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Abstract—This paper will offer an introduction to testing
of machine learning systems, it will cover information about
what machine learning and deep neural networks are and what
some of the problems of testing them are. The problems this
paper will focus on are: test oracle problem, test adequacy
criteria and test input generation. For a possible solution to
these problems the testing methods called metamorphic, neuron
coverage and adversarial testing are introduced and discussed. In
closing this projects conclusions was that training and testing of
machine learning systems work together and how each method
has own advantages and disadvantages so that by using them in
combination a better result for training and testing a machine
learning system could be achieved.

I. INTRODUCTION

What are the differences in different methods of testing
for machine learning(ML) and how do they compare to each
other? What are the general problems with testing for ML?
This project will focus on metamorphic testing, coverage based
testing and adversarial testing, and how they try to solve for
some of the general problems of testing.

A. Background

ML systems are getting more popular and are implemented
in potentially dangerous situations, as in self-driving cars [1].
As a consequence of this there will be an added weight to test
the systems before implementing them. Incorrect behaviours
are often caused by corner cases and is not always found in
a given dataset [2]. Different testing methods can be used to
simulate these types of corner cases and we will try to research
if that works well, one of these is called adversarial testing and
that method will be researched more. Furthermore a discussion
on how to avoid the problems of not having access to a testing
oracle can affect the testing process as well as the advantages
and limitations of neuron based coverage.

B. Purpose

The purpose of this paper is to give an overview of the
most popular [3] methods currently available for testing ML
systems. The paper will also provide a comparison of the
different testing methods and will attempt to analyse the
current issues that exist for each method. In order to grasp
how the different testing methods are tied to ML and how
they interact with each other the notion of how these methods

work on a driverless car will be described by examples as a
way to highlight differences.

C. Problems with testing for machine learning

One of the problems with testing in general is the test oracle
problem. This refers to the problem that for a system to work
as intended there has to be someone able to determine if a
certain input gives the desired output. A test oracle in this
sense would be something that knows what the desired output
should be. When systems get more complex it might be hard to
know what type of output is to be desired. When ML systems
are based on very large sets of training data another problem
is the cost of analysing and classifying all this data. This is
where automated testing oracles is a proposed solution but it
has not yet been solved. [4]

Another problem that testing for ML shares with testing
of traditional software is the test adequacy criteria. In regular
software statement, branch and path coverage is used as a
measurement tool for testing but this is not as effective for ML
programs. In an experiment of how a single randomly picked
test input would affect code coverage for several ML systems
it was found to achieve 100% code coverage. This introduces
a problem, if previously used techniques for testing are not as
well suited for ML, what would be an alternative? [5]

For a relatively non-complex program, like a sorting algo-
rithm, generating a data set for testing is often a trivial task.
When the programs get more complex the amounts of different
types of inputs might increase. For example with driverless
cars, gathering training data is often very time-consuming as
presented by Sterling Anderson, the former Head of AutoPilot
at Tesla, at MIT’s EmTech Digital Conference in 2016 [6]. If
one is to collect data by filming the road while driving their
own vehicle there are a lot of variables that will affect the
images captured, for instance driving can occur in a lot of
different weather conditions and at a lot of different times
during the day. A problem in this case is then how can we be
sure that a ML program trained on images taken during the
day will behave as intended if the system is used at night. Is
there a solution for generating test inputs in a manner that a lot
of different situations will be covered but in a more automated
fashion? These questions give rise to the test input generation
problem.



II. DESCRIPTION

In this section concepts about ML and the different types
of testing methods will be explained more in depth.

A. Machine learning

ML is a type of artificial intelligence technique that makes
decisions or predictions based on data. It can be classified
into two different areas. Classic ML which for example is
algorithms like decision tree and the other area is called deep
learning. This paper will focus in on deep learning which
applies something called Deep Neural Networks (DNN) which
can generally be described as multiple layers of neurons. Each
neuron in the DNN can be seen as some type of processor
which takes in information and feeds it forward to the next
layer of neurons. In the end the DNN makes a decision based
on the output layer as shown in Fig. 1.

