
Test-Driven Development: Drawbacks, Benefits, Industrial Usage and
Complementary Methods

Freja Ekman, Sarah Johannesson, Ellen Peber, Calle Sandberg | Faculty of Engineering at Lund University
fr6744ek-s, ine15sjo, ine15epe, ine14csa (@student.lu.se)

Abstract— Background: This report examines how testing
is performed in the Agile practise of test-driven development
(TDD). One common misconception is that TDD only refers to
test-first development, i.e. seeing the test fail before developing
the source code. Instead, TDD also includes the process of
short and steady development cycles. Aim: This report aims
to critically investigate the Agile practise TDD in terms of its
advantages and disadvantages. The paper is also to explore if
other Agile test methods can lessen the practice’s disadvantages,
how common TDD is in the industry and how usage of the
practise can increase. Method: To achieve the aim of the report
a theoretical review of literature within the area Agile testing
and TDD were conducted. Conclusion: Through analysis and
discussion of data it could be concluded that: (1) Code quality
can be improved by implementing TDD but it is unsure if the
method improves or even lessens productivity and usability. (2)
TDD can benefit from using complementary Agile test methods
like Acceptance test-driven development, Behaviour-driven
development and Exploratory testing. (3) TDD has a low
adoption by industry but the usage might increase if risks
are minimized and complementary Agile test methods are used.

I. INTRODUCTION

A. Project background

The Agile Manifesto provides four guiding principles for
how to work with software development in an agile manner.
In short, the principles emphasises broadly the value of
employees, working software, responding to change and
customer collaboration. [1] Moreover, Agile software devel-
opment is incremental in nature, regression testing focused,
and includes the practise of writing tests prior to production
code [2].

Agile software test processes differ from traditional test
processes in many ways [3]. A clear and interesting pro-
cess difference originates from the way requirements are
viewed; for example, the Waterfall model aims to elicit most
requirements in the early stages of a project, while Agile
software development only identifies a few [2]. This has a
direct impact on the way tests are viewed and conducted
since test and requirements are linked, or more specifically
"The tester is the one who verifies the product and ensures
it fulfils the requirements you specified" [4].

The concept of testing before coding exemplifies how
Agile methods impact the relationship between requirements
and tests. Instead of looking at testing as an activity fol-
lowing requirement specification and coding, test cases are
formed prior to coding. Test-driven development (TDD) is
an Agile development approach that encompasses this [2].
Hence, TDD can be said to flip the traditional relationship

between tests and requirements. Note that TDD is not the
only method for working in an agile manner, it is only
one of several [5], [6], [7]. Moreover, TDD is central in
several modern agile software development processes, e.g.
in Extreme Programming (XP) [2].

This report aims to, in a structured way, collect, summarize
and critically examine research information from the area
of Agile testing, focusing on the concept of test-driven
development (TDD). The main focus is laid on TDD since
the practice, according to Karac and Turhan [8], is very
controversial in regards to its effect on software quality and
programmer productivity.

B. Project purpose

The purpose of this project is threefold:
• To investigate the Agile practise TDD, a specific area

of software development
• To critically examine and analyse TDD in an industrial

context
• To suggest further research within the examined area

C. Problem statements

Considering the project purpose, the project is to answer
the following three problem statements:

• What are the advantages and disadvantages of TDD in
terms of quality, productivity and usability?

• How can complement usage of other Agile test methods
lessen the disadvantages of TDD?

• How common is TDD in the industry and how can
industry usage potentially increase?

D. Limitations

The project is subject of the following limitations:
• Time limitation. According to the course plan for

ETSN20, the project should equal 2 weeks of full time
studies (3 ECTS credit points) per student. Hence, the
project has been limited to only study a limited number
of publications from Lund University’s online library,
LubSearch, and Google Scholar.

• Knowledge limitation. The project is limited by the
authors’ knowledge of the area of Agile testing which
will impact the level of the written report and to which
dept the report will answer its problem statements.

• Scope limitation. Given the time and knowledge limita-
tions, the scope of the report has been limited to mostly
focusing on the Agile practise TDD.



E. Method

This report is built on a theoretical review of literature
within the area of Agile testing and TDD. Resources were
mainly derived through the use of the tools LUBsearch and
Google Scholar. This since the tools are widely accepted as
providers of high quality academia resources.

