Chaos engineering
Software Testing ETSN20

1% Hannes Lantz
dept. Computer Science

2" Axel Peterson
dept. Computer Science

3 Jesper Grahm
dept. Computer Science

Faculty of Engineering, Lund University Faculty of Engineering, Lund University Faculty of Engineering, Lund University

Lund, Sweden
ha7117la-s @student.lu.se

Abstract—Chaos Engineering is a strategy for testing a sys-
tem’s resilience and it was developed by Netflix in 2011. By de-
liberately introducing failures in the system while in production,
information can be gathered about the behavior of the system
and preventive measures can be taken. This strategy relies on
the philosophy that failures will occur eventually and that you
need to be ready for them when they do. Injecting failures into a
system in production entails some risks but if done correctly will
ensure that the system is as resilient as possible. New knowledge
of the system gathered using this strategy will also greatly help
in handling unexpected failures.

Index Terms—Chaos Engineering, Testing, Netflix, Resilience

I. INTRODUCTION

Testing large-scale systems is hard. It is impossible to test
every part of a system. Not only does testing take time, it
also costs money. However it still needs to be done as system
failures can serious injury a product and company.

Chaos Engineering is a fairly new strategy for building
system resilience. It has only been around for 8 years and
is scarcely used by companies. A big factor to this might be
the risks involving conducting Chaos Experimenting which
might deter some companies. To fully get the benefits of Chaos
Engineering a certain mindset must be embraced while still
maintaining carefulness and proper risk analysis.

II. BACKGROUND OF CHAOS ENGINEERING
A. What is Chaos Engineering?

The concept of Chaos Engineering is a software testing
strategy that involves deliberately putting strain on an ac-
tive system to simulate unexpected events. Through this, the
resilience of the of system can be assessed and preventive
measures can be taken to ensure adequate quality of service.
The resilience of the system is a measurement that shows the
system’s ability to tolerate failures while still being able to
deliver the expected services that the system entails. Chaos
Engineering can be used to check a system’s resilience against
for example Infrastructure, Network or Application failures
[1].

The way Chaos Engineering works is often described using
the Chaos Monkey metaphor. This describes the process of
Chaos Engineering as letting out a monkey in a data center
and letting it go wild. This monkey can for example rip out

Lund, Sweden
mas13ape @student.lu.se

Lund, Sweden
datl5jgr@student.lu.se

network cables, trash servers or rearrange critical hardware. If
the system is resilient enough it will still be able to deliver the
expected services despite this monkey doing a lot of damage
to network and hardware connections. In practice there is of
course no actual monkey but instead a system is set up to
simulate this. This is done by sabotaging an active system by
for example shutting down network connections and servers.
Some failures that can be introduced are:

« Network connections interrupted

« Latency increase

o Data center shutdown (extreme)

o Hardware failure

« Database erase

These failures can be automated by having a running
program that puts these kind of strains on the system once
in a while.

B. Why was Chaos Engineering developed?

Chaos Engineering was developed by Netflix in 2011 during
the migration of their service to the cloud. Since Netflix is a
streaming service for movies it needs to have as close to 100%
up time as possible. Large distributed sytems tend to fail a lot
and they are hard to test with traditional testing [2]. Greg
Orzell got the idea that instead of assuming no breakdowns
would occur it would be better to see breakdowns as inevitable
and take preventive measure to strengthen the system against
them. This led to the development of Chaos Engineering and
introducing resilience as an obligation for developer rather
than an option.

C. Netflix’s role in Chaos Engineering

As mentioned before, Netflix is the most key actor in Chaos
Engineering. Their gigantic market and strict requirement
of up time makes their service an ideal system for using
Chaos Engineering. During their cloud migration in 2011 they
developed "The Simian Army” a category of tools used to test
a service using Chaos Engineering. This is further described
in section IV.

III. AN OVERVIEW OF CHAOS ENGINEERING

Chaos Engineering and testing differ slightly between one
another. Testing is done with the goal of to see if your ap-
plication run as expected within controlled boundaries. While



chaos is about stating a hypothesis and then find evidence to
accept/reject said hypothesis. There are four base principles of
Chaos Engineering [3].