Fig. 1. A visualisation of the layers in a DNN, each circle is supposed to
represent a neuron

The input in this paper will mostly focus on images and the
classification of objects in images. In the case of driverless cars
the input image is the environment in which the car is, and
the DNN should be able to classify objects such as stop signs
correctly, or else it could lead to a very dangerous situation.
It is unfeasible to continuously keep track of the location of
every object in the world and so the driverless car needs a
way to know what is around it automatically. This is where
ML is used, and the need for good testing methods. If you
can not test the ML system, or if there is a way to trick the
system into classifying something incorrectly, it could have
fatal consequences.

B. Metamorphic testing

Consider a driverless car, being tested on the road for
deployment. It would be nearly impossible to test it under
every condition imaginable. Therefore there is a need to be
able to automatically generate test cases from existing ones,
to test if the ML system can handle these conditions. Examples
include: A picture of the road is shown to the system which
decides to turn right. The same picture, but distorted or
transformed without changing the road, is then shown. Added
rain or a camera lens distortion could have been introduced
to the picture as seen in Fig. 2. However from the existing
test case the correct answer is known, to turn right, an other

output would point to a defect in the system. Therefore the
answer is known, a test oracle for certain test cases has been
produced and a lot more test cases can be generated to test
the ML systems capabilities during these artificially altered
conditions. [7]

Fig. 2. a) Original, output turn right. b) Altered picture with added rain
and incorrect output.

Two general problems for ML testing was introduced in the
example above. The lack of a testing oracle, in other words not
knowing the correct output given the input. And also that the
number of test cases that can be generated manually is limited.
Metamorphic testing was introduced as a tool to combat these
challenges. It is based on iterative testing of the system where
there is a known answer to some of the test cases.

In metamorphic testing a set of metamorphic properties
are identified for the system. Metamorphic here meaning that
certain properties can be transformed without changing the
answer derived from them, for example adding a constant
to a list of numbers won’t change their order. Transforming
the input according to these properties creates new test cases
where the output can be predicted according to the previous
output using the same transformation. thereby automatically
generating new test cases from the old test cases. When
running these test cases if the output is unable to be predicted
correctly it shows a fault in the system. The method is used
in a way that given the correct answer to the first test case the
system should use the metamorphic properties of the functions
of the system to transform the input such that the new output
should be predicted according to the transformation of the
previous output. [8]

Certain benefits of this method of testing include: Generat-
ing additional test cases without being redundant, creating a
test oracle of known outputs which are correct for a certain
input and being able to show and kill mutants if they would
appear.

According to [9] tests performed on a real and popular
open source program discovered multiple violations of the
metamorphic relations which indicated real faults. The tests
also performed well when killing of mutants. Mutants are
described such as variations in the source files, intentionally
generated and introduced as a means to test if the test methods
available are able to detect new faults, thus killing the mutant.
The mutations performed by Xiaoyuan and her team randomly
selected 30 new valid mutants for two different applications
of the program using the mutant generator MuJava. After



excluding the mutants which produced the same faults detected
in the original tests as well as mutations occurring outside
of the test scopes , 21 and 22 mutants were run through the
metamorphic tests. For both applications the metamorphic tests
were able to kill of more than 90% of the mutants (90,5% and
90,9% respectively). Therefore showing quite some promise as
a testing method for both producing a test oracle as well as
identifying faults and defects. [9]

C. Coverage based testing
In regular software testing code coverage is a common tool

for testing and this idea is carried on to work for ML as well.
In the case of ML however another aspect is used instead of
regular code coverage. This is called neuron coverage and that
is a measurement for how many neurons that are activated
given a certain test input. There exists different types of
coverage based testing where another technique is to not only
measure how many neurons that are activated but to look for
how many different combinations of neuron activations there
are and to what degree they activate.