II. THEORY

The theory of this report begins whit a section covering the
Agile Manifesto (section A). Thereafter section B explains
the role of testing, the relationship between requirements and
tests and the agile method of using test cases as requirements.
Section C then highlight the differences between agile testing
and traditional testing and section D explains the concept of
TDD. Lastly, section E introduces how TDD can vary in
different settings.

A. The Agile manifesto

Beck et.al. [1] drafted the The Manifesto for Agile Soft-
ware Development in 2001 which consist of four main prin-
ciples, namely; "Individuals and interactions over processes
and tools, Working software over comprehensive documen-
tation, Customer collaboration over contract negotiation,
Responding to change over following a plan". The authors
of the Manifesto stresses that they do see process, tools,
documentation, contract negotiation and following a plan as
valuable. However, the contrast to these as mentioned in the
principles are more valuable.

According to Darrin and Devereux [9]; the Agile Mani-
festo could be interpreted as an unstructured way of working.
Whoever, the authors emphasises that in reality, the opposite
applies since agile processes "... require both consensus
among the team and a high level of discipline to follow
and execute the agreed upon rules and methods". Moreover
Darrin and Devereux mean that agile methods are espe-
cially appropriate to use in today’s projects given their fast-
changing, and therefore uncertain, environment.

B. Agile Software Testing

Khan, Srivastava and Pandey [3] explains that since testing
assures and improves the product quality, it is an important
part of any software project. The authors describe software
testing as ".. a process for verification and validation of the
software, it is a process to guaranty execution of error free
and bugs free Software/applications" and Bjarnason and Borg
[4] highlights that the tester guarantees that the specified
requirements are satisfied.

Bjarnason and Borg [4] have also observed that there is a
tendency of disconnect between requirements and testing in
many companies, or as they put it "...requirements engineer-
ing and testing (RET) alignment is a significant challenge for
many companies". Moreover, they emphasize that a common
requirement understanding within a project is crucial for
RET alignment. In the article three strategies to ensure
RET alignment in three different scenarios are presented.
The strategies are to reduce distances between key players,

harvest trace links, and use test cases are requirements.
The later strategy is often used by Agile developers and
comes in different variants in the industry. Generally, the
idea is for developers to create requirements as they go
and document these as test cases and thereby reducing the
total documentation effort (avoid traditional requirements
specification). Furthermore, Khan, Srivastava and Pandey [3]
states that software can benefit from constructing test before
code.

The idea of testing before coding is a part (not the entirety
as often misconceived) of the practice called test-driven
development (TDD). TDD also involves refactoring, focusing
on little tasks and more. [8] TDD is more thoroughly
described in the coming section D.

C. Agile testing vs. traditional testing

Khan, Srivastava and Pandey [3] describes that Agile
software testing methodologies or processes differs from tra-
ditional testing in five ways. Firstly, they are incremental in
nature rather than sequential and for each iteration thorough
testing is performed so that that the next iteration can start
without issues. Secondly, people are in focus rather than tools
and process. For testers, this means that they to a higher de-
gree coordinate with developers and customers. Thereby they
are knowledgeable of the requirements, ensuring a clear link
between these and the system. Thirdly, test documentation is
less valuable than live software. Extensive documentation is
avoided through teamwork and face to face communication
within the team and with the customer. Fourthly, collabo-
ration and direct customer feedback is valued over contract
negotiation. Lastly, flexibility is prioritized over planning and
accommodating to changes are worth more than following
the plan.

D. Test-driven development

As visualized in Figure 1, test-driven development (TDD)
is used in the agile method Extreme Programming (XP) [10]
but can be carried out as a stand-alone agile method itself
[11]. Since the methodology is to write unit tests for the
new functionality that will be added, see the test fail, write
just enough code to make the test pass and lastly refactor
the code but also re-run the tests [10] it is easy to assume
that the only purpose of TDD is to write tests before coding.
This is not the case according to Karac and Turhan [8] who
claims that it also relates to short and steady development
cycles corresponding their duration and refactoring effort.
Additionally, they inform that the TDD process should be
adjusted as needed which also is on the same discourse as
the agile manifesto that states that one should respond to
change over following a plan [12].

