What techniques can be used to know when to stop
testing?

Anne Line Gjersem, Jenny Martinsson, Kristoffer Martensson, Mergim Rruka
Dept. of Comp. Science, Lund University
{dicl4agj, dic15jma, fprl5kma, me7076rr-s} @student.lu.se

Abstract—This paper presents and analyzes five different
software stop testing techniques for the purpose of deeper
education within a chosen area of software testing. To achieve
this purpose, two companies were made up which were in need
of a stop testing technique, a small sized startup company and
a big sized airline company. The advantages and drawbacks for
each technique were discussed, followed by an analysis of how
well each technique suited the needs of the two companies. Three
of the techniques were well suited for both companies whereas
the two others were suitable for the small startup company.

I. INTRODUCTION

Releasing a software as soon as possible is desired by
many companies. Early releases can give the benefit of being
introduced to the market, to achieve this the software needs
to be tested. The number of possible paths can be very large
in a software program therefore it is not feasible to find every
possible bug [1]. If the software is not tested enough it can
mean that it can contains bugs, poor quality code and therefore
hurt the company in the long run. Some software’s might
not be sensitive to containing bugs when released while other
might lead to fatal accidents if they do.

A software that is going to be part of an aircraft is going
to need a lot of testing and fixing before it can be used
in an actual aircraft and in an actual flight. The software
might contain thousands of lines that control everything from
the lights in the aircraft, to the control systems. The aircraft
companies want to ensure that everything works because there
is no room for errors in cases like these where a big amount
of human lives are involved [2].

This is not necessarily the same case when it comes to a
website. A website for a startup that is about social media
might not have to make sure that everything their software
does is done faultless. In this case, there might be more room
for error than compared to an aircraft software.

A. Scope

The aim of this report is to identify stop testing techniques
and evaluate if the stop testing technique is applicable to a
given system. To limit the research area two scenarios has
been set up.

Company A: ’start up company’
The first scenario is a start up company that uses agile
methods for development software. The focus is on continues
delivery and working in sprints. The company delivers social
media web applications for their customers. The system

quality needs to be ’good enough’ to create value for the
customers. The financial resources is limited.

Company B: ’Aircraft system’
The second scenario is a company that develops software for
aircraft system. The software is classified as critical since an
failure can cause a lot of damages. Even the slightest bug can
be vital and have a negative impact. Hence, the software has
to be of high quality.

This report will address the following issues:

1) What techniques can be used to know when to stop
testing?

2) What are the stop testing techniques advantages and
drawbacks?

3) Are the addressed techniques suitable to use in company
A or company B ?

II. DESCRIPTION

There are different frameworks and techniques on when to
stop testing a software, in this section some of these techniques
and frameworks will be explained.

A. Software Reliability Growth Models

Reliability Modelling is used to predict the reliability of
the system in the future [3]. This is then used to estimate
a reliability level that determines how much testing is needed
before the system is stable for release [4]. Software Reliability
Modelling is made up of several different techniques, that all
have their pros and cons, and all can be used to estimate when
to stop testing [4].

Software Reliability Growth models (SRGMs) are tech-
niques used to describe software failure and fault-detection
in the system [4]. The goal of these methods are to try to
trade off between quality, schedule and cost during the testing
and validation phase [4]. SRGMs address the mathematical
relationship between different attributes that affects the process
of testing [5]. SRGMs take failure data from an earlier period
when faults were being detected and corrected, either during
testing or during operational use, to estimate how the reliability
will change in the future [3].

1) Time between failure: There are several different Soft-
ware Reliability Growth Models, divided in different types.
One very common method is looking at the time between
failures. There are several different models within this type,
but one model is the Jelinski-Moranda method. This method



evaluates the reliability of a system by keeping track of how
often it fails. If the time between each failure is increasing,
we know that the system is becoming more reliable [6].

2) Failure Count: One way to test reliability is by using
failure count. The most commonly used technique using failure
count is the Goel-Okumoto model, also known as Non-
homogeneous Poisson Process [7]. It’s very useful approach
to determine for how long the software needs to be tested [8],
and therefore when to stop testing.

B. Value Based Approach

With a value based approach the test cases are derived from
risk analysis. The risk exposure is calculated by multiplying
loss probability and loss impact. To decide which test cases to
prioritize, the prioritized requirements are considered by the
project decision-maker [9]. One stop testing technique that can
be used in value based a approach is the combination of the
models: constructive cost model (COCOMO 1I), constructive
quality model (COQUALMO) and value-estimating relation-
ships (VERSs). The stop test method can be used to determine
what quality level is enough for different situations [9].

