
ETSN15
Requirements Engineering

Lecture 8:
Validation [Lau:9] & Inspections [INSP]
Tentafrågeupplägg
Agile RE [AGRE + ATCR]

This lecture is input to your current project task:
To develop your Validation Checklist for the ‘customer’
validation efforts during next week.
Work on this at exercise session.

Elizabeth Bjarnason
Björn Regnell
http://www.cs.lth.se/ETSN15

How will you do
requirements validation
in your project?

• Inspections [INSP]?
• Tests: usability testing, prototyping,

model-based simulations?

Requirements
validation

Purpose
 To make sure that we have elicited

and documented the right
requirements in a good way

”Will we build the right system with
these requirements?”

Methods
 Inspections [INSP]
 Tests, e.g. usability testing,

prototypes, model-based simulations
 Mathematical proofs

Requirements Validation
through tests

Different types of dynamic validation:
 Manual ”simulation” (walk-through) based on

scenarios/use cases/task descriptions
 Paper prototypes or “mock-ups”
 Executable prototypes
 Pilot tests

Important steps:
 Choose suitable test approach, environment, etc.
 Choose who will do the testing
 Create & Run test cases
 Document problems
 Fix problems
 Consider: How to avoid problems in the future?

Inspections [INSP]
Described already by

M.E. Fagan, IBM, early 70-ies
 systematic assessment
 documents inspected by others to detect defects

General objectives of inspection methods:
 Defect detection
 Knowledge dissemination
 Team building
 Decision-making

The inspection process [INSP]

Planning Inspection
meeting

Root-cause
analysis

List of
defects

Defect
summary

Report

Prepa-
ration Correction Follow-up

Roles:
Author
Moderator
Reader
Reviewer
Secretary

Overview
meeting

Request

The actual
individual
reviewing is
done in this
activity

Different methods to detect
defects (reading techniques)

Ad hoc
 To your best ability (no specific guidelines)

Checklist
 A list of questions or check items direct the review

Perspective-based reading
 Different reviewers inspect from different perspectives and

their findings are combined:
e.g. user, designer, tester – perspectives,
or from the perspective of different tasks/use cases

N-fold inspection
 N independent groups run inspection process in parallel

Course Project: Validation of R2 (in W6)
 Consider how to maximize value of review
 Prepare by providing the review group with a Validation

Checklist suitable for your project (Exercise 5!)
 Validation Report (by review group) should contain relevant

and useful issues ranked by criticality

See project description

R2 Validation
checklist

+ validation checklist
+ validation report of another project

Authoring group Review group

E5

Review

Validation
report

R3

Your two roles in validation

• As author make a useful checklist
• As reviewer make a useful validation report

Also look at
grading
criteria for
Validation

A2 reviews A1’s
R2 SRS etc

Different kinds of checks

• Content of spec
• Structure of spec
• Consistency of spec

Fig 9.2A Contents check

Does the spec contain:
• Customer, sponsor, background
• Business goals + evidence of tracing

• Data requirements
(database, i/o formats, comm. state, initialize)

• System boundaries & interfaces
• Domain-level reqts (events & tasks)
• Product-level reqts (events & features)
• Design-level reqts (prototype or comm. protocol)
• Specification of non-trivial functions
• Stress cases & special events & task failures

• Quality reqts (performance, usability, security . . .)

• Other deliverables (documentation, training . . .)
• Glossary (definition of domain terms . . .)

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 9.2B Structure check

Does the spec contain:
• Number or Id for each requirement
• Verifiable requirements
• Purpose of each requirement
• Examples of ways to meet requirement
• Plain-text explanation of diagrams, etc.
• Importance and stability for each requirement
• Cross refs rather than duplicate information
• Index
• An electronic version

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 9.2C Consistency checks

Guest

Event list
1.
2.
. . .

Tasks

E/R model

Function list
1.
2.
. . .

CRUD Event
check

Event
check

Support?

Data
exists?

Virtual windows

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Book C U O C O U O

CheckinBooked RU U O O U O

CheckinNonbkd C U O C O U O

Checkout U U O R U

ChangeRoom R R O U O

RecordService O C R

PriceChange C UDO C UDO

Missing? D D C?UD? UD

Fig 9.2D CRUD+O matrix

Create, Read, Update, Delete + Overview

Gu
es

t

St
ay

Ro
om

Ro
om

St
at

e

Se
rv

ice

Se
rv

ice
Ty

peEntity

Task

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

SLUT+Ö
Skapa
Läsa
Uppdatera
Ta bort
Översikt

Fig 9.3 Checks against surroundings

Reviews
Review:

Developers and customer
review all parts.