Two another articles by Fucci et al. and Tosun et al. tells
that the concepts of testing first or last does not have any
impact on the quality or productivity. Also, refactoring, that
are a part of TDD, is revealed to have a negatively outcome
on both quality and productivity. However, the process of
TDD which encourage steady, fine-grained, small-scale steps



improves the development when it comes to focus and flow.
[13], [14]

Fig. 1. Visualisation of the relation between Agile software development,
XP and TDD (XP is an Agile method incorporating TDD but the Agile
practise TDD can also be used as a stand-alone method).

E. Variants of Test Cases as Requirements

To document requirements as test cases is also known
as using test cases as requirements (TCR) and it is a
practise used to increase alignment between requirements
and development activities as e.g. testing [15].

An iterative case study by Bjarnason et. al. [15] of three
companies identified five different use-types/variants of the
test-cases as requirements (TCR) practise: stand-alone strict,
stand-along manual, de facto, behavior-driven and story-test
driven. These where identified using four facets of TCR
observed in the companies, namely; documentation time
frame for defining TCRs (upfront / during elicitation and
validation / after-the-fact during the testing process), require-
ments format for the TCRs (ranges from formal domain-
specific language structure to natural language test cases),
machine executable specification (yes/no/partly) and TCR-
specific tool support (yes/no). Table I shows how the four
facets are combined to characterise the TCR use-types. In
this report TCR is regarded as a sub-part of TDD.

The authors describe the variants in the following way: In
stand-alone strict TCR only a part of the functionality are
specified with automated test cases whereas in stand-alone
manual TCR stakeholders using manual test cases result in
specified requirements. De facto uses manual and automatic
test cases to yield the requirements and in behaviour-driven
TCR requirements are specified in the elicitation process
by the use of automated acceptance test cases. Lastly, in
story-test driven TCR user stories and acceptance criteria
are used for requirement specification and manual/automatic
test cases.

Moreover, the authors findings exemplifies how the TCR
practise can be adapted to company specific conditions and
thereby vary between companies. The studied companies’
TCR practise also varied in terms of in which context it
was used, in which extent and to what degree of maturity.

Lastly, the authors highlight that more variants of TCR can
potentially be identified by examining more companies and
altering the facets.

Stand-
alone
strict

Stand-
along
manual

De facto Behavior-
driven

Story-
test
drive

Documentation
time

Upfront Upfront After-
the-fact

Upfront Upfront

Requirements
format

Semi-
structured

General General Structured Semi-
structured

Machine exe-
cutable spec-
ification

Yes No Partly Yes Partly

TCR-specific
tool support

Yes No No Yes Yes

TABLE I
VARIANTS OF THE PRACTISE TEST-CASES AS REQUIREMENTS (TCR)

CHARACTERISED BY FOUR DIFFERENT FACETS

III. ANALYSIS

Section A of this analysis will broadly introduce advan-
tages and disadvantages of TDD. The following sections
(B, C and D) will go in to depth in discussing advantages
and disadvantages of TDD when it comes to code quality,
productivity and usability. Section E will then examine
how other methods for Agile testing compare to TDD and
section F will discuss how complementary usage of other
test methods can minimize the disadvantages of TSS. Lastly,
section G will discuss what further research is needed within
the area.

A. Advantages and Disadvantages of TDD

When it comes to the advantages of employing TDD, it is
claimed to bring improvements in code quality, productivity
and defect intensity as a few examples [16], [17]. At first
glance, TDD might seem like an optimal solution with no
drawbacks. However, according to 48 different empirical
studies on TDD it is not that easy to implement. This
has several reasons; increased development time, developers
being unable to adapt and technical limitations. [18]

According to an article by Karac and Turhan the method
was not widely adopted in the industry at the time, in 2018,
and critics wanted more evidence to certify the assets of TDD
[8]. Previous research studies, that had been investigating the
effectiveness of the method, had failed to produce conclusive
results regarding the improvements obtained with TDD. In
fact, all possible outcomes (positive, neutral and negative)
were reported. [16]

B. Code Quality

Almost all case studies, when it comes to improvement in
code quality, were found to report an improvement [16][17].
The quality improvement gained with TDD, by continuous
and rigorous testing and refactoring lead to a lower defect
density [19]. Beside this, also a faster rate of defect detection
and fixing, as well to an easier and faster maintenance [16].



