
 

 

Testing in Continuous Integration and Deployment 
Project in ETSN20 Software Testing 

 
Andreas Warvsten – ine15awa@student.lu.se 
Alexander Goobar – ine15ago@student.lu.se 
Anton Engström -  ine15aen@student.lu.se 

 
 

Abstract—This report explores testing in a Continuous Integra-
tion and Deployment setting. It provides an overview of Contin-
uous Integration and Deployment and maps testing done in that 
specific context. It is time consuming and costly to manually de-
liver new stable releases of a software to a customer. As a re-
sult, tools and frameworks have been developed to automate 
the build, testing and deployment of software into production. 
The importance of test automation was identified using models 
and frameworks describing the Continuous Integration and De-
ployment pipeline process. Key aspects and challenges in imple-
menting this automated process are analyzed, such as having an 
adequate testing strategy and investing in test automation. 

I. INTRODUCTION 
The terms “Continuous Integration” and “Continuous De-

ployment”, henceforth referred to as CI and CD, are often 
mentioned in the context of modern software development, es-
pecially when speaking of agile practices. To fully understand 
these terms and their background, a brief history of agile and 
software development methodologies will be presented. 

Agile programming has grown to become a preferred way 
of working in many modern software projects. It focuses on 
short iterations with quick feedback loops. As the use of agile 
programming methodologies grew with the demand for faster 
delivery, a need for automation of build, test and deployment 
processes emerged. It was crucial for the agile programmer to 
minimize time spent on waiting for feedback from testing and 
integration teams for every change or added functionality they 
submitted, especially since these could take days to review [4]. 
Speeding up the process of testing the software, building the 
application and deploying it to the production environment, 
without sacrificing quality, is what the CI/CD process aims to 
achieve [7].  

To understand CI, and the issues it deals with, one should 
understand its origins in the agile movement. The concept of 
CI was first written about in Kent Beck’s book “Extreme Pro-
gramming Explained” released in 1999 [11], and emerged as 
the benefits of agile software development were becoming in-
creasingly apparent. Before the rise of agile programming, the 
waterfall model was widely used [1]. Issues with the waterfall 
model was, however, that it was not until the end of develop-
ment, during the integration phase, that it became apparent 
whether or not the system was operational. Not building the 
whole system until the developers had finished developing all 

components and functionality, also meant that if the build was 
not successful, it was not obvious what caused the problem and 
where to look for bugs. There may be many components of the 
build that do not interact with each other as one had predicted. 
It was from this issue that the agile ethos of regular integration 
of the codebase was born. This way, the feedback of whether 
or not the system works comes earlier as one develops smaller 
parts of it at a time. With smaller additions to the system, it is 
easier to identify what has changed and what might be causing 
any integration issues or bugs. This was taken one step further 
when Kent Beck posed the question “if regular integration is 
good, why not do it all the time?”, i.e. why not build the system 
every time anyone commits a change to it? That way it is very 
easy for developers to gather quick feedback on their devel-
oped code. They also avoid the problem of having to search 
many possible sources when integration fails. The goal of CI 
is to reduce the amount of bugs, the time it takes to locate and 
fix them and as a consequence deliver the software system 
faster. [1]  In this report, we aim to investigate what character-
izes testing in these extremely iterative environments.  

 

II. DESCRIPTION 
A. The CI/CD Pipeline 

Figure 1 illustrates the fundamental components of the 
Continuous Integration, Delivery and Deployment pipelines. 
As can be seen, CI is the precursor to deployment and 
delivery. When working according to CI principles, the 
developers frequently commit their code to the source 
repository, as this helps keep the scale of the potential merge 
conflicts to a minimum. The build is then constructed on a 
CI server, where automated tests are run, and the results are 
used as feedback to the developers. In both Continuous 
Deployment and Continuous Delivery, all tests need to pass, 
in order to move further down the pipeline. The tests 
employed in the CI/CD pipeline constitute what’s known as 
a quality gate. In order for the build to be promoted to 
production, it has to pass the quality gate.[7] 

It can be difficult to distinguish Continuous Deployment 
from Continuous Delivery, as the terms are quite similar, 
and are often expressed in the same context. The difference 
is that Continuous Deployment aims to deploy updates to 
production as soon as they have passed the quality gate, 
while Continuous Delivery only requires that the system 



 

 

shall be ready for deployment. A way to implement 
Continuous Delivery is to first deploy onto a staging server, 
where new releases can be tried in a simulated environment, 
until someone decides to manually deploy the feature into 
production [1]. 