1) Constructive Cost Model -COCOMO II : When de-
veloping a software product cost estimation COCOMO II
model can be used to estimate the required effort [9]. The
effort is measured in person-month and the estimation of the
project size is measured in thousands lines of code (KLOC).
Furthermore, the model considered personnel attributes such as
experience and capabilities, project characteristics such as ex-
ecution time and storage constrains and product characteristics
such as complexity and required reliability [9]. The trade off
between cost, reliability and test time can be visualised using
the COCOMO model in a regression analysis. The required
reliability is referred to as RELY. If the value of RELY is high
it means that failure of impact is critical, and a low RELY the
impact is considered to be inconvenient.

2) constructive quality mode-COQUALMO: Delivered de-
fect density can be estimated with the COQUALMO model
which is an extension off the COCOMO II model [9]. In
COQUALMO there are two submodels: defect introduction
model and defect removal model. Defect introduction model
estimates defects occurring requirements process phase, design
process phase and code process phase. The defect removal
model considered defect which occurs i the following activi-
ties: automated analysis, people reviews and execution testing
and tools [9]. A rating scale from very low to extra high is
used to determine what method and techniques to use for peer
reviews, how much to investment in automated analysis tools
and how to execute the tests. “Very low” indicates that now
testing tool or peer review is necessary.“Extra high” indicates
that peer reviews should include formal review with roles and
procedures, root cause analysis, detailed checklist and the tools
used are highly advanced [10].

3) Value-estimating relationships (VERs): When perform-
ing value based testing, it is crucial that critical stakeholders
of the project provide value-estimation relationships (VERS)
to the developers. VERs show the relationship between quality

levels or delivery times for different parts of the software and
the benefit flow or values earned from that part of software.
The idea is to get a better understanding of which parts of
the system deliver the most value in order to know where the
most effort should be put [9].

C. Value-Based Software Quality Model

The value based software quality model(VBSQM) includes
risk analyses using the RELY rating for a business case, a
size of loss (Sq(L) rating) for the system and the project size
is measured with the model COCOMO 1I [9]. The VBSQM
combines risk exposure and can find the sweet spot for the
software quality investment level [9].

D. Exit Criteria

Another approach to know when to stop testing is exit
criteria. Different criteria can be predetermined for each new
test cycle that will begin. This means that the developing team
and testing team know what to look for when deciding if
testing cycle is finished or not and in this way decide what
to the next step is. This is approach is an addition to the
testing method that the testing team uses, meaning that the
team decides what technique to use when testing and this
approach helps to understand when the testing should end [11].

There are different criteria that can be considered depending
on the test cycle. These are a few that should be considered:
[12]

o Major defects are identified and solved.

o Critical test cases are passed.

o Functional coverage is fully completed.

o Test coverage has reached a certain percentage.

o A certain percentage of test cases are allowed to fail if

they are of low priority.

o Time and budged are depleted.

An outcome of these criteria can be: [12]

e Summary of findings.

e Logs of the tests.

o Logs of reported test incidents.

E. Post release testing

A different approach to the issue of testing versus release
of software is the post release testing approach. This approach
is very beneficial since it allows the software to be introduced
to the market in time or even before the planned release. Of
course, there is still a need for the software to be almost
fully functional but it leaves open doors for smaller bugs to
be detected after the software’s release. The testing continues
after the release and combined with bug reports from the users,
it makes it possible for the team to release patches afterwards.
These patches can address bugs that were found by the post
release testing or address the reported bugs from the user [13].

Figure 1. shows how the usual approach of testing and
release works. The testing cycle has a start and stop time
that does not overlap with the product after it is released. In
this case all the tests that needed to be done, had to be done



before the release [13].

Testing Phase

Tester Testing Stops at release time (7*=7%)

User

LLOLLLHIIIHIHIHIIMMPM T,
—

Operational Phase
Fig. 1. Usual approach of testing and release [13].

Figure 2 shows how the post release testing approach works.
The testing phase is divided in two parts, the pre-release and
post-release phases. The post-release phase is the testing phase
that continues the testing after the software is released [13].

Post-Release
Testing Phase (Tester + User)

Pre-Release
Testing Phase

Tester l Software Release Time l Testing Stops (77 * )

Patching

Operational Phase

Fig. 2. The post release testing approach [13].

