
Regression testing techniques in a continuous
integration environment - a comparison

Emanuel Eriksson
mat14ee1@student.lu.se

Keiwan Mosaddegh
ke2476mo-s@student.lu.se

Max Strandberg
ma2536st-s@student.lu.se

Erik Stålberg
er4047st-s@student.lu.se

Abstract—Regression testing is an important part of any
software project, but can be both very costly and time consuming.
This is especially true in a continuous integration (CI) devel-
opment environment. This paper analyses and compares four
new techniques for regression testing. In the CoDynaQ method
the dispatch queue is continuously re-prioritized based on the
remaining test cases’ historic co-failure distributions with the
ones executed. The RETECS method is a new method which
uses reinforcement learning and neural networks to prioritize and
select test cases. ROCKET is a test case prioritization approach
where the test cases are prioritized by their historical failure data,
and execution time. Finally, the Bloom filter method improves
regression testing by using the Bloom filter data structure to
filter out test that only fail once, and never again. The methods
all show promise and each of them outperform their respective
benchmarks. CoDynaQ also has the possibility to be combined
with any of the others, or yet another method. We, however,
find it unlikely that any of them will be widely applied anytime
soon, as these types of academic results have generally proven
themselves slow to propagate into industrial practice.

I. INTRODUCTION

The purpose of this report is to perform research and
deep dive into the field of regression testing in a continuous
development environment. The report will examine a handful
of different methods, such as bloom filters and ROCKET, and
compare the results these methods produce in the context of
continuous integration.

A. Continuous integration development environment

The context of this report is that of a continuous integration
(CI) development environment, a method of software devel-
opment that has generated a lot of attention in recent years.
In general, the CI approach differs from traditional software
development in that changes in software are integrated into
the main code base as quickly as possible, to prevent large
divergences from impacting merge stability. There are many
advantages to using CI, but they are not within the scope of
this paper. However, working within a CI environment is not
without risk, as developers lose the ability to safely experiment
in development branches separate from the main production
branch. Continuous Integration, especially when combined
with Continuous Deployment, may be a risky endeavor - any
issues and bugs need to be located and addressed as soon as
possible.

Continuously ensuring the stability and correctness of the
main production branch is essentially impossible to do through
manual means. Therefore large-scale automatic test suites are a
prerequisite for CI to function as intended. As software evolves
and grows over time, the need for comprehensive regression
testing increases. According to Kerzazi and Khomh, as merge
intervals and release cycles grow shorter or disappear entirely,
testing activities are the greatest time bottleneck [2].

As a consequence of this, regression testing in continuous
integration must be efficient and cost-effective. Simply ex-
ecuting all regression tests, or only tests directly impacted
by a change in the code-base, have proven to be weak and
unsustainable approaches. There exist a number of new

How does regression testing fit into a continuous workflow?
why is it necessary, or what purpose does it serve?

B. Regression test selection

Since regression testing can be very costly and time con-
suming it is important to choose wisely which tests to run.
This is especially true for CI environments where development
cycles are very short. In other contexts regression tests may be
initialized by the end of the work day and the results received
in the morning. This would, however, be to disruptive to work
efficiently in a CI environment. Therefore, each regression test
suite has to be chosen carefully, so as to minimize the time
consumed. This is called the regression test selection (RTS)
process. This is partly done by removing tests with a low
failure probability, but also by removing tests that overlap
already selected test cases.

C. Test case prioritization

After the RTS process it is time to prioritize the tests. The
purpose of test case prioritization (TCP) is to reveal failures
as early as possible. This lets the tester proceed to fix the
revealed bugs, or to stop the execution of the regression test
suite and return to the drawing board.

D. Research Question

RQ1: How do the regression testing techniques discussed in
this report compare, in the context of a continuous integration
development environment?



II. DESCRIPTION

1) ROCKET: The authors Marijan, Gotlieb, and Sen present
the test prioritization approach ROCKET in their paper [5].
The aim of ROCKET is to effectively reduce the time required
to test, while increasing and keeping a high fault detection rate.
In order to achieve these characteristics, the authors choose to
prioritize test cases based on their previous amount of failed
test executions. The historical failure data is then translated
into a so called failure weight. If two test cases have the same
failure weight, then their respective execution time is taken
into account, where the test case with the shortest execution
time is prioritized.