« Build a hypothesis around steady-state behavior.
Vary real-world events.
e Run experiments in production.
« Automate experiments to run continuously.

A. Build a hypothesis

Before designing a chaos experiment is it important to
reflect on the potential outcome of running said experiment.
Could it lead to a problem that affect customers or severely in-
jure some other part of the system? These kinds of hypothesis
are important to make [3].

B. Vary real-world events

It is easy for a developer to just test what they know and will
not work and that will probably cover most common cases.
There are however many edge cases that can happened in the
real world that might never be seen when testing. Incorrect
nonfatal error handling are the source for 92% of catastrophic
system failures. This is the base for the second principle of
Chaos Engineering. Chaos experiments should be designed
input samples from the real world and that are believed to
be able to potentially disrupt the steady-state of the system.
Some examples of inputs that Netflix have used are latency-
injection and set a entire Amazon region offline [3].

C. Run experiments in production

When a service is a distributed system based on many
different servers coordinated over network traditional testing
is not sufficient to detect all the failures and potential failures
of the system. It is also not always possible to fully reproduce
the entire system in a test context and real clients in a client-
server relationship behave different than synthetic clients
which makes it important to run failure tests in production
in a relevant and realistic testing environment [3].

D. Automate experiments to run continuously

Since most systems nowadays are continuously being main-
tained, updated and modified it is important that the testing
also is continuously being updated and ran since the trust in the
results of past experiments will decrease when the system is
modified [3]. Running automated chaos experiments on a live
system with the goal to find failures in the system can sound
scary and dangerous to someone that has never experienced
chaos engineering before there are security measures that can
be taken to prevent that the system breaks. Some of these
are only running these automated chaos experiments during
working hours and aborting the experiments if they detect the
users being impacted. A couple other security mechanisms that
can be used are explained in IV.

IV. TOOLS AND AUTOMATION

There are a fair bit of different chaos-tools many of which
are open sourced. Most of the tools are also developed by
Netflix.

Chaos Monkey:

This is Netflix’s first chaos tool in what later became the
Simian Army. It began development in 2011, a couple years
after the launch of their streaming platform. It is a tool for
testing resilience by randomly shutting down parts of a system
network [4].

Simian Army:

This is what Netflix calls their collection of testing tools
that followed the success of Chaos Monkey. Two notable
tools in this collection is Latency Monkey and Chaos Gorilla.
Latency Monkey makes it possible to simulate a large delays to
measure how upstream services react. It is particularly useful
for testing new services. By simulating a dependencies failure
it can test a service without taking those dependencies off
from the rest of the system. Chaos Gorilla is in short a up
scaled version of Chaos Monkey. It can simulate a complete
Amazon availability zone going offline. This is used to test
a service ability to automatically re-balance its resources on
what is available in the system [4].

FIT:

FIT, Failure Injection Testing, is a system developed by Netflix
that makes it easier to inject failures in a controlled manner
on a microservice level in production. Before developing FIT
Netflix had some problems with their monkeys, especially
Latency Monkey, having to big impact on the on the whole
system and FIT helped Netflix limit the impact of the testing
to applications that did not need to be a part of that particular
testing [5] [6].

ChAP:

ChAP, Chaos Automation Platform, is also a system developed
by Netflix and the successor to FIT. While using FIT was an
improvement on the impact on the whole system compared to
before, FIT still required a large test group for the results to
be detectable and not disappear in the systems natural noise.
ChAP improves on this by using two small test groups that
are being compared. One experiment group that experiences
the failure test and a second control group to act as a baseline.
ChAP also has four major security mechanisms. The first
one is that the failure testing only run during business hours
when there always are software engineers available to fix
any issues if anything would break. The second is that the
testing will stop if there is any major customer impact from
the testing. The third security mechanism is limiting the total
impact the testing have. To do this all currently running
ChAP experiments cannot affect more than 5% of the total
traffic. The last security mechanism is failover. When a big
enough problems is detected Netflix can redirect traffic from
the region with problems via the other regions and this is
called failover. Since a failover can invalidate some of the
assumptions and parameters used in the chaos experiments no
ChAP experiments are allowed to run during the time of a



failover [6] [7].