F. Capture Recapture

Capture recapture is originally a technique used to track
population of wildlife. This is done by capturing animals and
marking them and continuously keeping track of when animals
are recaptured. With the data stating how many animals were
recaptured how many times, an estimation of the population
can be made. In software testing, this can be used by allowing
more than one inspector search for defects in a system and
keeping track of how many defects were found or recaptured”
by how many inspectors. By looking at the overlap of the
found defects, an estimation can be made to how many defects
remain in the system [14].

III. ANALYSIS

This section will present aforementioned stop testing tech-
niques and discuss the advantages and the draw-backs of
the different techniques. Furthermore, a an evaluation will be
performed to address if the techniques are suitable for system
in company A or company B.

A. A value based approach

When comparing value based approach with value-neutral
testing, the test cases with value based approach creates
more business value per dollar invested [9]. A value- neutral
testing technique is for example path testing automated test
generators or test cases which is not derived from prioritized
requirements. The value based approach foundation is risk
analysis. Hence, one drawback of the risk exposure method
is the difficulty of to quantify the probability of loss [9].

For company A ’start up company’ risk analysis can be used
to determine when is the testing is good enough. By combining
COCOMO II, COQUALMO and VERs in an analysis, the
investments levels and the relevant software quality can be
determined. Hence, it can determine what quality level is
enough, when comparing the risk exposure investment with
market share erosion. The advantages found for value based
approach is related to business value and is therefore suitable
to use for company A: ’start up’.

For company B, the RELY value is high since an aircraft
system error impact can potentially lead to loss of human life
and can estimate rough how much effort is going to be needed
in delivering the software. In addition using the COQUALMO
defect-removal-investment rating scales can indicate what level
is need for testing tools, peer reviews and automated analysis
[10]. VBSQM is suitable to use for both company A’ and
company B’ to determine the sweet spot for software quality
investment.

B. Software Reliability Growth Models

Software Reliability Growth Models (SRGMs) are based on
previously collected data. For the SRGMs to provide anything
of value then they need to be based on accurate data from
previous runs [3]. However, to obtain trusted data it will cost a
lot if we want to build a model that’s more than a fairly modest
level of reliability [3]. One limitation is that the technique is
not suited for system were testing environment is changing or
new capabilities are being introduced, the failure history of
the past will not be reflect when changes occurs [15].

Safety-critical systems, with high consequences of failure
are not well matched with a Software Reliability Growth
Model, and therefore SRGMs are not a good method to use
for company B.

However, there’s also sources saying that an SRGM can
be used for more safety-critical systems [16]. In this article
from 2019 they researched a method called Software Failure
and Reliability Assessment Tool (SFRAT) which is based
on Software Reliability Growth Models. Depending on what
specific method you’re using and how well you implement it,
SRGM’s can be used for safety-critical systems, like company
B. However it’s important to look at the data requirements to
give an accurate assessment.

For company A it’s not very straight forward if it’s good to
use an SRGM or not. Because of it being an agile company
things will get updated and released continuously. Because of
this a lot of data will be gathered, which is great for SRGMs
[7]. Because of this an SRGM can be very useful, especially
if it’s not in a completely new territory, seeing as you can
then use data from other companies to build your model. If
company A however has a very new and experimental industry,
it will take some time before SRGMs would actually give any
benefit.

C. Capture Recapture

Capture Recapture is a stop testing technique that have been
applied and evaluated in the industry. It has been shown that



it can provide relatively accurate estimations under the right
circumstances and with the correct methodology. A study was
made using simulations on software artifacts where they were
looking to determine the impact that the number of inspectors
and remaining defects in the software had on the results of the
various capture recapture methods [14]. What they determined
from the study was that a good number of inspectors for these
methods were four. Less than four and the results were not
reliable enough and more than four did not give a big enough
increase in the overlap of the found defects. In regards to
the number of defects in the system, it was harder to see a
correlation of the success of the method and the number of
defects in the software. They did however conclude that at least
one capture recapture method showed a lot of improvement
when looking at software with 12 instead of 6 defects.

