the result to create the full pattern would give more symmetric
and regular patterns, however the method would be restricted to patterns
with only one type of step. This would present problems during start and
stop motions. Another possibility is to use frequency and amplitude infor-
mation as genes. Knee trajectories can be seen as periodic functions having
relatively few defining attributes, and Fourier transforms might be used to
convert between the time domain knee pattern for simulations and the fre-
quency domain genome. Again the problem is start and stop motions, i.e.
restricting the pattern to standstill in the ends.

There are also many types of genetic operators that would be interesting
to try on this project. Using variable probabilities for allowing big changes
early and only smaller later might improve performance. The Boltzmann
tournament selection operator, for example, has a global temperature para-
meter that is constantly decreasing. The temperature determines the proba-
bility p in the tournament selection, thus more readily choosing suboptimal
individuals early, when diversity is needed, and choosing more optimal indi-
viduals later, when faster convergence is needed to find the solution. There
are also a number of interesting crossover operators, like arithmetic crossover
where the genes are not distributed but arithmetically combined (e.g. added)
to produce children that are the averages of the parents in some sense, or

48



multisexual crossover in which more than two parents share their genes to
produce children. Two point or n-point crossover are also interesting alter-
natives to one point and uniform crossover. However, if the problem does
not take advantage of the genetic operators used, these operators might also
be of no use, and the best setup might still be closer to a Random Walk.

8 Conclusion
This project was an attempt to generate optimal knee trajectories for the
humanoid robot WABIAN-2.

As a first step, the data representation was chosen and the base classes
were constructed to define the workings of the GA. A generation keeps the
individuals, and the individuals each store a left and a right knee trajectory.
A flexible data representation uses midpoints to define key angles in the
trajectories, and the full knee angle sets can be created by cubic spline inter-
polation when needed. A specialized version of the existing kinematics class
was created for calculating the fitness of an individual through simulation of
the robot walk.

Next, a fitness function giving lower fitnesses to more human-like knee
trajectories was constructed. A midpoint sweeping algorithm was invented
to evaluate fitness functions using four specially designed gait patterns. Fit-
ness functions based on joint angular velocities and different combinations
of torques and spin angular momenta were tested. The best fitness function
was F = 10−3nmp + 10−6

∑
p

∑
j τ 2

j (p) + λ2
j(p), which was the only function

generating acceptable patterns both for 20 cm step length and for 40 cm step
length walking.

Many different GA parameters and operators were tested to fine-tune
the GA performance. Each parameter was tested while keeping the others
constant, and the best choice of parameters was

• tournament selection with size k = 5 and probability p = 80%,

• invasion survival with child survival p = 50% using differentiation,

• random mutation without random add/remove of midpoints,

• uniform crossover without left/right trajectory swap,

• population size of n = 1 000,

• crossover probability of pcro = 60%, mutation probability of pmut = 1%,

• inversion operator turned off.

49



It was also tested and concluded that having a large population size but
few generations was more beneficial than having a small population size but
many generations, even though both methods tested the same number of
individuals.

Finally, a pattern inspired by the GA results was tested on the robot
and compared with a pattern previously used in demonstrations. The new
walking style was smoother but still looked artificial. The robot reported
using 31% less energy for the lower limbs with the new pattern.

It seems that the method works fairly well, even though the final setup
more resembles a random walk through the fitness landscape than a GA.
Some approximations have been made, and many improvements are possible.
For example, a more specialized fitness function or another data represen-
tation might be better suited to create short-order schemata and thus take
better advantage of the properties of genetic algorithms.

50



References
[1] Ed Ayyappa. Normal human locomotion, part 1: Basic concepts and

terminology. Journal of Prosthetics & Orthotics, 9(1), 1997.

[2] Guy Bessonet, Stéphane Chessé, and Philippe Sardain. Optimal gait syn-
thesis of a seven-link planar biped. The International Journal of Robotics
Research, 23(10–11):1059–73, October–November 2004.

[3] G. Capi, Y. Nasu, L. Barolli, M. Yamano, K. Mitobe, and K. Takeda.
A neural network implementation of biped robot optimal gait during
walking generated by genetic algorithm. In 9th Mediterranean Conference
on Control and Automation, June 2001.

[4] John J. Craig. Introduction to robotics: mechanics and control. Pearson
Prentice Hall, third edition, 2005.

[5] David E. Goldberg. Genetic algorithms in search, optimization, and ma-
chine learning. Addison-Wesley, 1989.

[6] Melanie Mitchell. An introduction to genetic algorithms. The MIT Press,
1998.

[7] Marko Popovic, Andreas Hofmann, and Hugh Herr. Angular momen-
tum regulation during human walking: Biomechanics and control. In
Proceedings of the 2004 IEEE International Conference on Robotics and
Automation, pages 2405–11, April 2004.

Bibliography
• Ed Ayyappa. Normal human locomotion, part 1: Basic concepts and

terminology. Journal of Prosthetics & Orthotics, 9(1), 1997.

• Guy Bessonet, Stéphane Chessé, and Philippe Sardain. Optimal gait
synthesis of a seven-link planar biped. The International Journal of
Robotics Research, 23(10–11):1059–73, October–November 2004.

• G. Capi, Y.Nasu, L. Barolli, M. Yamano, K. Mitobe, and K. Takeda.
A neural network implementation of biped robot optimal gait during
walking generated by genetic algorithm. In 9th Mediterranean Confer-
ence on Control and Automation, June 2001.

• John J. Craig, Introduction to Robotics: mechanics and control. Pear-
son Prentice Hall, third edition, 2005.

51



• Clive Davidson. Creatures from primordial silicon. New Scientist,
156(2108):30–35, November 1997.

• David E. Goldberg. Genetic Algorithms in search, optimization, and
machine learning. Addison-Wesley, 1989.

• Melanie Mitchell. An introduction to genetic algorithms. The MIT
Press, 1998.

• Marko Popovic, Andreas Hofmann, and Hugh Herr. Angular momen-
tum regulation during human walking: Biomechanics and control. In
Proceedings of the 2004 IEEE International Conference on Robotics
and Automation, pages 2405–11, April 2004.

52