ROCKET requires 4 different input data: the set of the test
cases to prioritize S = {S1, S2, ..., Sn}; their corresponding
execution time; each test case’s historical failure data; and
the total execution time limit for the test suite Tmax. Initially
all test cases receive a priority of 0. A failure matrix MF is
constructed from the data of the test cases’ historical failures
(equation 1).

MF [i, j] =

{
1, if Sj passed in (current− i) execution
−1, if Sj failed in (current− i) execution

(1)
The impact of a failure that occurred i executions since the

current execution is assigned an impact weight wi, that reflects
the level of impact of the failure. The value of the weight is
hence based on how many executions ago a test case failed,
and the evaluation looks as in equation 2.

wi =


0.7, if i = 1

0.2, if i = 2

0.1, if i ≥ 3

(2)

At this point, the cumulative priority for a test case PSi
can

be calculated. This is done by taking the sum of each value
from the failure matrix for the specific test case, multiplied by
the corresponding impact value. As a result of this, every test
case has a priority value, where a lower value corresponds to
a higher priority.

With the historical failure data taken into account, an
evaluation of the execution times remains. First; the test cases
are put into different classes based on their calculated priority
value. All test cases in the same class have the same priority
value t, which is increased by 1 for the successive class.
ROCKET then checks the execution time of each test case
Tei and assigns a new priority value as shown in equation 3:

pSi =

{
t+ 1, Tei ≥ Tmax

pSi
+

Tei

Tmax
, otherwise

(3)

As mentioned; lowest priority value means highest execu-
tion priority. If a test case is put in the first class (by having
the highest total impact weight), and is assigned the lowest
additional priority value (by having the shortest execution
time), it (the test case) has the highest priority.

Fig. 1. Number of detected faults

Fig. 2. Test execution time (min)

The context of which ROCKET is derived from, and tested
in, is an industrial video conferencing software. The software
system consists of 100 test cases, with an average of 30
minutes of execution time per test case. This means that
a test session with no test case selection nor prioritization
would require a minimum of 2 days. When measuring the per-
formance of ROCKET, the authors compared their approach
against manual prioritization by test engineers. The results of
the comparison are presented in figure 1 and 2. The former (1)
shows the amount of detected faults compared to the manually
prioritized test cases. The latter (2) instead shows how the test
execution times compare between the different approaches.

For the first tests 20% of the test suite were to be prioritized.
The test was then repeated, increasing the size of the test suite
every time, in 20% increments.

ROCKET-prioritized test cases initially outperformed man-
ually prioritized test cases. 3 more faults were detected in
40% less time. The progression of figure 2 shows how the
difference in test execution time eventually reaches 0. This
is expected, as the complete test suite is executed in both
cases, and the act of prioritization becomes inconsequential.
However, ROCKET-prioritized test cases consistently execute
in less time, and overall detect more faults. Additionally, Cost-



cognizant weighted Average Percentage of Faults Detected
(APFDC) was used to measure the effectiveness of ROCKET,
compared to manual prioritization and random ordering of test
cases. APFDC rewards test case orders proportionally to their
rate of units of fault severity detected per unit test cost. In the
case of ROCKET, the cost is determined by the execution time
of the test case. ROCKET performed the best against the other
methods, and received a score of 17.09, compared to 15.81 and
13.85, received by manual and random, respectively.

2) RETECS: RETECS is a new method used in contin-
uous development environments to perform regression test
selection and regression test prioritization. It performs these
tasks through reinforcement learning and neural networks, and
performs analysis on the test case failure history, computation
time, and last previous execution[7]. The goal of RETECS is
to reduce the time it takes for the developers to receive failed
test feedback after committing new code.

In the article, Spieker et al. state that compared to other pri-
oritization algorithms, RETECS is able to adapt to situations
where test cases are added or removed. It is also capable of
adapting to new test prioritization rules. The cost of running
the prioritization is negligble as RETECS doesn’t do any costly
computations during prioritization.

RETECS itself is as stated by Spieker et al. an application
of reinforcement learning as an online-learning and model-
free method for the ATCS problem. Model-free meaning that
it has no initial knowledge or concept of the environment, and
online-learning means that the method is constantly learning,
even during run-time. The reinforcement learning works by
letting an agent interact with its environment, and select an
action based on attributes such as learned policies or random
exploration. The agent will then receive feedback in form of a
reward, which will tell the agent if the selected action did well
or not. From this feedback the agent will develop and adapt
learning policies regarding behaviour and action choices

Spieker et al. write in their article that conventionally
rewards should be negative or positive to deterr respectively
promote behaviour, and based on common metrics used in the
TCP and TCS. This does however require knowledge about
the whole system, something which is impossible to obtain in
a CI environment. Therefore RETECS only supplies its agents
with positive or zero feedback.