Setting four inspectors to the task of inspecting software
and searching for defects through testing can quickly become
a fairly expensive ordeal. This of course is dependant on how
large the code base is. For company A, this could be a viable
stop testing technique. If the company has set a limit to the
highest number of estimated defects allowed on a specific
release, this method could provide them with this estimation.
It can however as mentioned become fairly expensive due to
how time consuming it would be for multiple inspectors to
perform their inspection. It ultimately comes down to if the
company feels they have sufficient resources and reason to
perform this methodology.

For Company B this methodology is feasible but perhaps
a little bit risky. The company surely have enough resources
to perform this technique with possibly even more than four
inspectors. The issue is however that this company can not set
a limit to the highest number of estimated defects remaining,
this company has to be 100% sure that there are zero defects
left. This kind of eliminates the purpose of a stop testing
technique which main purpose is to estimate the number of
remaining defects in a system post testing.

D. Exit Criteria

The exiting criteria is something that sounds good in theory
but might not always be able to be applied in practice. The
criteria must be defined well and realistically since they can be
the reason why the software will not fulfill them and therefore
prevent the testing from being completed. Even the size of the
system can affect if this method is suitable or not, for a bigger
system this method might not be enough or inefficient to use.
To have a criteria of 95 % coverage in a big system might be
unrealistic and therefore impossible to achieve. Criteria that
are loosely defined, such as “testing phase ends when all bugs
are found”, might only lead to problems. This type of criteria
has no clear endpoint which makes it almost impossible to
fulfill and end the ongoing test cycle. On the other hand,
with well defined criteria, the size of the system that is being
tested should not matter. This method will help teams to know
when they are done and what they need to do next, since a
common outcome from this method is to get a incident report
and findings log.

When it comes the company A ’start up company’, this
method might be a good fit. Since the system is not of a bigger
size and if well defined criteria are used, this method might
work good. It will make it easy for the testing team to know
what to look for when they are testing and when to stop the
cycle. The same applies to the company B ’aircraft system’,
this method might work well as long as the criteria are well and
realistically defined. Company B is a more sensitive system
because of human lives being involved. This leads to higher
requirements which might need more carefully predetermined
criteria.

Depleted time and budget could be a criteria that works
for the company A, however, this criteria would not work in
company B. In company B the testing can not simple stop just
because there is no more time or money left. If there is a risk
for software to contain bugs than perhaps the testing should
continue, considering that human lives are involved in this.

E. Post Release Testing

The clear benefit of this approach is the gain in introducing
the software to the market in time and the ability to fix the
remaining bugs after the software has been released. Moreover,
it makes it possible to get free debugging which is done by
the customers using the software and reporting the bugs that
they encounter. However, this method still needs to be almost
fully working before it is released.

This method might work well for company A, especially
since it is a startup and an early introduction to the market
might be a major factor in the company’s success. The
company can release a website that mostly works and then
continue testing while the software is released. The developing
team can release patches or newer version of the website after
it has been launched and in this way address the bugs that they,
or the users, have found. Since the website might not handle
sensitive data or human lives, like company B does, than they
are not sensitive to the website containing bugs. This makes it
more acceptable for the website to contain bugs and therefore
allow the company A to use this approach.

For company B this approach will not work at all. Since the
software is for an aircraft, it is not a good approach to release
a not fully working software for aircraft’s and at the same time
keep testing and looking for more bugs. In this case there is no
room for the software to contain bugs especially since human
lives can depend on it. A simple bug in the control flow system
could lead to devastating events. For the aircraft company it
is important that everything works as it should and it is not
possible to release a not fully working software and afterwards
release patches to address bugs that emerge. The only way
this approach could work would be if the software for the
aircraft is divided in different parts. Meaning that the parts of
the software that do not pose any threats for the passengers
could be approached with the post release testing method. For
example, the entertainment system does not necessary need
to be completely bug free and therefore it’s testing could be
continued after it’s release. If any bugs are found, they will not
risk anyone’s lives and can easily be addressed with patches.



IV. CONCLUSION

The stop testing approaches and techniques found are: a
value based approach (COCOMO, COQUALMO, VERs and
VBSQM), capture recapture approach(Estimation the number
of defects), Software Reliability Growth Models(including
time between failure and failure count), exit criteria, and post
release testing. For company A all the approaches mentioned
above can work and help the company to know when to stop
testing. For company B, the approaches that we see suitable
are software reliability growth models, value based approach
and exit criteria.

Table I. in appendix A. address the research questions by
describing the stop testing techniques, listing advantages and
drawbacks for each techniques and provides a description if the
technique is suitable for either system at company A, company
B, both of them. The last row refers to the paper were the stop
testing technique is found.