In other words, TDD facilities modular code that is easier
for programmers to understand and debug. It can, therefore,
eventually help programmers to earlier detect defects and fix
them. At the same time, tests can act as documentation and
improve the understandability of the code. Lastly, TDD also
supports the programmers to think from the perspective of
an end user.[19]

C. Productivity
Research display that effects on productivity are incon-

clusive, but most results seem to show a slight decrease in
productivity as a result of increased development time [20].

A hypothesis, according to Khanam, Zeba and Ahsan,
is that in some situations unit testing becomes more time
consuming and inappropriate than effective. This since, not
all real-life systems can be generalized and simplified for
unit testing. A forced unit testing may lead to increased
time in rectifying the unit tests, than developing the code
and performing functional testing [19].

While others, suggested that improvement in code quality
by TDD (leading to lower defect generation and faster fixes),
thereby improved the productivity of the developers as well
[16].

D. Usability: Human errors and Technical limitations
As previously mentioned TDD is not commonly used

in the industrial environment. In a research following 416
developers claiming to use TDD, only 12% did this in a
correct matter [8]. Thus, there is a difficulty in following
TDD-protocols. This is a result of lack of knowledge in the
area and that people have different perception of what TDD
actually brings to the table. Additionally, developers who
lack a skill in testing seem to have difficulties adapting to
this technique. These are not a flaw of the method itself, but
indicates that there is a complexity to TDD that makes it
hard to pick up in any project [18].

According to a study by Causevic, Sundmark and Pun-
nekkat there are also more technical obstacles when imple-
menting TDD; limited tool support, lack of front-level design
and inability to adjust legacy code (the existing codebase)
accordingly. All of these make it difficult to use TDD in
projects where others methods were previously used, as it
is hard to adjust the existing work and new tool support is
needed. Development might have to be redone completely.
Also, using TDD generates a constantly changing design that
could make further development more difficult [18].

E. TDD compared to other agile testing methods
How does other methods for Agile Testing compare to

TDD? Many of the advantages from using TDD can be
achieved with other methods that include short development
cycles. This since the generally misconceived "core" of TDD,
that tests are written before the code, might not actually make
much of a positive difference for a software development
project [8]. As described earlier the actual benefited effect
of TDD is not the test-first approach but the structured cycles.

In this report, three other testing methods within the agile
approach will be discussed to research if they could be a

better alternative to test-driven development. The evaluated
methods are behaviour-driven development, acceptance test-
driven development and exploratory testing.

1) Acceptance test-driven development: Acceptance test-
driven development (ATDD) is an approach to discover
requirements where the acceptance tests are created by the
customer [5]. Therefore ATDD is not just about how to create
tests but also to clarify the requirements [21]. Furthermore,
there are results of using ATDD that shows a double increase
in productivity. This may vary from team to team but a
number of them experience the productivity increase and also
improvements concerning quality. However, both TDD and
ATDD has the same quality goal and the acceptance tests
can form which unit tests that are needed to develop. [5]

2) Behaviour-driven development: Behaviour-driven de-
velopment (BDD) is a direct response to the issues that are
found in TDD and therefore it is also based on TDD but
also ATDD. The purpose of BDD is to have a language that
makes it easier to define the wanted behaviour of the system
that generates clear executable specifications, i.e tests. The
language that is used is actually the core of BDD and it
should be ubiquitous which means that there is a structure
based on the domain model. Once there is a common
language it is easier to communicate with the customer and
about the solutions. On this basis, stories and scenarios are
written to make the need for the system clear and to achieve
features and tests. These scenarios will be the ground to
confirm if acceptance tests are passed. To pass the tests,
the same process as in TDD is also required, namely the
steps of failing, pass and refactoring. Additionally, since the
terminology is crucial in BDD, the coding should follow the
ubiquitous language to make it easier to understand the code
and to minimize the additional documentation. Moreover, the
language evolves during different phases and it is of course
approved and needed to update the ubiquitous language
during the time. [6]

3) Exploratory testing: Exploratory testing (ET) is de-
scribed as a more free test style where the design, execution
and learning of tests are done at the same time to obtain
continuous optimization testing. The methodology is not
limited to a certain method and can be used as a compliment
in combination with other test methods. Another thing that
differs a lot from the other methods is that ET is not
automated and scripted but instead used as manual testing to
ensure that the actual using of the system is tested. Therefore
it is highly recommended to use when testing things like the
GUI of a system. [7]

4) The test quadrant: There is a model called the test
quadrant that shows the relation between the guidance of
development and the critique of the product but also the
business and technology facings [22]. To cover most of
the quadrant, and therefore also have greater test coverage,
there is a need for a combination of the different testing
techniques.