 
B. Role of Testing in CI/CD 

As the frequency of commits increases with CI/CD, the 
number of tests that need to be performed does as well. Much 
effort is therefore being put into trying to minimize time in 
the build process and test phase, as this would improve the 
efficiency of the CI/CD process [7]. Shahina et al. mentions 
that “one of the most prominent roadblocks to adopting CI, 
reported by several studies, were the challenges associated 
with the testing phase” [7]. They also present six aspects that 
are of great importance for the success of a CI/CD process. 
Of the six described, three are directly attributed to testing, 
and these are:  Reduce build and test time in CI, Increase visi-
bility and awareness on build and test results in CI and lastly 
Support (semi-) automated continuous testing [7].  

Challenges with implementing a CI process are also de-
scribed, and when it comes to testing, the two main ones are: 
lack of a proper test strategy and poor test quality. The lack 
of a proper test strategy can often be attributed to either lack 
of fully automated testing, lack of Test Driven Development 
or both [7]. 
 

C. Tools 
There are several tools used throughout the CI/CD 

pipeline. The ones most pertinent to testing in a CI/CD 
context are the server coordinating tools, the build tools and 
testing tools. Jenkins, a widely used tool, can be used to set 
up both the CI and CD servers in both Continuous Delivery 
as well as Continuous Deployment pipelines. The CI/CD 
pipeline also uses other tools for task automation. These 
include building tools, such as Ant and Maven, as well as 
testing tools, such as JUnit and Selenium. [7] Since Jenkins 
does not provide effective versioning control [12], it is not 
the end all be all tool for full implementation of a CI/CD 
pipeline. For example, one of the previously mentioned 
testing tools, supported by Jenkins, could be used to 
organize unit tests. Jenkins would then schedule, run and 
coordinate the other steps of the CI. These include building 

the application and interacting with the code repository. 
Jenkins also provides plugins for monitoring the various 
steps in the pipeline, and helps visualizing the results. [12] 
 
D. Models and frameworks for testing in CI/CD 

To get a deeper understanding of the processes that make 
up a CI/CD pipeline, especially in regards to testing, the Test 
Orchestration framework will be described. Furthermore, the 
Test Activity Stakeholders model presents how CI/CD pipe-
lines can include certain test activities to support stakeholder 
interests. 
 

1) Test Orchestration Framework 
The Test Orchestration framework was designed by Nikhil 

Rathod and Anil Surve in 2015 to give a general description 
of the CI/CD process, by mapping a streamlined release 
pipeline. The framework has four main components: build 
automation, testing automation, reporting and deployment 
automation. While build automation and deployment 
automation are important, this section will be focusing on 
the testing automation and reporting components. [2] 

Test automation is described as the use of testing frame-
works to automatically execute tests. With many test activi-
ties being time consuming to complete manually, it is a key 
factor to build a foundation of automated testing when 
adopting CI principles. [2] 

Once the automated testing process has matured, it should 
be able to be run at any time and frequently. In an ideal situ-
ation, all regression tests are automated. Since CI/CD im-
plies rapid release processes and gradual updates, automated 
regression tests are essential to fully be able to take part of 
the benefits of CI/CD. [2] 

Reporting is the process of analyzing the test results and 
the result of that analysis. While testing is important to find 
and identify errors, the analysis part is necessary to under-
stand the errors and the potential impact they can have. 
Therefore, it is important that the CI/CD pipeline can present 
the findings of the automated tests in a generated test report. 
It is then the responsibility of either developers or testers to 
read these reports and take appropriate action if there are 
critical errors. [2] 

 
 

Figure 1. Overview of the fundamental components in a CI/CD pipeline [7] 
 



 

 

2) TAS Model 
The Test Activity Stakeholders (TAS) model was pre-

sented by Torvald Mårtensson, Daniel Ståhl and Jan Bosch in 
2018. It is based on 25 interviews done at four different com-
panies developing large-scale systems. The model describes 
how CI pipelines can be formed to include certain test activi-
ties that can support four main stakeholder interests: checking 
quality, securing stability, measuring progress and verifying 
compliance. [3] 
The model identifies three phases in the pipeline: 

• Early in the pipeline: In this phase, unit tests and system 
tests are executed to check the new software changes. Testing 
vital functions with system tests is also done to confirm the 
system stability and integrity, likely monitored by a test man-
ager. 