V. CONTRIBUTION STATEMENT
A. Anne-Line

Worked mainly on the Value Based Approach, including
COCOMO II, COQUALMO and VBSQM. Both during the
description and in the analysis.

B. Jenny

Worked mainly on Software Reliability Growth Models,
both the description and the analysis.

C. Kristoffer

Focused on Capture Recapture and descriped and analyzed
the technique. Wrote the description to VERs.

D. Mergim

Worked both on Exit Criterias and Post Release testing, both
during the description and during the analysis.

E. Everyone

Discussing the different techniques, working on scope and
introduction, drawing a conclusion.

REFERENCES

[1] S.R. Dalal and C. L. Mallows, “When should one stop testing software?”
pp. 872-879, 1986.

[2] U. M. \. Events. Getting to grips with software testing. [Online]. Avail-
able: https://www.aerospacetestinginternational.com/features/getting-to-
grips-with-software-testing.html

[3] B. Littlewood, “Software reliability modelling: Achievements and limi-
tations,” IEEE 1991, pp. 336-344, 1991.

[4] S. J. H. M. Garg, R. Lai, “When to stop testing: a study from the
perspective of software reliability models,” IET Software, 2010.

[5] P. Kapur and A. Shrivastava, “Release and testing stop time of a
software: A new insight,” 2015.

[6] Z. Jelinski and B. Moranda, Statistical Computer Performance Evalua-
tion(W. Freiberger, ed.), 1972.

[71 M. X. S. N. G. L. Q.PHu, R.Peng, “Software reliability modelling and
optimization for multi-release software development processes,” 2011,
pp. 1534-1538.

[8] D. R. Jeske and H. Pham, “On the maximum likelihood estimates
for the goel-okumoto software reliability model,” The American
Statistician, vol. 55, no. 3, pp. 219-222, 2001. [Online]. Available:
www.jstor.org/stable/2685804.

[9]
(10]

(11]

[12]

[13]
[14]
[15]

[16]

B. B. L. Huang, “How much software quality investment is enough: A
value-based approach,” IEEE, 2005.

A. J. B. Boehm, L. Huang and R. Madachy, “The roi of software
dependability: The idave model,” IEEE, 2004.

K. Renuka. When to stop testing (exit criteria in software testing).
[Online]. Available: https://www.softwaretestinghelp.com/when-to-stop-
testing-exit-criteria-in-software-testing/

R. Software. (2019) Entry and exit criteria in software testing life
cycle. [Online]. Available: https://www.rishabhsoft.com/blog/entry-and-
exit-criteria-in-software-testing

P. K. Kapur, A. K. Shrivastava, and O. Singh2, “When to release and
stop testing of a software,” Springer, 2017.

L. C. Briand and B. G. Freimut, “A comprehensive evaluation of capture-
recapture models for estimating software defect content,” 2000.

W. Farr, Software reliability modeling survey (chapter 3). McGraw-Hill,
1996.

L. Fiondella and Y. Shi, “Software reliability and security assessment:
Automation and frameworks,” 2019.



APPENDIX

TABLE I

TABLE SHOWCASING THE ADVANTAGES AND DRAWBACKS FOR EACH TECHNIQUE

Suitable for

Technique Advantages Drawbacks Suitable for system Papers
company
Visually identify progress toward
Software Reliability sott\yare stabl.hty. Detenpme Needs a lot of data to be Systems with a lot of data
the time required to achieve A &B [3], [4]
Growth Models Lo accurate. already collected.
target reliability, time between
failure, and failure intensity.
A value based approach creates Risk exposure method is Early startups, commercial
Xe/‘gse é%]\zj[s)ed Approach more business value per the difficulty of to quantify A&B and high-finance [9]1, [10]
dollar invested. the probability of loss. business cases.
Can be used for many different Relatively resource demanding
i § types of testing. Can be scaled and only produces an . NP
Capture Recapture for different sized systems estimation of remaining A Most types of systems. [14]
or just parts of systems. defects.
Makes it easier for the testing Poorly defined criteria can Most types of systems
Exit Criteria team to understand when the make the testing cycle A&B as long as well defined [11]
test cycle is done. impossible to finish. criteria are created.
. . The software must be mostly
Post release testing Allows early introduction of the working before it's post A Systems where bugs do [13]

software to the market.

release testing.

not pose any threats.