IV. DISCUSSION

A. What are the advantages and disadvantages of TDD in
terms of quality, productivity and usability?

From the section Analysis, it becomes clear that the opin-
ions of advantages and disadvantages of TDD are divided.
Different viewpoints were especially identified regarding the
impact TDD has on productivity. The majority claim TDD
has a negligible effect on productivity. At the same time,
others sources confirm the opposite. It can be worth to point
out that one finding from reviewing different studies is that
they refer to productivity differently. Some measure it as
the amount of time spent to accomplish a task, while others
mean that it represents the quality of the work performed.
It can therefore be questionable if the productivity really is
negligible or if it depends on how productivity is measured?
However, when it comes to code quality the common opinion
is that it improves with the use of TDD.

In the terms of adoption for industry, there exist both tech-
nical obstacles when implementing, an using, TDD, as well
as different perceptions of what it is. Thus, the practice’s use
decreases which can be seen as a drawback with TDD. As a
result of this, it does not come as a surprise that only 12%
use TDD in a correct way according to the study mentioned
in the analysis by Karac and Turhan. This drawback could
perhaps be minimized by implementing better guidelines of
how to use TDD and by increasing the industry knowledge of
the practise. Another possible consequence of the inadequate
agreed perception of TDD is that many of the studies on TDD
are contradictory.

Lastly, it is worth to point out that the overall advantages
with TDD is not due to the test-first dynamic. It is rather a
result of the structural cycles used in TDD.

B. How can complement usage of other Agile test methods
lessen the disadvantages of TDD?

As seen in the analysis each testing technique has its
own expertise. ATDD focuses on the close relationship
with the customer to provide clear requirements while BDD
attaches great importance to the language and lastly, ET
targets manual testing. None of these methods is mutually
exclusive and could be used together to achieve the greatest
advantages.

The uncertainty of how TDD should be used could be
cleared by using BDD so that the whole team is following the
same guideline. Additionally, ATDD will make the purpose
of the system unambiguous and there will not be as many
questions as when using TDD. The risk of TDD not resulting
in higher productivity, which has been observed out in the
industry, can be lowered by implementing ATDD which has
a clearer, or proved, productivity benefit. Also, ET will be a
strong complement since TDD does not cover manual testing
but instead unit tests.

Moreover, the model called the test quadrant could moti-
vate how the different testing methods should be used. As
described, if the whole quadrant is filled in it gives a larger
code coverage. Thus, complementing TDD with other Agile

Testing processes will most probably result in better feedback
to the developers. Furthermore, this is an assurance of that
the right product is developed and a decreasing uncertainty
of the process.

C. How common is TDD in the industry and how can
industry usage potentially increase?

The difficulties with TDD, that are mentioned in the
analysis, can be summarized to 7 reasons why the method has
been adapted to a limited extent in industrial environments.
These are increased development time, insufficient TDD
experience and knowledge, insufficient design, insufficient
developer testing skills, insufficient adherence to the TDD
protocol, domain- and tool-specific limitations and legacy
code. As stated in the analysis, TDD is not as widely used
in the industry, which could be the result of these limitations.
To potentially be able to increase the usage of the method
there must be strategies to counter them.

The insufficient knowledge of TDD, adherence to the TDD
protocol and testing skills amongst developers could be han-
dled by better educating the people involved. However, the
struggle probably occurs not only due to lack of knowledge
but due to people being used to work in other ways and not
being willing to adapt. If this is the case a bigger cultural
change in the organisation would be needed, where the
positive attitude towards continuous learning and knowledge
of several development methods should be encouraged.

To handle the problem of domain- and tool-specific lim-
itations relevant support has to be implemented. A decision
to use TDD as the way of working has to be taken by
managers with a high enough authority for investment and
organisational adaption to follow. Without authority, the
decision will not result in actual action and the TDD practise
is at risk of not getting enough support. Ways to handle
legacy code should also be included in this adaption. Exactly
which changes are needed depends on the specific situation.

