
Minimal Test Practices Needed in a Software
Start-up Company

Ossian Gewert∗, Astrid Jansson†, Lucas Perlind‡ and Joseph Tafese§
Faculty of Engineering

Lund University
Lund, Sweden

Email: {∗dic15oge, †nat15aja, ‡lu3804pe-s, §jo3353ta-s}@student.lu.se

Abstract—A software startup is a small organization working
with a hyper-focus on developing a software product within its
niche in the market. When getting started the company has
a need to get a viable product on the market as cheaply and
quickly as possible. The excruciating pressures with respect to
resources, or a lack thereof, that these organizations face can
cause them to replace standard test practices with unsustainable
ad hoc techniques that might bring about their demise. It is
therefore essential for software startups to reach a certain level
of testing while spending minimal effort. In this paper we discuss
different approaches to testing and the factors around it. We look
at costs of testing, minimally required tests, resource allocation
and test practices for startups in this setting through the analysis
of available literature.

I. INTRODUCTION

In the context of a Business to consumer software startup,
expected to grow significantly over the coming years, we
are looking at the minimum test practices needed in building
software that they intend to sell to consumers. Their initial goal
is to build a Minimum Viable Product (MVP) that they can sell
to early adopters. These startups are characterized by having
fewer than 10 employees, an emphasis on minimizing time-
to-market over product quality, and very limited resources to
spend on testing [1], [2]. None, or close to none, of the employ
es are dedicated to software testing, which is the responsibility
of the software developers [3] who are hopefully highly
adaptable and skilled generalists as opposed to specialists
with respect to software development. This results in the
employment of ad hoc practices that can actually come to
hinder future productivity due to accumulated technical debt
in the documentation and testing fields [1], [4].

To find what the minimal test practices needed when
building the MVP are, we establish the characteristics of
startups we are looking at (in Section II-A) and how software
testing relates to their context (in Section II-B) with respect
to resources (in Section II-C), and analyzed the literature to
compile the minimum test practices needed in a startup (in
Section III).

II. BACKGROUND

A. Startups

A software startup is an organization working on the cutting
edge of a particular industry, in this case within the software
industry, with a hyper-focus on its niche in the market.

Companies like these can be found all over the world, but they
share a set of characteristics that have come to define them,
namely, limited resources when it comes to time, money and
manpower [1].

These limitations or opportunities create an environment
with interesting requirements and possibilities. Their goal in
the early stage is to build and ship an MVP for its target
audience. This means that traditional test practices are not
feasible to execute since the product can be evolving at a
rate that is difficult to keep up with. Large scale changes
can also render testing efforts worthless. As a result of the
context, these companies will either dispense with structured
test practices or rely on ad hoc techniques.

There are a number of reasons to pursue a structured
approach to testing, both when testing the programs and when
testing the product at large. For example, it is important to
ensure that they meet specifications and furthermore to reduce
the technical debt incurred by ad hoc practices. Initial short-
term gains in time-to-market can lead to significant long-term
impact to team productivity and the product’s ability to scale.

Although these techniques are likely to be employed in
a ‘good enough’ manner for startup companies, the cost
of diverting resources to fully realized testing may be too
significant.

B. Testing

Software users will expect that the software works well most
of the time they use it, therefore it is important for all software
companies to have some quality assurance and continuously
maintain their products.

Maintenance is something that could drown a company in
work and costs. Maintenance can consist of bug fixes, adaptive
maintenance and preventative maintenance. One wants to
spend more time on preventative maintenance, rather than
fixing bugs as a result of too little preventative effort [5]. The
same way the testing where issues are found in an earlier stage
improves the chances for reduced cost in the long haul.

Testing a program can be approached in four phases that
offers a structure to relate the problems to be solved, namely,
modeling the software environment, selecting test scenarios,
running and evaluating test scenarios and measuring testing
progress [6].

mailto:dic15oge@student.lu.se
mailto:nat15aja@student.lu.se
mailto:lu3804pe-s@student.lu.se
mailto:jo3353ta-s@student.lu.se


The modeling of the software environments requires the
identification and simulation of the interfaces of the program
and also the establishment of a number of inputs that might
cross over interfaces. The interfaces can include APIs, file
systems and communication interfaces. In the case of our soft-
ware startup company the environment could mean different
platforms (e.g. iOS or Android) or browsers (e.g. Firefox or
Chrome). User interaction that fall outside of the control of
the code under test can be explored in this domain as well.