• Later in the pipeline: Here, a wider range of system tests 
that support multiple stakeholder interests are run, and they are 
followed up by a developer if necessary. 

• Release pipeline: In this phase, the project is approaching 
a release. Here, test cases based on the requirements are exe-
cuted on real hardware to verify compliance. [3] 

 

Figure 2. Overview of The TAS model [3] 
 
In Figure 2, the model is summarized graphically, also 

marking how different test techniques support the stakeholder 
interests. [AUT] means automatic testing, [MAN] means man-
ual testing and [EXP] means exploratory testing. [3] 

 
E. Test Driven Development 

The The authors behind the Test Orchestration framework 
describe Test Driven Development (TDD) as a key feature of 
agile software development, also enabling an efficient way of 
working with a CI pipeline [2]. Shahina et al also mentions this 
as a key aspect for successful CI implementation [7]. A case 
study done at a Dutch SME confirmed the combination of 
TDD and CI to be a favorable approach in terms of both quality 

and productivity for software production [5]. In TDD, low-
level tests based on the requirements are written before the pro-
duction code. A few unit tests are coded initially, followed by 
a simple and partial implementation to pass the tests. After-
wards, one more unit test is added, followed by code imple-
mentation to pass the test, but not more. This process of incre-
mentally adding unit tests and code is then repeated until there 
is nothing left to test, see Figure 3. [6] 

 
Figure 3. The TDD process [6] 

 

III. ANALYSIS 
To further understand the impact of testing and various im-

portant aspects surrounding it, in a CI/CD context, the follow-
ing questions will be discussed: 

- What are the key factors of testing in a CI/CD pro-
cess?  

- What areas could be improved for a more efficient 
CI/CD process?  

- What are the main organizational challenges?  

A. Importance of Test Automation and Infrastructure 
As can be seen in both the Test Orchestration framework 

and the TAS model, test automation plays an essential role in 
CI/CD. In the Test Orchestration framework, test automation 
is a main component in the pipeline, which can be interpreted 
as a hard requirement for CI/CD. In the TAS model, 
automatic testing is presented as a possible test technique for 
all test activities. However, in this model exploratory and 
manual testing are presented as viable options for some of the 
phases and test types, such as system tests. This would imply 
that while test automation plays a key role in the pipeline, it 
is not a hard requirement for each testing activity.  

Many companies seek to achieve automated tests, but the 
process of getting there can be difficult. Implementing 
automated tests may require a large initial investment, by 
getting the infrastructure and code to support the automation. 
The developers writing the test code would need knowledge 
of testing and development to ensure quality tests, and 



 

 

employees with this cross competence can be costly to 
acquire.  

The infrastructure, including automation and CI/CD tools, 
also play a key role. Without the help of automation tools, in-
tegrating and testing every commit becomes a tedious task in 
a rapid iterative development process. As such, this is an area 
where automation needs to take center stage and where much 
of the effort is spent. As mentioned in section 2.C, there are 
many tools available to help set up the testing in the CI/CD 
pipeline. The infrastructure enables teams to work efficiently 
and spend less time on repetitive manual tasks.  

Although the infrastructure does most of the work, if set 
up correctly, it is crucial that the correct routines support it to 
extract the most value out of it. The important routine to be 
noted on this subject is to commit early and often. It is the 
high frequency of code commits, which results in integration 
and build of the application through the CI pipeline, that 
keeps iterations short and provides quick feedback. 
 

B. Areas of Improvement in the Testing Process 
As stated in section 2.B, aspects related to the test phase 

are what generate some of the biggest challenges for adopting 
a CI/CD process.  Apart from automation, two important 
aspects related to testing were also presented. These were: 
Reduce build and test time in CI and Increase visibility and 
awareness on build and test results in CI. In order to continue 
improving the process of CI/CD, it is crucial to investigate 
areas and aspects of testing that can be improved, as they can 
have a huge potential impact on the effectiveness of CI/CD.  