Monocle: Monocle is another service developed and used
by Netflix in their chaos testing. Monocle has two major
functions. The first one is that Netflix uses Monocle to
introspect Netflix’s other services and the second one is to
generate new experiments. The different types of experiments
Monocle can generate are failure, latency just below a timeout
and latency causing failure [6].

V. ANALYSIS

We will look deeper into what we consider to be the
important bits about Chaos Engineering. Benefits, risk and
relation to traditional testing. With the first one being what
we think is the most important one.

A. What are the benefits?

As mentioned before, the benefits of using Chaos Engi-
neering are huge. Without the knowledge that it provides the
developers are essentially sitting in the dark and waiting for
something to go wrong. This provides very limited knowledge
about how the system will react when something unexpected
occurs. By using Chaos Engineering the developers can get a
much greater understanding of the system and how it behaves
in certain circumstances. This makes it very hard to make
the system fail gracefully. No large system will be perfect
and there will always exist failures and potential failures in
all large systems. Thus if a small part of the system fail the
system should fail gracefully in a way that if possible the end
user should not be affected or even notice it. For example in
the case of Netflix. If the service in their system that is manage
the bookmarks or the rating on the series and movies fail, the
end user should not not really be affected by it and should still
be able to use the streaming service. Due to Chaos Engineering
preventive measures can be taken to ensure that the system is
able to handle unexpected failures which will eventually occur.
By increasing the system’s resilience a much more stable base
is created and when a failure occurs there are clear paths and
information generated by the experiments which will provide
the developers with the knowledge to handle the failure in the
best possible way.

Chaos Engineering is a relatively new practice and it can
be hard and intimidating to start when an engineer or a team
never experienced it before and it will cost time and money to
implement and develop it will make your system more resilient
and will prevent future costs of downtime and headaches when
the system would otherwise eventually fail.

B. The risks of conducting Chaos Engineering

As can be expected there are many risks involved when
sabotaging your own system in production but Rosenthal et
al [8] describe some perceived risks as poor excuses for
not conducting Chaos Engineering. They recognize that some
system are not ideal for Chaos Engineering. The software of a
self driving car containing passengers is a good example of a
system that obviously is exempt from the need and usefulness
of Chaos Engineering. Another good example is the software

systems of a bank where even small down times can result in
enormous loss of money and transactions. However most users
do not work on system of this kind. A common excuse is "I’'m
pretty sure it will break”. Rosenthal et al counter this with the
argument that if you are reluctant to use Chaos Engineering
on your system because you are afraid it will break then
your system is not ready for Chaos Experiments and needs
to mature further. You should only start conducting Chaos
Engineering when you are relatively sure of the resilience of
your system and that it can withstand at least some failures.

Another poor excuse according to [8] is ”If it does break,
we're in big trouble”. This is a legitimate concern and a
key part of Chaos Engineering. They key is to minimize
the harm the experiment can do if it breaks the system by
making it easy to abort the experiment and minimizing the
blast radius of the experiment. Making it easy to abort can be
done by implementing a big red abort button or by automating
the process by having the experiment automatically abort
when it detects a potentially harmful break in the system.
Minimizing the blast radius is harder to implement and since
the experiment often needs to be big enough to generate
relevant findings but the bigger the test is, the more risk it can
involve if it actually breaks something. One way to minimizing
the blast radius is to conduct smaller tests on small groups of
users and breaking up bigger tests into this smaller category.
This way, if it does break, it only affects a small part of the
system. Another strategy is to use custom routing to protect
the users affected by the test if it breaks. By doing this the
users can be redirected to working server och system fast if
the system breaks.

As mentioned above there are definitely some risks with
conducting Chaos Engineering. But there are accurate strate-
gies to minimize the risks and a big part of the Chaos
Engineering philosophy is to accept that failure will happen
and when they do happen it benefits the developers and owners
greatly if they are prepared for it.

C. How Chaos Engineering relates to Traditional Testing

Chaos Engineering have much in common with traditional
testing in that it is used to find flaws in the system. But the
strategy is very different from traditional test cases. According
to [8] testing is often used to isolate specific cases. An
assertion is made and a specific result is sought. This does
not generate new information about the system which is an
important distinction. All it does is see if the system behaves
as predicted.