To evaluate RETECS Spieker et al. used the it and three
other methods. The first other method is called Random,
it acts as baseline and is a random test case prioritization
method. The second method is called Sorting, and is a test
case prioritization method which sorts the test cases where
recently failed cases have higher priority. The third and final
method is called Weighting, which Spieker et al. defines as a
naive version of RETECS as it analyses the same data and does
so with weighted summation with equal weights. These four
methods were used on three data sets from the industry, paint
control, IOF/ROL and GSDTSR. For the paint control data
set, the paper concludes that within 60 CI cycles, RETECS
is on par, or better than other methods. Similar results are
seen on the other two data sets, but with a longer adaption

phase and smaller performance difference on IOF/ROL, and a
comparable performance on GSDTSR.

3) CoDynaQ: In their article [8], Zhu et al. present a novel
approach for TCP in CI environments called CoDynaQ. More
specifically, the article proposes three variants of this method
called CoDynaQSingle, CoDynaQDouble and CoDynaQFlexi.
Their method is based on two ideas. The first is to make use of
the co-failure distributions between test cases. The second is
to re-prioritize test cases already in the dispatch queue. Every
test case is assigned a priority score s. This score is updated
according to equations 4 and 5, where t1 is the test case just
executed and t2 is the test case whose score is being updated.

s2,new = s2,old + (P{t2 = fail|t1 = fail} − 0.5) (4)

s2,new = s2,old + (P{t2 = fail|t1 = pass} − 0.5) (5)

If t1 and t2 have never been run together before their co-
failure probability is unknown, and may be set to anything
between 0 and 1. In their article, however, Zhu et al. choose
to set it at 0.5, for them to maintain their original score. After
each test case execution the scores of the remaining tests cases
in the dispatch queue are updated and then re-prioritized based
on their respective new scores.

The three method variants vary with respect to their test
queues. The simplest variant CoDynaQSingle only has a single
queue to which test case requests are added. After a test case
has been executed the priority scores of all remaining test
cases are updated and the queue is reordered. This, however,
leads to a problem called starvation. Starvation is when a
test case is continuously pushed back in the queue and whose
result is thus further and further delayed. If the tester suspects
a test case will fail it may assigned it an original high
priority, but if the test case has low co-failure rates it may
be substantially delayed, even indefinitely, if new tests are
continuously requested.

This problem of starvation is addressed by dividing the
single queue into a dispatch queue and a waiting queue. The
waiting queue is a FIFO queue (first in, first out) to which
new requests are added. The dispatch queue on the other
hand is continuously re-prioritized as described earlier. In
the CoDynaQDouble variant the dispatch queue is filled to
capacity when empty. By contrast, in the textitCoDynaQFlexi
the dispatch queue is refilled, not when empty, but when the
remaining number of test cases sinks below a certain threshold.

The performance of these methods were tested on a set of
internal test data from Google and another from the Chrome
project. The Google data set contained 11,457 change requests,
resulting in 847,057 test case executions. The Chrome data set
contained 235,917 change requests, resulting in 4,487,008 test
case executions. As a baseline for comparison, the methods
were compared with a simple FIFO-prioritization (i.e. no
prioritization). Furthermore the methods were compared to
a method Zhu et al. call GOOGLETCP, but which in the
original article [1] is called SelectPRETests. There, on regular



time intervals, the test cases in the waiting queue are given a
priority of 1 if tf < Wf or te > We, where tf and te are,
respectively the, times since last fail and last execution, and
Wf and We are corresponding thresholds. The waiting queue
is then prioritized based on these scores and added to the back
of the dispatch queue.

These methods were then compared to the baseline FIFO
model on the following metrics on both data sets.

• Median relative time gain until first failure detected
• Median relative time gain until all failures detected
• Median proportion of delayed failures, relative to FIFO
The results are shown in table I, where the best perfor-

mances are shown in bold.

TABLE I
CODYNAQ PERFORMANCE RESULTS.