When taking the same driverless car from the case in
metamorphic testing, neuron coverage based testing analyses
the DNN after its been introduced to a dataset of, in this
case, a lot of pictures of roads and the direction the car is
supposed to turn. After the DNN has trained on these pictures,
measurements of coverage is collected. There are a couple of
different types of neuron coverage types and three of them
will be introduced in this section [10].

k-multisection Neuron Coverage: After analysing the train-
ing data set each neuron in the DNN is shown to be contained
to a lowest lown and a highest highn possible value, each
value is given by the activation function of each neuron. k-
multisection Neuron coverage sets then sets out to divide the
range into k number of sections. When the DNN later is tested
using a test data set the coverage is measured by how many
of the sections that are covered by the test inputs. [10]

Neuron Boundary Coverage: In contrast to k-multisection
Neuron Coverage, Neuron Boundary Coverage is used to look
for how many corner cases that are found by the test data set.
Since the training data set sets the limit for the boundaries
this type of coverage looks for neurons that gets the value of
either lower than lown or higher than highn. [10]

Top k-neuron Coverage: Instead of checking for which
values the different neurons take the top k-neuron coverage
focuses on measuring how layers of neurons behave. This
method measures how many times the top k neurons in each
layer has been activated given a certain test data input, here k
stands for the number of neurons one wants to check for. For
example: Top 2-neuron coverage looks at how many times the
two most active neurons in each layer has been activated. That
a neuron has a higher activation than another means that the
value associated with the neuron is higher than another as in
the case of k-multisection Neuron Coverage. [10]

D. Adversarial testing
Adversarial testing is the testing of ML systems where

the data contains noise/perturbations. This can either occur

naturally or through adversarial attacks. By using adversarial
testing the system will be less affected by adversarial examples
and it will help defend against adversarial attacks where an
attempt is made to fool the ML system through malicious
input. [3]

Kurakin et al. summarizes the problem as follows:

Let’s say there is a ML system M and input sample
C which we call a clean example. Let’s assume
that sample C is correctly classified by the ML
system, i.e. M(C) = ytrue. It’s possible to construct
an adversarial example A which is perceptually
indistinguishable from C but is classified incorrectly,
i.e. M(A) 6= ytrue. [11]

To give an example of this Papernot et al. added perturba-
tions to an image of a stop sign, see Fig. 3, which makes a
particular DNN classify it as a yield sign while still looking
visually the same (i.e. as a stop sign) to the human eye. As
ML is becoming more and more integrated in products such
as self-driving cars this poses a great danger if there are no
failsafes. It is conceivable that the perturbation could be added
by modifying the sign itself by using, for example, a sticker
or paint, which makes this a great security concern. [12]

Fig. 3. Two images looking the same to the human eye, but being classified
differently

In order to make applications for ML such as driverless cars
a reality issues like these must be solved, which lead to the
research of adversarial ML and the testing against adversarial
attacks.

At the moment there is no standardized way to perform
adversarial testing, but several methodologies and algorithms
have been proposed. One such algorithm is DeepFool [13].
DeepFool tests the robustness of classifiers by computing
perturbations that has a high probability of fooling the system.
By testing the system against the perturbations computed by
DeepFool the tester can detect weaknesses of the system which
will help lead to more robust classifiers.

Biggio et al. [14] suggests three golden rules when it comes
to protecting a ML system from adversarial attacks. The three
rules are (i) know your adversary, (ii) be proactive and (iii)
protect yourself. They suggest that to defend yourself against
adversary attacks you must be able to model the threats against
the learning-based system under design. You can then test how
the system reacts to the threats during training and testing and
can thus build a more robust system that will be able to defend
itself against such attacks.



E. Method backgrounds

1) Metamorphic testing: Metamorphic testing was invented
by T.Y. Chen in a technical report in 1998 and was first
introduced to ML by Murphy and his colleagues in 2008.
[15] One of the older methods to test ML systems and still
one of the most widely used.

2) Coverage-based testing: Coverage based testing is
widely used in traditional and more recently developed for
ML systems to measure and indicate the quality of the
software. It is adjusted for ML by going from code based
coverage to neuron based coverage, this is still in early stages
of development. One of the first papers presented on this
subject was DeepXplore that was written in 2017. [5]

3) Adversarial testing: Adversarial testing has been pro-
posed since many ML systems have shown good performance
in classification tasks but are often highly unstable to adver-
sarial examples. If the system is not tested on adversarial
examples there is a high risk of an attacker being able to fool
the system and performing black box attack without knowing
the model’s parameters.

