
How to Test Using Jenkins?
Raphaël Castanier

LTH
Email: raphael.castanier@grenoble-inp.org

Lars Gustafsson
LTH

Email: ada10lgu@student.lu.se

Abstract—Jenkins, the open source automation server, is used
in junction with a multitude of plugins to support building,
deploying and automating software projects. This useful tool
has a large community-based support and is widely used in
industry and research. Jenkins is mainly used in Continuous
Integration/Continuous Distribution workflows, but can also be
implemented for various other applications. Because Jenkins
is highly modulable with its plugin system, it allows many
automated process to be run automatically. We will focus in
this study on Jenkins usage for software testing, both on test
unit generation and automation. We implemented a Jenkins CI
study case on LATEXfile generation (this paper). Finally, we will
introduce Jenkins Acceptance Test Harness (ATH).

I. INTRODUCTION

Jenkins [1] is an automation software. This open-source
project provides an environment to automate tasks on various
projects. Its scalability and robustness makes it used in several
industrial environments, university world and widely spread in
the software development projects.

One of Jenkins strenght is its ability to be extended through
plugins. Indeed, the widely community built around Jenkins
developed a lot of plugins (more than 1500 during Dec.
2019) for various applications and answering spceific domain
needs. Plugins are designed to automate specific tasks such as
using Version Control System to retrieve source code, building
environment for several platforms or perforing large number
of unit tests.

We can talk about Unit Test Automation with Jenkins-CI
tool [2]. Jenkins ability to automate tasks is really powerful to
automate unit testing. It allows developers to run large number
of various tests in different environments to ensure unit tests
are correctly run. In Continuous-Integration (CI) processes,
Jenkins automates build, testing and release steps, allowing
developers to save their time from this redundent tasks and
providing monitoring along software product life-cycle.

Jenkins is also studied in academic researches, presentig its
strenghts and its weakness. Consequently, Jenkins has been
improved for its own unit testing solution, the Acceptance Test
Harness (ATH).

This paper will present a related work about Jenkins (Sec-
tion II.), then will present Jenkins more in deep in Section III.
We will talk about Coninuous-Integration benefits of Jenkins
in Section IV. Section V. presents a study case we made on
Jenkins fo build this paper. Section VI. introduces Acceptance
Test Harness (ATH).

II. RELATED WORK

Since Jenkins introduction in 2004, some studies have tried
to capitalize on its many possible applications.

Ahmed et al. implemented a unit test automation with Jenk-
ins for a Robot Framework application [2]. We can quote Seth
and Khare for their Jenkins application for Automated Coninu-
ous Integration (ACI) in embedded software development [3].
Other Jenkins applications have been made by Arcuri, Campos
and Fraser for Unit Test Generation (UTG) during software
development, using EvoSuite plugins for Maven, IntelliJ and
Jenkins [4]. Budiardja, Bouvet and Arnold exploited Jenkins
properties to run application-level regression tests on High-
Performance Computing systems (HPC) [5]

In the field of testing Jenkins itself, Munir and Runeson
study on Acceptance Test Harness (ATH) shows contributions
and weakness of ATH to Jenkins environment [6].

III. JENKINS

Jenkins is an open-source automation server [1]. It was first
introduced in 2004 as Hudson, a solution to build repository
Java code. In 2011 the project forked and was renamed
Jenkins.

Jenkins supports automation of all development processes.
Jenkins gives developers feedback on which the last commit
is going to work. It suites for Continuous Integration and
Continuous Development.

Jenkins is a server software, installed on a network computer
and provides a web interface. The Jenkins instance adminis-
trator can install plugins to provide specific services. Then
developers can create jobs, build process, pipelines. . .

A Jenkins plugin is a software extension for Jenkins provid-
ing support for specific task. The Jenkins community provides
more than 1,500 plugins to automate any build task and is
highly configurable [7]. With all available plugins, Jenkins
can build projects, perform static analysis, deploy products
and so on. . . Plugins are sorted in 5 categories: Platforms,
User Interface, Administration, Source Code Management and
Build Management.

A Platform plugin will provide a testing environment for
your project. For example, the Android Emulator plugin [8]
provides test suites for Android projects. A Source Code
Management plugin can give Jenkins the ability to fetch
GitHub, GitLab or Bitbucket repository code. Finally, a Build
Management plugin will provide tools for build result analysis
(such as the JUnit plugin [9]).



Because of automation process, Jenkins allows its users to
reduce time spent on build and test tasks and allows automated
regression testing. Add the Open-Source Software side of
Jenkins (one can use Jenkins for free), the return on investment
can be really beneficial [10].

IV. CONTINUOUS INTEGRATION

Continuous Integration workflows are software development
practices where several redundant tasks are executed several
times. In CI workflows, developers produce source code in
a continuous manner by pushing new changes to the source
repository (e.g., Git, Mercurial or SVN). Then product has to
be tested in several level (Unit testing, Integration testing) and
quality (Regression testing, Acceptance testing) before a build
step, creating the final product.

All this steps are redundant and the non-manual tasks can
be automatized.

For instance, Jenkins jobs can be triggered from different
sources : source repository event, time based, on demand.
Then, once an hour, a day or a week, the larger test suites
and build process can be scheduled to provide building status
monitoring, through the Jenkins notification ability.

Although Jenkins can be used for build processes automa-
tion, it can be used for Unit Test Automation [2]. As example,
a commit on the source repository can trigger Jenkins test jobs
to run the different testing levels with different test suites, in
order to provide a quick report in case of defect introduction.