Chrome CoDynaQSingle CoDynaQDouble CoDynaFlexi SelectPRETests
First failure 11.33% 0.84% 5.01% 3.34%
All failures 61.84% 0.05% 0.08% 0.05%
Delayed failures 19.11% 17.34% 0.51% 31.78%
Google
First failure 31.01% 0.04% 0.18% 4.36%
All failures 39.60% 0.09% 0.20% 4.61%
Delayed failures 31.14% 27.26% 6.20% 8.22%

Here we clearly see that CoDynaQSingle outperforms the
other methods with respect to the first failure and all failure
metrics. CoDynaQFlexi outperforms the others with respect to
the delayed failures metric, however the starvation problem is
also captured by the all failures metric, so it is not necessarily
best with respect to actual starvation.

4) Bloom filter method: In a paper published in APSEC,
authors Kwon and Ko present and discuss a new method
for regression testing in continuous integration environments
[3]. The authors argue that the testing technique, here called
the Bloom filter method, is a combination of both logical
and technical improvements on standards regression testing
procedures. The method incorporates changes to how both
RTS and TCP is performed, and originates from the prevalence
of one-hit-wonders amongst failed test suites. The imple-
mentation presented is largely build around Bloom filters,
a hash-based data structure with many characteristics that
prove advantageous to the method’s design. In an experimental
comparison with industry baseline techniques, the Bloom filter
method improves on the average number of failures detected
by a factor of 2.23, and reduces the time taken to detect a
failure by up to 42.2 hours. The experiment was performed
on a sanitized data set of tests from Google.

Kwon and Ko motivate the use of Bloom filters by arguing
that the technology is well suited for precisely the type of fast
operations their method relies on. Essentially, Bloom filters
are a data structure built around k hash functions connected
to each element in an m-bit array. As each hash function
is probabilistically unlikely to clash with another, k hash
functions represent k element positions in the array. The
purpose of the array is to mark if an item has been added
to the data structure, and allows one to quickly check for the
presence of an item within the filter. If well designed, a Bloom
filter has a negligible probability of both false negatives, as

well as false positives. With a time complexity of O(1) for
a content check operation, Bloom filters are incredibly time-
efficient. Kwon and Ko also analyze if the added overhead of
using them as part of regression testing has a negative impact
on testing times, and show that they do not.

The Bloom filter method is designed around the existence
of test suites that fail once, but do not fail again. These test
suites, also called one-hit-wonders, make up 44% of failed test
suites in the pre-submit phase of testing, and 33% of failed
tests in the post-submit phase. The concept of one-hit-wonders
is not unique to testing, as they have been observed in many
other areas of computer science. Kwon and Ko note that the
idea for the Bloom filter method originates from the over-
representation of one-hit-wonders amongst cached objects in
a Content Delivery Network . According to Maggs and Sitara-
man, approximately three-quarters of objects accessed within
a CDN are requested only once, which making caching them
extremely inefficient [4]. The Bloom filter method attempts to
use this observation to improve both test suite selection and
prioritization.

In practice, the Bloom filter method attempts to improve on
existing window-based selection and prioritization techniques.
Both RTS and TCP rely on a Bloom filter combined with a
failure cache. When a test suite fails, the method checks if
it exists in the Bloom filter. If it does not, it is added to the
filter, but not to the failure cache. This effectively marks it as
a one-hit-wonder. If the Bloom filter already contains the test
suite, it is instead added to the failure cache. Kwon and Ko
argue that in the context of regression testing, test suites are
analogous to test cases, and that their method could be applied
on either scale.

For RTS, a subset of test suites are selected as candidates for
execution, based on criteria such as Last Failure Time (LFT),
Last Execution Time (LET), or if they are entirely new. From
these selected test suites, a subset is created, containing only
new test suites and ones from the failure cache. The authors
argue that the exclusion of one-hit-wonders does not affect the
overall effectiveness of regression testing, if it is done in the
pre-submit phase of development.

As for TCP, the Bloom filter method operates on similar
principles as for selection. Essentially, test suites that failed
more than once are assigned a high priority, and one-hit-
wonders are given the lowest. In practice, test suites from the
failure cache are given a priority of 0, as they have failed
more than once. Test suites that fulfill the regular window-
based criteria are assigned a 1, and suites that fulfill none of
the above are assigned a 2. Test suites are then executed in
ascending order.

Kwon and Ko document the results of their experiment,
which show that the Bloom filter method is much faster and
more precise than random TCP and RTS. The same is true
when compared with baseline industry methods, improving
the average number of failures detected by 2.23 and reducing
execution time by between 4.9 to 42.2 hours.