As there is a possibility of an infinite number of test
scenarios, there is a need for a test scenario selection phase
of the testing design. We can refer to coverage of the code
or input coverage and still have an infinite amount of test
cases to deal with. Therefore, the test data adequacy criteria
arrives as the way to test enough cases in a reasonable and
affordable manner. These can be used to make decisions
on when to release [6]. In the case of the startup, if it is
known what functionalities and criteria the product depends
on, relevant decisions can be made on how much testing is
enough. However, testers should be aware of the limitations of
the criteria being built into the methodology and the achieved
report results that come forth when testing.

The phase of running and evaluating test scenarios regards
to how the tests are executed and what methods are used.
Using simulation of all input and output for automating the
test execution is a good way to minimize the risk of mistakes
and save time. Scenario evolution, the comparing of the actual
software output from test scenario execution, is harder to test
and here we expect the code to be flawed rather than the
documented specifications. As for these issues, there are two
approaches that can be used to evaluate the test, embedded
test code and formalism. Embedded code can be self-testing
programs or a simpler version where some internal data states
are exposed so as to make it easier to validate. Formalism
refers to making sure that the design and code are derived from
the formalized specification. The specification takes effort to
create, costs time and money a startup might not be considered
to have. It is however helpful down the line and saves time in
regard to the evaluation of reported bugs and writing test; In
other words, it is a preventative effort that, if properly used,
makes maintenance easier.

A fix to a bug can only be a solution to that specific
issue and can potentially break something else in the process.
Therefore, regression testing is a way to check that the
program as a whole is still functioning properly [4]. However,
this can be time-consuming and therefore the testing needs
to be prioritized and minimized. In regression testing the test
data, adequacy criteria are ignored as only the absence of fault
is sought [6].

Testing contributes value to a software project by detecting
faults or validating correctness. The value of a test practice
could imperfectly be quantified by the percentage of faults
detected but collecting detailed fault information is likely to be
expensive [7]. Using coverage is one way to measure the tests.
However, detecting many flaws is not necessarily of benefit.
Larger amounts of tests that have failed and been fixed can

either mean that we have tested well and few errors remain in
the system or that the system in general has many flaws. In
essence this is the challenge: making sure that the tests written
provide value as well as knowing when to stop testing.

C. Costs of testing software

Testing requires significant effort and is one of the biggest
costs in software development [8]. Many software companies
find that they have excessive testing costs or that their testing
is not cost-effective [9]. The costs consist both of human effort
and machine time, with cost components including identifying
a test model and the test requirements, implementing the
tests, test execution and test diagnosis [7]. The available time
and budget limits the testing that can be done in a software
development project [7], with the lack of resources for testing
being especially constricting for start-ups [10]. The human
effort could translate either into increased development time
or an opportunity cost when other efforts are deprioritized. If
the machine time required to run the test suite is too large,
developers might skip tests or run them less often [10].

Comparing the cost of different testing approaches before
implementing them is difficult due to problems with cost
estimates. The cost of a test suite is often assumed to be
proportional to its size but using size to compare costs between
different test techniques is not likely to be valid due to the
large number of cost components [7].

Automating testing is a common strategy to minimize the
cost, but manual testing cannot be eliminated [8]. Manual
testing continuously requires human effort, while automated
testing requires human effort when creating the test cases and
then some human effort to maintain them [10].

How much to invest in testing is a trade-off between keeping
initial costs down and increasing the software reliability, which
is likely to return long-time value [11].

III. ANALYSIS

A. Minimally required tests

When measuring test progress in the context of a startup
company, the restrictive nature placed on development teams,
due to the lack of resources must be taken into account.
Startups will often need to prioritize development of features
rather than testing and maintenance of the current code base.

Thus, a startup company needs to strategically select how
to test and what to test, namely selecting test scenarios. This
is a significant task and can greatly reduce the overall amount
of testing required while still maintaining the quality of the
software. Functions more critical to the product’s function
can be prioritised when applying effort to creating tests.
This can be analyzed by the designer or by using analysis
techniques such as retrospective mining [10]. Measures of
an artifact’s functionality through usage and functional con-
sequences can contribute to perceived value of that artifact,
with those of higher value to have more tests written for them.
Such processes can be done in an informal manner or be
more structured through frameworks focused on the testing
process. Many models/frameworks to help outline how testing



should be done and how much is required exist today to aid
development teams in improving their testing suites.