The increased development time and lack of sufficient
design are the last problems to manage. However, these are
more difficult to counter as they are is some ways results of
the benefits of TDD. Use of the agile and adaptive method
TDD generates code of better quality, and a process that
can handle changes, but results in more time being spent
developing and a looser framework to follow. If the benefits
out-way the drawbacks in a specific situation, this should be
argument enough to adapt to this way of working. Whether
the benefits out-way the drawbacks depend on the company
and its requirement, for example; a nuclear power plant
application might value design/structure more than being
change-adaptive, while a music application might value the
opposite.

Even though the transition from a more static method
to TDD may not be smooth, there will be a payoff for
committing if risks are handled. Also, companies must be
ready to adapt the practise after company specific needs and
conditions and create their own version of TDD. Companies
might even, as mentioned in the previous section, comple-
ment TDD with other practises/methods in order to minimize



the practice’s risks.

D. Further research

The area of TDD could be further explored to make
it easier for academics and companies to understand the
practice’s advantages and disadvantages. For instance, more
case studies would increase the information of how the
method is used today and enable academia to suggest clearer
guidelines for how the technique is to be performed in a
successful manner. Also, the guideline could include how
to move from a traditional testing process to TDD and
the risks within each step of the transition, which could
increase the usage in the industry. Another option to this
guide is to include instructions on how to use TDD with
complementing techniques to increase the proven benefits of
the work process.

It would also be interesting to discover or develop a good
tool support to use TDD. This could maybe, somewhat,
solve the problem with inconsistent usage of TDD by
supporting the developer through the different process steps.

V. CONCLUSION

A. What are the advantages and disadvantages of TDD in
terms of quality, productivity and usability?

Generally, the advantages of TDD is more a result of the
structural cycles used in TDD, rather than the distinctive test-
first dynamic. Moreover, code quality is primarily positively
affected by the use of TDD. The effects on productivity and
usability from using TDD is on the other hand inconclusive
and perhaps even negligible. This might be a result of the
inadequate agreed perception of productivity and TDD.

B. How can complement usage of other Agile test methods
lessen the disadvantages of TDD?

By applying other Agile test methods like ATDD, BDD
and ET that are discussed in this paper, TDD can be comple-
mented and also the disadvantages of TDD will lessen. Some
of the methods are even based on TDD and are designed to
increase the practice’s benefits. ATTD will answer questions
of uncertainty, BBD ensures that the whole team is following
the same guideline and ET is covering manual testing which
is excluded in TDD.

C. How common is TDD in the industry and how can
industry usage potentially increase?

TDD is not widely used in the industry as a result
of several limitations. To minimize the affect of these
limitations, and eventually increase usage of the method,
they must be countered. This could be performed by;
making investments in, and taking actions to, handle
technical limitations, educating staff members in TDD and
testing and by complementing TDD with other Agile test
methods. This will also make the transition to TDD easier.

VI. CONTRIBUTION STATEMENT

A. Freja Ekman

1) Responsibility: Content/scope - ’have we answered all
questions and project goals?’

2) Section: Theory, analysis, discussion, conclusion

B. Sarah Johannesson

1) Responsibility: Project leader, handles contact with
supervisor, schedules meetings and keeps track of deadlines,
hand-ins

2) Section: Analysis, discussion, conclusion

C. Ellen Peber

1) Responsibility: Structure, layout, references
2) Section: Introduction, theory, discussion

D. Calle Sandberg

1) Responsibility: Adherence project guidelines
2) Section: Analysis, discussion, conclusion

E. Everyone

All authors was a part of the literature research, discussed
the results and reviewed and edited the paper to increase
the quality. The work with the report has been conducted in
an iterative way. Hence the sections which the authors have
been involved in should be interpreted with some caution
and seen mostly as a division of responsibility. All authors
have reviewed and edited each others work.