III. ANALYSIS

The experiments conducted in [5] were, as mentioned, done
in the context of a video conferencing software, where the test
executions required a relatively significant amount of time.
There is naturally a need to ensure that the tests that are to be
executed are likely to find faults, as each execution requires
time and resources that are desired to avoid wasting.

An interesting addition to ROCKET would be how dynamic
and real-time selection and prioritization could be used to
improve the performance of the approach. By achieving a suf-
ficient real time test coverage estimation of the executing tests,
the ROCKET approach could stop executing test cases as soon
as it considers a sufficient test coverage to be reached. The
approach of dynamic (re)selection and prioritization adopted
by CoDynaQ could for example be something to attempt
incorporating into ROCKET.

Generally; the logic behind the ROCKET approach is fairly
intuitive. There is a problem of time consuming test case
executions, and there is a need to be frugal with the available
time. Therefore it’s important to ensure that the executing
test cases have a weighted history of failing, and that their
execution times are as short possible.

One could consider ROCKET to be a fairly promising
approach, but it’s mainly a matter of context. Tests taking
more than 30 minutes to execute is not the first thing that
comes to mind when thinking about continuous integration.
Then again, the fact that this is in the context of continuous
integration is what makes an appropriate test case selection
and prioritization so important in the first place.

If the ROCKET approach is just as effective in the context
of test cases with significantly shorter test execution times
is unclear. Perhaps the improvements that ROCKET delivers
are not as viable when shifting from talking about hour-long
improvements for the VCS context, to a couple of minutes in
another context.

In regards of prioritization and selection ROCKET might
find a greater value in the prioritization. ROCKET is derived
from the context of time consuming, 30 minute (on average)
long test case executions, where each executed test case has a
significant impact in terms of time and resources. Therefore,
by putting the test cases in an order where the first test case is
very likely to fail, one receives (relatively) quick feedback if
that is the case. On the other hand, if no test case selection is
present, a significant amount of redundant test cases are prone
to be executed.

With regards to the ROCKET method we have a proposed
improvement. Instead of storing all previous results for every
test case and multiplying it with a fixed set of weights wi one
could recursively update each priority score as

wi =

{
0, i = 0

αλi−1 + (1− α)wi−1 i ≥ 1
(6)

where λi−1 is 1 if the last execution passed −1 if it failed
and α weight for the last execution result. This approach
retains the method’s original property that recent results are

more important than previous. Instead of having to store all
previous test results, one only has to store a each test’s priority
score, which is updated after each test run.

RETECS aims to improve the process of test case selection
and prioritization over time as the network gains knowledge
and policies regarding choice-making for the best possible
results. The evaluation performed by Spieker et al show that
RETECS is at least on par, and often better than the other
methods, Random, Sorting, and Weighted. This difference in
performance would most likely improve over time as RETECS
learns which order and selection of tests will yield the fastest
feedback to the developers. As the evaluation of RETECS was
performed on static data sets, further testing in a live dynamic
environment should be performed to assert the actual advan-
tages and drawbacks of the method. The limits of RETECS
are hard to identify as the neural network’s parameters can
be modified and adapted to the project at hand. But a point
could be made that the method needs to be applied to a
varied set of projects to assert what and where the limits are.
Regardless of the limits, the evaluation shows that RETECS
is more proficient at learning and improving the selection and
prioritization if the test suite has a higher percentage of failed
tests.

The QoDynaQSingle method shows a lot of promise. It
significantly reduces the time until both the first failure and all
failures are detected. In their article [8], Zhu et al. claim their
work to be novel with regards to dynamic re-prioritization
after each test run. This sets the QoDynaQ methods apart
from the other discussed techniques. It is also what makes
it highly interesting. This makes it highly compatible with
other prioritization techniques. Test cases may be given an
initial prioritization score by another algorithm, which is then
re-evaluated based on their co-failure distribution.

The Bloom filter method attempts to improve regression
testing through both logical and technical improvements. The
method does show some promise, even if the idea of filtering
out one-hit-wonders is relatively simple when compared to
the ones discussed in this report. However, Kwon and Ko do
concede that the occurrence of one-hit-wonders is not neces-
sarily universal to all data sets, or all parts of a continuous
development process. The simplicity of the method is to its
advantage though - the Bloom filter method can easily be
combined with others presented in this report.

The use of the Bloom filter data stricture is certainly clever,
as they are perfectly suited for the fast operations required
for the method to function. However, there may very well be
other data structures that work just as well - the strength of
the method comes more from the logical improvement.