Goal-means analysis:
Goals and critical issues
covered?
Requirements justified?

Risk assessment:
Customer assesses his risk.
Developers assess their risk.
High-risk areas improved.

Tests
Simulation and walk-through

Follow task descriptions. Correct?
Supported?

Prototype test (experiment with
prototypes):
Requirements meaningful and
realistic?
Prototype used as requirement?

Pilot test (install and operate parts
of system):
Cost/benefit?
Requirements meaningful and
realistic?

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 9.4(A) Check list

Project: Noise Source Location, NSL vers. X Date, who: 99-03-15, JPV

Contents check Observations - found & missing Problem?
Customer & sponsor Missing, OK
. . .
Data:
Database contents

Class model as intermediate work
product

. . .
Initial data & states Missing Seems innocent, but caused many

problems particularly when screen
windows were opened.

Functional reqs:
Limits & interfaces
Product-level events
and functions

Mostly as features

. . .
Special cases:
Stress cases
Power failure, HW
failure, config.

Missing Problem. Front-end caused many
problems

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Project: Noise Source Location, NSL vers. X Date, who: 99-03-15, JPV

Contents check (2) Observations - found & missing Problem?
Quality reqs:
Performance

Missing, also in parts not shown
here.

Problem. Response time became
important.

Capacity, accuracy Missing, also in parts not shown
here.

Problem. Data volume, etc.
became important.

Usability Missing Would have been useful
Interoperability Missing External dataformats, robot role,

etc. caused problems
. . .
Other deliverables:
Documentation

Missing Unimportant. Company standards
exist.

. . .

Structure check Observations - found & missing Problem?
ID for each req. OK
Purpose of each
requirement

Good. Domain described.

Consistency checks Observations - found & missing Problem?
CRUD check:
Create, read, update,
delete all data?

Have been made

Tests Observations - found & missing Problem?
Prototype test Not done, nor during development. Should have been done. Caused

many problems later.

[INSP] Check list

Discussion

 What are the quality criteria for a
requirements specification?
 For contractual purposes
 For planning purposes
 For development
 For testing

Correct
Incorrect requirements are useless and potentially
dangerous!
If the requirements are not correct, we risk spreading

mis-information within project and to customers.

Complete
Spec covers all necessary requirements to describe the
full scope incl. exceptions, error handling etc

Unambiguous
Everyone understands it the same way.
Can everyone read, discuss + agree on what it means?

Clear & Concise
Simply and clearly stated. Makes it easier for others (incl
pure readers) to understand.

Criteria for Good Requirements
(IEEE Standard)

Consistent
Are there requirements that contradict each other?

Modifiable
Modifications are easy to make, maintaining consistency of
the whole specification

Verifiable
If a requirement is not verifiable, determining whether it
was correctly implemented is a matter of opinion.

Design independent
Requirement describes functionality from user
perspective, not how to implement

Ranked for importance and stability
Info needed to handle changes; why is req important (reqts
motivation / prio / stakeholder), likely to change?

Traceable
What motivates this reqt? Indicates if it is needed.
Useful when discussing scope &/ reqts changes.

Del 1 på Tentan:
Påstående-anledning-frågor

För varje par av påstående/anledning svara med ett av följande alternativ:
A: Både påståendet och anledningen är korrekta uttalanden OCH

anledningen förklarar påståendet på ett korrekt sätt.
B: Både påståendet och anledningen är korrekta uttalanden, men

anledningen förklarar inte påståendet.
C: Påståendet är korrekt, men anledningen är ett felaktigt uttalande.
D: Påståendet är felaktigt, men anledningen är ett korrekt uttalande.
E: Både påståendet och anledningen är felaktiga uttalanden.

Påstående Anledning Svar
Virtuella fönster passar bra för att
beskriva icke-funktionella krav.

Virtuella fönster är en bra hjälp vid validering av
fullständighet av datakrav.

Kontextdiagram är en bra hjälp för
att upptäcka saknade gränssnitt och
diskutera vad som ska levereras.

Ett kontextdiagram ger en lättbegriplig översikt
av systemets avgränsning och dess aktörer.

D

A

Extentor finns på kurswebben!

LÄS kursmaterialet i god tid!!!

Project conference
Tue W7 come 15:10 latest
• Submit presentation material in Canvas by Tuesday at 12.00 hrs
• Exactly!! 8 minutes presentation; will be interrupted!
• Contents

 ~ 1 minute about project mission
 ~ 3 minutes overview of project results
 ~ 4 minutes about methods and experiences

• Questions by discussant group (same as for Validation report) – 2-4 mins
• E.g. choice of RE techniques, experienced RE challenges & solutions during the project

• Max 1 minute for switching to next group
• One or max 2 presenters (not too much time on switching)
• Practice before to keep time and focus on the most important!
• If you want to practice English this is a good chance!