Through its several available plugins, Jenkins can run a
lot of test unit suites for numerous test environment. One of
Jenkins power is its ability to run tests for different testing
environment, as different platforms (Windows, Linux, MacOS,
Android, iOS. . . ). Another good side of automation is the
plugins ability to add Unit Test Generation (UTG) for newly
added code, that can save a lot of time for test teams [4].

V. STUDY CASE

As study case, we instanciated a Jenkins server to build
this paper. The case is Jenkins usage for a build process, ie
LATEXfile generation from GitHub hosted code.

A. Jenkins installation and configuration

We first installed a Jenkins server from a Docker container
on a private server, following steps from other papers [2].
Then we made this Jenkins instance public through Internet at
http://jenkins.fivefactorial.se/ and created user accounts.

B. GitHub authentication

We created a private GitHub repository to host the
paper.tex source file. We used our own credentials to allow
Jenkins to access this repository (see picture 1). We were
able there to run a job that was just checking out repository
code, confirming that authentication was working correctly
(see picture 2).

Fig. 1. Jenkins credentials page

Fig. 2. GitHub authentication job output

C. Job creation

We created a new job to build the LATEXfile into PDF
format output. It builds each time a new commit appears on
master branch and produces output file using pdflatex
Linux command. See picture 3 for the job view.

We can see that Jenkins shows the last build workspace, the
lase successful artifacts and the recent changes from VCS.

Now, each time a new commit appears on the remote
repository, Jenkins tries to build the paper.

D. Unit Test

In this particular use case, the only relevant unit test is the
fact that builds succeeds (no Error produced) or fails (one or
more Errors appear, the job is canceled).

We could imagine another crietrion on number of
LATEXWarnings, thier severity or thier type but we didn’t
implemented it.

For example, some Errors like Overfull
hbox and Underfull
hbox warnings are indicating a potential risk of unsuccessful
rendering, but they may not indicate a build failure.

E. Monitoring

We can follow build history through Jenkins view for the
project (see picture 3) A blue colored ball means the build is
successful and a red ball means the build failed.

There is also a weather icon the each job, indicating the
success rate for a job (see picture 4). A sun means most of
the previous builds succeeded.



Fig. 3. Project PDF job view

Fig. 4. Jenkins dashboard weather

VI. ACCEPTANCE TEST HARNESS

We can briefly talk about the Jenkins Acceptance Test
Harness (ATH), based on another study [6] and our sources.

Jenkins is an Open-Source software, maintened by a wide
community of industrial and academic actors namely. The
main development of Jenkins and its plugins is made by
community members, but there is no test plan or test strategy
for Jenkins Acceptance.

Although Jenkins is used to automate tasks in CI and Unit
Testing, it seems to lack of testing of its own code. Manual
tests are performed by developers but the test quality depends
on tester thouroughness and are not necessarely relevant for
Jenkins quality.

Furthermore, due to a large number of plugins, testing
environments and configurations, it became tedious to test
Jenkins and its plugins manually, using regression testing for
example.

The ATH project [11] is born to automate End-to-end testing
for Jenkins and its plugins in various conditions. According
to the quoted study, it is a good start to improve Jenkins

environment testing but its not an example for the field of
software testing.

This ATH provides a testing framework to automate regres-
sions tests on Jenkins and some plugins in various configura-
tions.

VII. CONCLUSION

In this paper, we presented Jenkins, the automation server.
Jenkins is a software running on server and executing various
automated tasks on software. Due to its flexibility, Jenkins is
able to adapt to many projects, in CI/CD proccess, for build,
unit test and monitoring software projects. Jenkins is widely
supported by an open-source community and is improved by
plugins usage. Plugins are really numerous and fit to various
project case automation.

We presented a study case on Jenkins we used to understand
and practice its configuration. We were able to checkout a
GitHub repository, build a LATEXfile and monitor this job
evolution.

We finally studied the ATH project, a test improvement
initiative for Jenkins core and its plugins.

REFERENCES

[1] “What is jenkins? the ci server explained,” https://www.infoworld.com/
article/3239666/what-is-jenkins-the-ci-server-explained.html.

[2] A. Ahmed et al., “Unit test automation with jenkins-ci tool,” 2015.
[3] N. Seth and R. Khare, “Aci (automated continuous integration) using

jenkins: Key for successful embedded software development,” in 2015
2nd International Conference on Recent Advances in Engineering &
Computational Sciences (RAECS). IEEE, 2015, pp. 1–6.

[4] A. Arcuri, J. Campos, and G. Fraser, “Unit test generation during
software development: Evosuite plugins for maven, intellij and jenkins,”
in 2016 IEEE International Conference on Software Testing, Verification
and Validation (ICST). IEEE, 2016, pp. 401–408.

[5] R. Budiardja, T. Bouvet, and G. Arnold, “Application-level regression
testing framework using jenkins,” Concurrency and Computation:
Practice and Experience, vol. 30, no. 1, p. e4339, 2018, e4339
cpe.4339. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
10.1002/cpe.4339

[6] H. Munir and P. Runeson, “Software testing in open innovation:
An exploratory case study of the acceptance test harness for
jenkins,” in Proceedings of the 2015 International Conference
on Software and System Process, ser. ICSSP 2015. New York,
NY, USA: ACM, 2015, pp. 187–191. [Online]. Available: http:
//doi.acm.org/10.1145/2785592.2795365

[7] “Jenkins plugins index,” https://plugins.jenkins.io/.
[8] “Jenkins plugins andoid emulator,” https://plugins.jenkins.io/

android-emulator.
[9] “Jenkins plugins junit,” https://plugins.jenkins.io/junit.

[10] “Jenkins - save money, time, and sanity.” https://www.trustradius.com/
reviews/jenkins-2016-08-25-11-21-32.

[11] “Jenkins github repository,” https://github.com/jenkinsci/
jenkins-test-harness.