Popular models include the Testing Maturity Model (TMM)
and the Test Process Improvement (TPI). Unfortunately, these
frameworks are too expensive and large for a small team to
realistically follow, in response smaller frameworks targeted
towards smaller businesses and startups have been created. The
Minimal Test Practice Framework (MTPF) [3] was designed
to cut the amount of testing practices required to be done
by a development team in comparison to the larger models,
while still maintaining the core principles of these frameworks.
These practices are staged by team size, so that, as the startup’s
development team grows and their product expands, more
systematic and broad testing practices can be implemented.
This way the testing can scale with the amount of resources
the startup has, encouraging the company to not overspend
into testing in their initial stages. Additionally, it ensures that
when their capabilities and resources expand, testing practices
increase to match the scope. The MTPF is significantly less
expensive and resource intensive compared to more traditional
models; making it a much greater and more accessible choice
for structuring the organization in terms of its test suite.
Furthermore, it can help reduce the amount of technical
debt generated by potential poor decision making if a more
formalised structure is not followed. This can provide tangible
long-term savings for the company as the software product(s)
continues to age and mature.

It should be noted that testing within the startup will largely
be based on a ‘good enough’ mentality. Thus, any selected
strategies will likely be implemented not in its entirely but in
a way to achieve the core principles of the practice.

B. Allocating resources

As a company needs to allocate resources towards the
testing effort, considerations need to be made when selecting
test scenarios. Due to the potential significant costs of testing;
these considerations need to be taken with consequential
gravity.

When running tests, developers can choose to employ
automated and/or manual forms of testing. One could assume
that 100% automation would be a valid long-term cost saver
to testing. Especially in the context of a startup with limited
human resources, reducing the required man hours to perform
tests. In reality such levels of automation are impossible to
achieve and in fact has its own drawbacks in the testing process
[8]. Thus, a combination of manual and automated testing
could be implemented in any testing suite to achieve a less
costly and effort efficient solution. A comparison of automated
and manual testing can be seen in Table I.

Such automated testing can be implemented through third
party tools; usually in a software package where testing is done
through a user interface (UI). [8] reasons that testing should
be done at as low level as possible. Automated tests set up
through a UI tend to be more prone to failure and require more
effort in maintenance. Furthermore, having developers and
testers at the same lower level of abstraction with the code can

Table I
AUTOMATED TESTING VERSUS MANUAL TESTING

Automated testing Manual testing

Reduces costs of repeated tasks Expensive and time consuming to
perform repeated tasks

Hard to analyse qualitative testing Qualitative metrics are easy to
asses

High initial costs with long-term
savings

Low short-term costs although ex-
pensive for larger projects

Initially requires manual effort Can create automated tests

improve the machine costs for running tests and can decrease
implementation costs of these tests [8]. Thus, startups that do
not have a dedicated testing team could follow a strategy of
seeing the developers performing the tests themselves.

Further considerations to select a specific test report is to
recognise the strengths and weaknesses of each test. Teams
should value test practices that align greater towards their
overall software testing model. Studies and papers must be
scrutinized for their viability for the project [7]. A project
heavily using functional programming practices may not want
to implement tests designed for testing software designed in
an object orientated manner.

Furthermore, the found efficiency and effectiveness of a test
have been to host a great deal of randomness [7]. Human
factors account for variation in the testing suite. We should
not assume humans are perfect, especially in using practices
and techniques that are more challenging to implement. With
these aspects in mind, a startup can more strategically select
testing practices that will provide them with the most value
from the pool of limited resources.

C. Ad Hoc Testing

Without any formalized testing structure a development
team would resort to ad hoc testing. This involves completely
random processes by the developers. With nothing formalized
tracking issues and faults in the code is largely impossible.
Reducing the confidence that the software is properly func-
tional alongside increasing technical debt of the project [4].
Thus, to ensure the products quality more structured testing
processes should be followed and implemented in the testing
suite.

D. Selecting Test Scenarios

Keeping in mind that the goal of software testing is twofold,
finding defects and demonstrating program correctness [7],
there are practices that can be utilized in a startup to generate
test cases for a given product.

An effective method of test case generation, based on
program requirements, can be done before any code is written.
Equivalence Partitioning and Boundary Value analysis are
black-box techniques that provide a specification for the input
and output classes for each method/function based on the
program requirements. The biggest hindrance to this process



in a startup is that requirements are made up on the go and
only validated after the product is released, nonetheless, the
practices can be implemented in smaller iterations through the
development cycle [1].