One of the first instances of this problem being highlighted
was by Dalvi et al. [16] who showed that linear classifiers
used in spam filtering could be fooled by small changes in the
content. However, it wasn’t until 2014 that adversarial testing
really gained traction when Szegedy et al. [17], and subsequent
work [13] [18] [19], showed that a DNN can be fooled by
small perturbations that look the same to the human eye.

III. ANALYSIS

Based on our literature research we will here present an
analysis of the testing methods, including what issues there
might be with using the particular testing method. When
analyzing each method the question to consider is if the issues
of each method hinders the ability to solve the problems
of testing introduced in the beginning. This section also
includes a validation of the project, where we discuss the
trustworthiness of the project and the presented results.

A. Metamorphic testing

Even when proven useful Metamorphic testing has the issue
of being hard to implement without a deep understanding of
the ML system. Identifying the properties of the data sample
which you can transform and still retain predictability of the
answer would demand a close inspection of the algorithms of
the system.

B. Coverage based testing

Since this method is still in development the proof for the
advantage of coverage based testing is still lacking, however
the findings in DeepXplore show that with coverage based
testing the accuracy of their tool for training DNN:s was able
to achieve a 1-3% better result compared to other DNN:s that
used either adversarial or random augmentation, see Fig. 4.
[5]

Fig. 4. Results from testing three DNN:s with DeepXplore, random and
adversarial augmentation [5]

Another sign that coverage based testing is a valid way
of testing and training DNN is that it has been shown that
each neuron in a network works in a more specialized way
instead of generalized which has lead to the conclusion that
if every neuron has a certain function then the network would
be improved by having been subjected to training data that
utilises every neuron in one way or another [20].

In neuron coverage there is still a problem that exists in
code coverage, there might be a perfect coverage of the code
or neurons that exists but that in itself will not be a complete
verification of the system. In the same way that code coverage
lacks the possibility to warn the tester of bugs caused by
missing implementation, neuron based coverage has the same
problem.

C. Adversarial testing

As ML is getting more and more applications, adversarial
testing is getting more and more important. As mentioned
previously failing to test against adversarial attacks could have
fatal consequences. The algorithms and methods currently
proposed for adversarial testing mostly works by producing
adversarial examples that has a high probability of fooling the
system. This tests the robustness of the classifier as you can
see how high the misclassification rate is when introducing
the adversarial examples.

This however does not exclude the possibility to perform
an adversarial attack as it is impossible to test every kind of
perturbation to the data. By having a robust classifier which is
able to correctly classify most data, regardless of perturbations,
means that it is harder to fool the model, but it does not rule
out that there still exists a way to fool it. The current research
tries to solve this by focusing on algorithms and models that
introduce perturbations designed specifically to be able to fool
state-of-the-art classifiers. By figuring out the weaknesses the
current classifiers has the information could be used to build
a more robust model.

D. Validation

ML is a relatively new subject and because of that there
arises a question of the validity of the research texts referenced
in this article. The majority of the articles were written from
2015 and later and based on our search for other articles
regarding the same area of research they seem to be up to date.
However since a lot of the tools described in our references
might be subject to newer versions it might be reasonable to



see if this comparison holds when this is read in the future.
ML is a fast-growing field and testing of ML systems is an
even newer field of study. Many papers are being published
and ideas discussed and there is not yet a consensus on how
it should be done.

When identifying the problems we have discussed in the
paper we settled for three distinct problems. There are of
course other issues but these were the ones we researched and
the ones our research claimed to be of importance. From this
we analysed and conducted further research into the three test
methods that each solved one of the problems. Once again
there are many more test methods and if more time spent
researching every single one of them other conclusions could
arise but due to time limits and the scale of the paper this
was not possible. However these methods were the three most
commonly observed methods which is why we picked them
and how we validate our findings. [3]

The research papers we have read and collected our data
from were published and peer-reviewed, and while this doesn’t
mean they were correct, given the recent date of publication
they seem to be discussing the newest and most relevant ideas
of the field.

IV. CONCLUSION

This section will include a summation and conclusions
derived from the analysis of the literary works we have
studied. The conclusion presented will try to answer how
each of the testing techniques solve part of the problems that
were introduced in the beginning, the test oracle problem,
test adequacy criteria and generating test inputs and how the
techniques complement each other in the process.