Using Chaos Engineering, on the other hand, new infor-
mation about the system is generated. A failure is injected
into the system and they way the system reacts produces a
new behavior of the system under those circumstances. When
conducting Chaos Experimenting no specific result is sought.
Instead a failure is injected and the resulting behavior gives
the developers new knowledge about the system. In this way,
Chaos Experimenting can greatly help in getting a broader
view of the system and how it might react to certain often



unexpected scenarios. This is extremely valuable for the health
of these kinds of systems.

VI. CONCLUSION

Chaos Engineering is a fairly new practice that seems to
be getting more attention. Most chaos-tools are open source
which is a good thing as it makes it possible for a developer to
use a already existing tool that is able to be further customized
to suit the developers need. Open source is also a great as it
makes it widely accessible which in turn boost the awareness
of the concept. We think that Chaos Engineering will grow
in popularity and usage in the years to come. It is clear that
Netflix have had success with running chaos experiments on
their services.

By conducting Chaos Engineering you ensure that your
system has at least some resilience to unexpected failures.
Not conducting it can be seen as very naive since the scenario
of countless types of failures is not properly analysed. By
getting into the mindset of Chaos Engineering and embracing
that failures will happen you can be prepared for them and in
many cases prevent before they even happen. This is the key
to Chaos Engineering and a resilient system.

Chaos Engineering is important for both small and large
systems. Small scale systems often have more to lose compare
to the size of the system and often have not developed their
backup, restore process and preventive measures as much as
larger systems. It is also easier to start early and not have to
start when the system already have a large user base. Since
there are a lot of tools open-source it is also not huge cost
issue for smaller systems.

CONTRIBUTION STATEMENT

A. Hannes Lantz

Introduction

« Why was Chaos Engineering developed?
o Tools and Automation

« An overview of Chaos Engineering

« Conclusion

B. Axel Peterson

An overview of Chaos Engineering
o Tools and Automation

Analysis

« Conclusion

C. Jesper Grahm

o Abstract

Introduction

o Background of Chaos Engineering
o Analysis

Conclusion

(1]

(2]

31

(4]

(5]
(6]

(7]
(8]

REFERENCES

J. Simonsson, L. Zhang, B. Morin, B. Baudry, and M. Monperrus,
“Observability and Chaos Engineering on System Calls for Containerized
Applications in Docker,” arXiv:1907.13039 [cs], Jul. 2019, arXiv:
1907.13039. [Online]. Available: http://arxiv.org/abs/1907.13039

H. Tucker, L. Hochstein, N. Jones, A. Basiri, and C. Rosenthal,
“The Business Case for Chaos Engineering,” IEEE Cloud Computing,
vol. 5, no. 3, pp. 45-54, May 2018. [Online]. Available: https:
/fieeexplore.ieee.org/document/8383672/

A. Basiri, N. Behnam, R. de Rooij, L. Hochstein, L. Kosewski,
J. Reynolds, and C. Rosenthal, “Chaos Engineering,” IEEE Software,
vol. 33, no. 3, pp. 3541, May 2016. [Online]. Available: https:
/lieeexplore.ieee.org/document/7436642/

The netflix simian army. [Online]. Available: https://medium.com/
netflix-techblog/the-netflix-simian-army- 16e57fbab116

Fit: Failure injection testing. [Online]. Available: https://medium.com/
netflix-techblog/fit- failure-injection- testing-35d8e2a9bb2

A. Basiri, L. Hochstein, N. Jones, and H. Tucker, “Automating Chaos
Experiments in Production,” in 2019 IEEE/ACM 4Ist International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). Montreal, QC, Canada: IEEE, May 2019, pp. 31-40.
[Online]. Available: https://ieeexplore.ieee.org/document/8804433/
Chap: Chaos automation platform. [Online]. Available: https://medium.
com/netflix-techblog/chap-chaos-automation-platform-53e6d528371f

B. J. Rosenthal, Hochstein and Basiri, “Chaos engineering, building
confidence in system behavior through experiments,” IEEE Software,
Aug. 2017. [Online]. Available: http://channyblog.s3-ap-northeast-2.
amazonaws.com/data/channy/2018/01/18023151/chaos-engineering.pdf