Two proposed methodologies for reducing build and test 
time are VMVM and VMVMVM. The first abbreviation 
stands for virtual machine in a virtual machine and the 
second one takes it one step further with virtual machine in a 
virtual machine on a virtual machine. The idea behind these 
approaches is to isolate in-memory and external dependencies 
between test cases, which would enable them to be run 
simultaneously, in parallel processes. By having many test 
cases running in parallel, the time of testing could be reduced 
significantly [9]. 

Another approach is based on using historical data from 
the test suite, in order to construct a set of test cases that 
should be prioritized. The prioritized test cases, i.e. the most 
critical ones, can then be used early in the testing process. 
The effect of this is that the developers can receive feedback 
on these tests much quicker than they otherwise would, 
which speeds up the entire process [7].   

An issue that comes as a by-product of the increased 
number of tests in a CI environment is the increasing 
difficulty in handling all that test data [7]. As mentioned in 
2.D, the Test Orchestration framework also emphasizes the 
importance of reporting the data, generated from the tests, in 
a comprehensible manner. Without an effective plan for 
structuring it, the feedback process becomes significantly 
slower.  

Furthermore, Shahina et al. have summarized two 
approaches that can be utilized in order to increase the 
visibility and awareness on build and test results in CI. The 
first one is CIViT, Continuous Integration Visualization 
Technique [7]. This is a technique that helps visualizing the 
entire testing process, in terms of time and extent of the 
testing. It also gives developers a way of visualizing the 
status of different components that will be or have been 
tested, which could help avoid spending time on performing 
duplicate testing [7]. For the second approach, Shahina et al. 
reference Brandtner et al. [8], who describe a possible way of 
making the data easier to comprehend by the use of SQA-
mashup, a mashup framework. The idea behind this is to 
create a platform where the data from single testing tools can 
be integrated and visualized in a way that can facilitate the 
data analysis [8]. These types of improvements could help 
various stakeholders get an overview of the massive amounts 
of data generated in the CI/CD pipeline.  

 

C. Organizational Challenges 
While it might seem beneficial to move to a process built 

on CI/CD, many companies that are suited for this way of pro-
ducing software still have not taken the initiative. For compa-
nies that already have adopted CI/CD, there are also challenges 
in improving the process, due to factors regarding the testing. 
Both of these situations can stem from the organizational chal-
lenges, in particular regarding the testing domain.  

The transition to CI/CD might require the organization to 
adopt a more robust test strategy. As previously mentioned, 
Test Driven Development is in many cases regarded as a good 
test strategy to enable CI/CD for a project. If a certain organi-
zation does not currently use TDD, there can be several chal-
lenges related to the test strategy. Firstly, they could try to use 
CI/CD without a TDD strategy, which could be doable but not 
optimal. This could in turn end up with the CI/CD process not 
achieving the intended results, due to an inefficient way of 
working with the tests. Managers might then assume that the 
CI/CD process is flawed, and not connect the root cause to be 
the test strategy. Secondly, employees are often opposed to 
change [10]. This can result in a new test strategy not being 
executed to its fullest potential, hurting the overall QA perfor-
mance and efficiency of the project. 

Adapting the organization to support CI/CD can be a costly 
process. This was previously mentioned with regards to imple-
menting automated tests, but this also applies to organizational 
challenges. For example, a company might feel pressured to 
keep manual tests to not put the employees performing these 
tests out of work. In addition, forming a new test strategy and 
building out the supporting infrastructure might also require a 
large initial investment. These factors could make the manage-
ment refrain from initializing test automation, even though 
there are both long-term financial and productivity incentives 
to do so. 



 

 

The organizational challenges may be most prevalent in 
big companies with large-scale applications, due to these com-
panies often requiring longer processes to change strategies, 
project structures and infrastructure. However, larger projects 
can potentially mean larger benefits from a successful CI/CD 
process. Not only because of the significant reduction of over-
head and cost savings, but also from the additional customer 
value that is created by providing new features at a more rapid 
pace. This is why it is important for organizations to realize the 
long term benefits of enabling the transition to CI/CD by ini-
tializing change and making initial investment towards a more 
CI-compatible testing process. 
 

IV. CONCLUSION 
The use of CI and CD principles is becoming more preva-

lent in the software development world, leading to more rapid 
iterations of software releases. With this trend, the need for ro-
bust and efficient testing procedures increases. Testing plays 
an important role in CI/CD pipelines. Therefore, it is crucial 
that the testing is carefully planned and structured. To further 
support the processes of CI/CD, software tools such as Jenkins 
are often used for task automation. 