There are some similarities between the RETECS and
ROCKET methods. It is very possible that the Weighted
method used by Spieker et al during evaluation of RETECS
is a variation of ROCKET as they both use weighted sums.
As Spieker et al concluded that Weighted is a naive version
of RETECS, and that RETECS had better results than the
compared methods, it would mean that ROCKET is a naive
and inferior version of RETECS.



In the context of regression testing, it is important to
discuss whether TCP or RTS is of greater importance. This
can be difficult, as comparing the method results directly is
essentially impossible. The methods in this report optimize
around different variables and operate on different data sets.
Whether to focus on TCP or RTS becomes a question of
context - in some scenarios, earlier fault detection is of more
value than better fault coverage. Factors like average test
execution time also affect whether to focus on TCP or RTS.
Sometimes, in the case of some methods like ROCKET and
RETECS, the distinction between prioritization and selection
starts to disappear.

As QoDynaQ focuses on TCP, certain advantages gained
from effective selection may be lost. Potentially, some methods
could be combined, but this implies that companies would be
willing to try out new testing techniques in the first place.
According to Minhas et al., new methods from academia do
not propagate well into industry [6]. This observation probably
greatly reduces the possibility of method combinations.

IV. CONCLUSION

How do the regression testing techniques discussed in this
report compare, in the context of a continuous integration
development environment?

In conclusion, all of the methods discussed could potentially
improve regression testing in a continuous integration envi-
ronment, since they all outperform their respective benchmark
comparison methods. All methods deal with the problem of
TCP and all but CoDynaQ also deal with RTS. CoDynaQ
however has the benefit that it could be combined with any
of the others, to further increase efficiency. The Bloom filter
method also shows potential, also because it can be combined
with other regression testing techniques.

In regards of RETECS, the performed evaluation shows that
it is a promising method. It is however too early to draw
any conclusions whether or not it is superior to the other
methods presented in this paper. To make such a statement
further testing needs to be done, preferably in a live industrial
setting. Testing all four methods on the same data sets would
also be a viable method to see which method performs the
best test case prioritization and selection.

As as final point, we suspect these new methods, even if
proven effective in experimental environments, are unlikely to
achieve wide use within industry. As a consequence of this,
combinations of the techniques are also probably never going
to be implemented in a real-world scenario.

V. CONTRIBUTION STATEMENT

All sections of this document have been co-written by the
stated authors, with the exception of section II, the origin of
which are shown below.

II-1 ROCKET Keiwan Mosaddegh
II-2 RETECS Max Strandberg
II-3 CoDynaQ Erik Stålberg
II-4 Bloom filter method Emanuel Eriksson

REFERENCES

[1] S. Elbaum, G. Rothermel, and J. Penix. Techniques for improving
regression testing in continuous integration development environments.
In Proceedings of the 22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2014, pages 235–245, New
York, NY, USA, 2014. ACM.

[2] N. Kerzazi and F. Khomh. Factors impacting rapid releases: an industrial
case study. In Proceedings of the 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, page 61. ACM,
2014.

[3] J.-H. Kwon and I.-Y. Ko. Cost-effective regression testing using bloom
filters in continuous integration development environments. In 2017 24th
Asia-Pacific Software Engineering Conference (APSEC), pages 160–168.
IEEE, 2017.

[4] B. M. Maggs and R. K. Sitaraman. Algorithmic nuggets in content
delivery. ACM SIGCOMM Computer Communication Review, 45(3):52–
66, 2015.

[5] D. Marijan, A. Gotlieb, and S. Sen. Test case prioritization for continuous
regression testing: An industrial case study. In 2013 IEEE International
Conference on Software Maintenance, page 540–543, Sep 2013.

[6] N. M. Minhas, K. Petersen, N. B. Ali, and K. Wnuk. Regression testing
goals - view of practitioners and researchers. 2017 24th Asia-Pacific
Software Engineering Conference Workshops (APSECW), Software En-
gineering Conference Workshops (APSECW), 2017 24th Asia-Pacific,
APSECW, pages 25 – 31, 2017.

[7] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige. Reinforcement
learning for automatic test case prioritization and selection in continuous
integration. In ISSTA 2017 Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 12–
22. ACM, 2017.

[8] Y. Zhu, E. Shihab, and P. C. Rigby. Test re-prioritization in continuous
testing environments. pages 69 – 79, 2018.