As noted above, a common challenge in a startup’s develop-
ment cycle is the changing requirements, but more importantly,
the rate at which the requirements change. Building on the
assumption that the startup’s goal is to build an MVP, there
is a process mining approach to test case generation and
prioritization [10]. This method is effective when it comes to
identifying what parts of the program experience the highest
traffic as well as points of failure, which can be valuable
information for generating and maintaining test cases for a
given program. The knowledge of high traffic aspects of the
program does not mean that parts of the program with low
traffic are any less important, but it gives insight into what
might need an extra eye before being released to the user base.
The process mining approach can also be used to find more
efficient solutions to the products user experience [10] since
it is able to identify these "pain points", information which is
critical to a startup in the MVP phase.

E. Defect Reporting

Developing a uniform syntax and method of communication
within the startup is quintessential to the defect reporting and
tracking process. A clear understanding and structure to this
process, however primitive it may be, will enhance the efficacy
of development efforts [3].

Efforts can range from maintaining a string of emails
holding defect reports, a common file that is written to or a
defect reporting system such as Jira. Nonetheless, the focus
lies in the common syntax, which can be understood by
everyone on the team, so that any member of the development
team can contribute to a solution. A streamlined method
of reporting defects is also fundamental to decreasing the
amount of technical debt incurred [1] since knowledge of
defects and shortcomings is made readily available to any
interested party in the organization. Furthermore, an emphasis
on implementing and practicing preventative measures with
respect to documentation debt, a subset of technical debt, has
been shown to have a statistically significant impact on the
startup’s future productivity [4].

Finally, a functional defect reporting system reduces the
reliance on individuals withing the company as knowledge
bearers [1]. Lack of proper documentation practices becomes
apparent when for example minor changes to the composition
of the team hinders the productivity of everyone else.

F. Test Types

A startup can benefit from the implementation of different
test types, such as tests for correctness, with respect to product
specifications, and market viability of the product. Regression
and unit tests [4] as well as A/B Tests are cost effective
implementations of the respective test types. Test cases for
unit tests can be generated via the aforementioned methods
and be run at least before every release. Successful tests can

then be added to the suite of regression tests, although the
constant changing nature of requirements in this environment
can make it a challenge to maintain a set of regression tests
[4].

The market viability or acceptance of certain features can
also be tested using freely available A/B Test suites [1] such
as Facebook’s Planout. Due to the startup’s lack of resources,
building the scaffolding of a feature alternative and pushing
them to different user groups can provide valuable insight
into what the next steps should be. This can save money,
time and effort since it can be a relatively simple way to
validate a feature idea without pouring resources into an
unverified lead. Moreover, A/B tests allow the startup to
explore multiple viable additions/modifications to their product
without incurring technical debt from failed pursuits. This is
of particular importance since the code base is not infiltrated
with exploratory code that lingers, due to the simple structure
of the tests to begin with [1].

IV. CONCLUSION

Software startups developing an MVP are under significant
time pressure to get their product onto the market ready
for their first customers. They have few employees, none of
which may be designated to do testing. The startups are also
likely to lack the financial resources to purchase significant
outside tools or assistance. Due to their lack of resources
software startups have to deprioritize numerous areas of the
development cycle, with testing often being one such area.

Testing software is important to ensure that the software
works as expected and meet customer demands of quality. It
is necessary to keep the long-term maintenance costs down
if a software company will succeed. How much to invest in
testing is a unique, per-company trade-off depending on the
available resources and the requirements on the product. The
requirements will depend on the type of product, the goals of
the product, the type of customers and competing solutions.

Testing practices are only as good as they can be if followed.
Therefore, the importance of choosing how to approach it is
of essence as it can define a company’s work for a long time.
The approach the company takes need to fit their people and
their style of working. Even if the work done is agile, or
testing done by developers or dedicated testers, but a structure
regarding the requirements and goals are of essence.

A combination of manual and automated tests can be uti-
lized for the MVP’s correctness, and A/B testing frameworks
can be employed to the development cycle to provide a struc-
ture to the flow of features. Manual testing takes continuous
human effort, while automated testing should require less
human effort over time, but a healthy collaboration of the two
can provide the best results for the resources spent.

Although testing debt has not been shown to have a
statistically significant impact on a startup’s future produc-
tivity, documentation debt does impact future productivity.
This implored the focus on a combination of testing and
documentation practices that would be necessary for a startup



to grow rapidly, without severely impeding its future growth,
while delivering a “good enough” feasible product.