A. Issues from analysis and its affect

Based on the analysis, there were some issues with each
method and if they would have an impact for solving the
problems of the different methods. For metamorphic testing
the issue is primarily that a deep understanding of the system
is needed in order to construct the test oracle, this might lead
to it being harder to use the method but it does not invalidate
the method as a technique to use for the test oracle problem.

Neuron based coverage has been shown to demonstrate a
higher result in accuracy in test results. Even if the method
is new the evidence for it being able to validate seems
sufficient, we determine that neuron based coverage has a use
in validating the test results and that it serves as part of the
solution to the test adequacy criteria.

The problems with adversarial testing was shown in the
analysis to be that is hard to predict all kinds of perturbation
to the data. Despite this we conclude that the method itself
delivers a method for constructing new test input data.

B. Testing vs Training

For ML the testing and training of the systems are inter-
twined in a way which is described in Fig. 5, it sets out
to repeat the training and testing until satisfactory results are
achieved. For a ML system, the testing is done to cover two

parts. The first one is to make sure that the DNN produces
the right output for a certain input from a test dataset and if
not more training is required for it to work better. Secondly
testing is done as a way to validate if enough types of input
has been tested, this is to make sure that new corner cases will
not jeopardize the behaviour of the DNN. In this case more
training is also required but there is also a matter of finding
the right type of training data.

The methods presented in this paper discusses how they
each have a solution to one or both of these types of testing
and here in the discussion we argue that they complement each
other for that purpose.

Fig. 5. Workflow for machine learning systems [21]

After evaluating the three different techniques in this paper,
there seems to be a connection between:

• Metamorphic testing - test oracle generation/automatic
test input generation

• Neuron coverage - test evaluation
• Adversarial testing - test input generation
For the explanation between metamorphic testing and the

test oracle, it serves as a tool for validating that the ML system
is sure of its answer to a given test input and as explained in
the introduction by the same method it serves to generate new
test inputs.

Test evaluation is often based on how high the percentages
of right answers are when there is a clear right answer. Another
part of test evaluation would be how to determine if the results
from the test data set is good enough to be more general or if
the ML system would be specialized in that types of data but
not others. By this definition the neuron coverage covers the
second part of that definition by evaluating if the test result
should be considered to be good enough, since by itself it
will not affect the testing results but will give the testers a
measurement of if the ML systems itself can be considered to
being tested and trained to an acceptable degree.

When generating new test inputs, adversarial testing is made
to manipulate the test data in order to fool the system but at
the same time it generates more training data for the DNN.

We can see that all these methods cover different parts
of the workflow in ML systems and work in combination
with each other, for instance adversarial testing would if it
is done correctly lead to DNN that utilise a higher range of
its neurons which would lead to a higher neuron coverage
measurement and the metamorphic testing would make give



us a measurement if more adversarial test input generation
would be needed.

Our conclusion is that by combining these different types
of testing a more well performing type of DNN can be
constructed than if a DNN was trained and tested by any of
the testing techniques individually. This ties back to testing
of regular software in when different types of white and
black-box techniques often are used in combination to achieve
a greater degree of testing the software since each has its
advantages and disadvantages.

C. Future work

This project has given an insight into three of the most
common techniques when testing ML systems. As ML is
rapidly increasing in popularity there is a high amount of
research output in this field. This means that the results
presented in this paper may become outdated very quickly
as advances are being made in the field. One way to build
on this project would be to, at a future date, compare what
has changed when it comes to ML systems and which of the
issues has been solved.

Another way to build on this project would be to compare
even more testing methods, and so get an even better overview
of the methods currently available and in turn also what the
future may hold. Some alternative testing methods for ML
methods which we have not discussed in this paper are:

• Mutation testing
• Concolic testing
• Evolutionary computing
• Multi-implementation testing

[3]

V. CONTRIBUTION STATEMENT

Each author has concentrated on one part of ML testing
methods. Axel researched and wrote about adversarial testing,
Zack researched and wrote about metamorphic testing and
Artur wrote and researched about neuron coverage. The texts
were then reviewed by the other authors. The other sections
of the paper, e.g. introduction, were co-written in a joint effort
by all three authors. This contributed to an even workload for
the paper.
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