As could be seen in the Test Orchestration framework, it is 
very important to automate tests and also provide a way of pre-
senting the findings in a generated report. When constructing 
the tests, it is important to have stakeholder interests in mind, 
which was described by the TAS model. 

An adequate development process is needed to support a 
CI/CD pipeline. Optimally, the project should use Test Driven 
Development, where unit tests are written before the code im-
plementation. This supports a test-focused mindset that is im-
portant when working with CI/CD, reducing the risk of de-
ploying bugs into production.  

As CI/CD pipelines heavily depend on test automation, it is 
apparent that this is a key requirement for the CI/CD process. 
The automated tests also have to be accompanied with the right 
infrastructure of software tools and routines to achieve an effi-
cient process. In the efficiency factor lies some challenges in 
reducing build and test times, as organizations strive to have 
pipelines with shorter lead times, making this an appealing 
area for future research. Moreover, organizations might also 
face challenges making the transition to a CI/CD process, such 
as forming a new test strategy and investing in test automation, 
while potentially facing backlash from employees opposed to 
change or a reduced number of positions in manual testing. 
However, for managers, it is important to realize the long term 
benefits of CI/CD, and to invest in robust testing to support it. 

 

V.  CONTRIBUTION STATEMENT 
The contributions in the report have been mapped in the fol-

lowing list: 

Introduction - Engström 
The CI/CD Process - Warvsten, Engström 
Role of Testing in CI/CD - Warvsten  
Tools - Engström 
Models and frameworks for CI/CD - Goobar 
Test Driven Development - Goobar 
Importance of Test Automation and Infrastructure - Goobar, 
Engström 
Areas of Improvement in the Testing Process - Warvsten 
Organizational Challenges - Goobar 
Conclusion – Goobar 
 

The writing process was conducted with the authors being 
gathered. The purpose and content of each section was dis-
cussed and agreed upon in the group, and input from everyone 
was taken into account when required during the writing pro-
cess. 

REFERENCES 
[1] J. Humble and D. Farley. Continuous Delivery - Reliable 

Software Releases Through Build, Test And Deployment 
Automation. Pearson Education. 2010. 

[2] N. Rathod and A. Surve. Test Orchestration - A framework for 
Continuous Integration and Continuous Deployment 
International Conference on Pervasive Computing (ICPC). 
2015. 

[3] T. Mårtensson, D. Ståhl, and J. Bosch. Test activities in the 
continuous integration and delivery pipeline. Journal of 
Software: Evolution and Process, Vol 31, Issue 4, April.  2019. 

[4] S. Neely and S. Stolt. Continuous Delivery? Easy! Just Change 
Everything. In proceedings of Agile 2013, Nashville, Tennessee, 
August 5-9. 2013. 

[5] C. Amrit and Y. Meijberg. Effectiveness of Test Driven 
Development and Continuous Integration – A Case Study. IT 
Professional. 2017. 

[6] K. Naik and P. Tripathy. Software Testing and Quality 
Assurance: Theory and Practice. Wiley. 2008. pp. 71-72. 

[7] M. Shahina, M. A. Babara, and L. Zhub. Continuous Integration, 
Delivery and Deployment: A Systematic Review on Approaches, 
Tools, Challenges and Practices. IEEE Access. 2017. 

[8] M. Brandtner, E. Giger, and H. Gall. SQA-Mashup: A mashup 
framework for continuous integration. Information and Software 
Technology, Vol 65, September, pp 97-113. 2015. 

[9] J. Bell, E.Melski, and M. Dattatreya. Vroom: Faster Build 
Processes for Java. Electric Cloud Gail E. Kaiser, Columbia 
University. 2015. 

[10] M. Saari. Implementing New Continuous Integration Tool. 
University of Oulu. 2017. pp. 45. 

[11] K. Beck. Extreme Programming Explained. Addison-Wesley 
Educational Publishers Inc. 1999. 

[12] V. Armenise, Continuous Delivery with Jenkins: Jenkins 
Solutions to Implement Continuous Delivery. 2015 IEEE/ACM 
3rd International Workshop on Release Engineering, Florence. 
2015. pp. 24-27

 