REFERENCES

[1] Beck et al. (2001) Manifesto for agile software development.
[Online]. Available: http://agilemanifesto.org

[2] Naik, Tripathy, and Wiley InterScience (Online, Software testing and
quality assurance. [Elektronisk resurs] theory and practice. Wiley,
2008. [Online]. Available: http://ludwig.lub.lu.se/login?url=https:
//search.ebscohost.com/login.aspx?direct=true&db=cat07147a&AN=
lub.6126887&site=eds-live&scope=site

[3] Khan, Srivastava, and Pandey, “Agile approach for software testing
process,” in 2016 International Conference System Modeling Advance-
ment in Research Trends (SMART), Nov 2016, pp. 3–6.

[4] Bjarnason and Borg, “Aligning requirements and testing: Working
together toward the same goal,” IEEE Software, vol. 34, no. 1, pp.
20–23, Jan 2017.

[5] Pugh, Lean-Agile Acceptance Test-Driven Development: Better Soft-
ware Trough Collaboration, 2011.

[6] Solis and Wang, “A study of the characteristics of behaviour driven
development,” in 2011 37th EUROMICRO Conference on Software
Engineering and Advanced Applications, Aug 2011, pp. 383–387.

[7] Yu, “Design and application on agile software exploratory test-
ing model,” in 2018 2nd IEEE Advanced Information Manage-
ment,Communicates,Electronic and Automation Control Conference
(IMCEC), May 2018, pp. 2082–2088.

[8] Karac and Turhan, “What do we (really) know about test-driven
development?” IEEE Software, vol. 35, no. 4, pp. 81–85, July 2018.

[9] Darrin and Devereux, “The agile manifesto, design thinking and
systems engineering,” in 2017 Annual IEEE International Systems
Conference (SysCon), April 2017, pp. 1–5.

[10] Fucci et al., “Towards an operationalization of test-
driven development skills: An industrial empirical study.”
Information and Software Technology, vol. 68, 2015.
[Online]. Available: http://ludwig.lub.lu.se/login?url=https:
//search.ebscohost.com/login.aspx?direct=true&db=edselp&AN=
S0950584915001469&site=eds-live&scope=site

[11] Beck, Test-driven Development: By Example, 2003, vol. 2, p. 204.



[12] Darrin and Devereux, “The agile manifesto, design thinking and
systems engineering,” in 2017 Annual IEEE International Systems
Conference (SysCon), April 2017.

[13] Fucci et al., “A dissection of the test-driven development process:
Does it really matter to test-first or to test-last?” IEEE Transactions
on Software Engineering, vol. 43, no. 7, pp. 597–614, July 2017.

[14] Tosun et al., “Investigating the impact of development task on external
quality in test-driven development: An industry experiment,” IEEE
Transactions on Software Engineering, pp. 1–1, 2019.

[15] Bjarnason et al., “A multi-case study of agile requirements engineering
and the use of test cases as requirements,” Information and Software
Technology, vol. 77, pp. 61 – 79, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950584916300544

[16] Rafique and Mišić, “The effects of test-driven development on external
quality and productivity: A meta-analysis,” IEEE Transactions on
Software Engineering, vol. 39, no. 6, pp. 835–856, June 2013.

[17] Tosun et al., “Investigating the impact of development task on external
quality in test-driven development: An industry experiment,” IEEE
Transactions on Software Engineering, vol. PP, pp. 1–1, 10 2019.

[18] Causevic, Sundmark, and Punnekkat, “Factors limiting industrial adop-
tion of test driven development: A systematic review,” in 2011 Fourth
IEEE International Conference on Software Testing, Verification and
Validation, March 2011, pp. 337–346.

[19] Khanam and Ahsan, “Evaluating the effectiveness of test driven de-
velopment: Advantages and pitfalls,” International Journal of Applied
Engineering Research, vol. 12, pp. 7705–7716, 01 2017.

[20] Amrit and Meijberg, “Effectiveness of test-driven development and
continuous integration: A case study,” IT Professional, vol. 20, no. 1,
pp. 27–35, January 2018.

[21] Hoffmann et al., “Applying acceptance test driven development to a
problem based learning academic real-time system,” in 2014 11th In-
ternational Conference on Information Technology: New Generations,
April 2014, pp. 3–8.

[22] Gupta, Manikreddy, and GV, “Challenges in adapting agile testing in
a legacy product,” in 2016 IEEE 11th International Conference on
Global Software Engineering (ICGSE), Aug 2016, pp. 104–108.