V. CONTRIBUTION STATEMENT

The authors made equal and significant contributions to the
project and this resulting paper.

All group members participated in an initial brain-storming
session and later meetings with literature review, project
planning and follow-up. All group members found relevant
literature and jointly drafted an initial outline. All group
members drafted subsections of this paper and contributed to
subsections originally written by the other authors.

REFERENCES

[1] C. Giardino, N. Paternoster, M. Unterkalmsteiner, T. Gorschek,
and P. Abrahamsson, “Software Development in Startup Companies:
The Greenfield Startup Model,” IEEE Transactions on Software
Engineering, vol. 42, no. 6, pp. 585–604, Jun. 2016. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/7360225

[2] C. Giardino, M. Unterkalmsteiner, N. Paternoster, T. Gorschek, and
P. Abrahamsson, “What Do We Know about Software Development in
Startups?” IEEE Software, vol. 31, no. 5, pp. 28–32, Sep. 2014. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/6898758/

[3] D. Karlström, P. Runeson, and S. Nordén, “A minimal test practice
framework for emerging software organizations,” Software Testing,
Verification and Reliability, vol. 15, no. 3, pp. 145–166, Sep. 2005.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.
317

[4] E. Klotins, M. Unterkalmsteiner, P. Chatzipetrou, T. Gorschek,
R. Prikladnicki, N. Tripathi, and L. Pompermaier, “Exploration of
Technical Debt in Start-ups,” in 2018 IEEE/ACM 40th International
Conference on Software Engineering: Software Engineering in Practice
Track (ICSE-SEIP), Gothenburg, Sweden, May 2018, pp. 75–
84. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/
8449238

[5] P. Grubb and A. A. Takang, Software Maintenance: Concepts and
Practice, 2nd ed. World Scientific, 2003.

[6] J. A. Whittaker, “What is software testing? And why is it so hard?”
IEEE Software, vol. 17, no. 1, pp. 70–79, Jan. 2000. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/819971

[7] L. C. Briand, “A Critical Analysis of Empirical Research in Software
Testing,” in First International Symposium on Empirical Software
Engineering and Measurement (ESEM 2007), Madrid, Spain, Sep.
2007, pp. 1–8. [Online]. Available: https://ieeexplore.ieee.org/abstract/
document/4343726

[8] R. Kazmi, R. M. Afzal, and I. S. Bajwa, “Teeter-totter in testing,” in
Eighth International Conference on Digital Information Management
(ICDIM 2013). Islamabad, Pakistan: IEEE, Sep. 2013, pp. 194–198.
[Online]. Available: http://ieeexplore.ieee.org/document/6693991/

[9] V. Garousi, M. Felderer, and T. Hacaloğlu, “What We Know
about Software Test Maturity and Test Process Improvement,” IEEE
Software, vol. 35, no. 1, pp. 84–92, Jan. 2018. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8239941/

[10] A. Janes, “Test Case Generation and Prioritization: A Process-
Mining Approach,” in 2017 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW).
Tokyo, Japan: IEEE, Mar. 2017, pp. 38–39. [Online]. Available:
http://ieeexplore.ieee.org/document/7899028/

[11] C.-Y. Huang, S.-Y. Luo, and M. R. Lyu, “Optimal software release policy
based on cost and reliability with testing efficiency,” in Proceedings.
Twenty-Third Annual International Computer Software and Applications
Conference, Phoenix, Arizona, Oct. 1999, pp. 468–473. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/814328

https://ieeexplore.ieee.org/abstract/document/7360225
https://ieeexplore.ieee.org/abstract/document/6898758/
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.317
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.317
https://ieeexplore.ieee.org/abstract/document/8449238
https://ieeexplore.ieee.org/abstract/document/8449238
https://ieeexplore.ieee.org/abstract/document/819971
https://ieeexplore.ieee.org/abstract/document/4343726
https://ieeexplore.ieee.org/abstract/document/4343726
http://ieeexplore.ieee.org/document/6693991/
https://ieeexplore.ieee.org/abstract/document/8239941/
http://ieeexplore.ieee.org/document/7899028/
https://ieeexplore.ieee.org/abstract/document/814328

	Introduction
	Background
	Startups
	Testing
	Costs of testing software

	Analysis
	Minimally required tests
	Allocating resources
	Ad Hoc Testing
	Selecting Test Scenarios
	Defect Reporting
	Test Types

	Conclusion
	Contribution statement
	References