(Swedish is also Ok)

Order of presentation at
Project Conference
Mandatory attendance!

Presenter Discussant
A1 A2
A2 A3
A3 B1

15 min break
B1 B2
B2 A1

Agile Requirements Engineering

[AGRE] [ATCR]

”We don’t do requirements. We are agile.”

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler,
James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin,
Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas
The Agile Manifesto, http://agilemanifesto.org/, 2001

Reqts Design Impl Testing

Reqts Design Impl Testing

Reqts Design Impl Testing

Reqts Design Impl Testing

• Same activities, different sizing and timing
→ Different principles and management approach
→ Different people detailing requirements
→ Different documentation formats

Traditional Development Process

Agile Development Process – Integrated RE

+ a preparatory phase:
High-level requirements

RE in Agile Projects [AGRE]
Level of detail at dev start

Traditional project

Agile project

Practices
• Iterative RE: Gradual detailing
• Work order

• Extreme prioritization: Just-in-time
• Constant planning

• Integrated RE:
Dev roles more involved in RE

– Face-to-face communication
– Reviews & tests
– Prototyping
– Test-driven development

All projects need & have
requirements ==

ideas/decisions of what product should do

In Agile projects, some reqts are documented
- as traditional requirements
- as user stories & acceptance criteria
- as backlog entries
- as test cases
- combo of “requirements” and other artefacts
Many requirements are NOT documented

”We don’t do requirements. We are agile.”

User story & Acceptance
Criteria (TCs)

User story
As a passenger, I can cancel a flight reservation

Acceptance criteria / test cases
- Verify that a premium member can cancel the same day

without a fee
- Verify that a non-premium member is charged 10% for a

same-day cancellation
- Verify that an email confirmation is sent
- Verify that the hotel is notified of any cancellation

Cohn, Mike. User stories applied: For agile software
development. Addison-Wesley Professional, 2004.
Good book on hands-on agile requirements!

Test cases as Requirements
Paper [ATCR]
Bjarnason, Unterkalmsteiner, Borg, & Engström (2016). A multi-case study

of agile requirements engineering and the use of test cases as
requirements. Information and Software Technology, 77, 61-79.

Case study of 3 companies
• Company A: Medium-sized, Networking equipment

• De facto practice
• Company B: Small, Consultants

• Tool-supported Behaviour-driven development
• Company C: Large, Telecom

• Story-test driven for manual test cases
• Stand-alone strict and manual

Variation points of TCR [ATCR]

- Documentation time frame
upfront or after-the-fact (during testing)

- Requirements format
ranging from natural language to structured

- Machine executable specification
automated tests

- Tool support for TCR

De facto TCR [ATCR: Company A]

Time frame: After-the-fact
Format: General
Executable: Partly
Specific tooling: No

System
architect

Product
manager

Elicitation &
Validation

Project
manager

Developer

Software
design

Requests,
needs

Stakeholder Sr engineer

Product
reqts
spec

Test
cases

Backlog

Business
plan

Product
strategy

Roadmap

Project
order

Product
proposal

Software

Implementation

System
tester

Architectural
doc

Developers
Managing
changes

System
architect

Project
manager

Product
manager

System
tester

Impact
analysis

Change
requests

Test results
de facto reqts

Verification

System
Tester

System
Architect

Developer

Test scope
selection

Issue reports

De facto TCR

Benefits Challenges
Elicitation & Validation

EB1 Cross-functional communication EC2 Active customer involvement
EB2 Aligning goals & perspectives EC3 RE competence
EB4 Creativity supported

Verification
VB1 Supports regression testing VC1 Varying (biased) results for man test

VC2 Correct reqts info for testing
Managing changes

MC2 Missing reqts context info
MC3 Multiple products in product line

Tooling
TC1 Tool integration

Story-test driven TCR
[ATCR: Planned for Company C]

Requirements are documented as
- User stories
- Acceptance criteria

User stories
Acceptance
criteria Test cases

Time frame: Upfront
Format: Semi structured
Executable: Partly
Specific tooling: Yes

Behaviour-Driven TCR
[ATCR: Company B]

User stories,
Acceptance
test cases
(in tool)

Customer
/Product
manager

Elicitation & Validation

Dev team

Informal
reqts
summary

User stories
&
Acceptance
criteria / test
cases

Customer
requirements

Software

software
behaviour

Bi-weekly meeting

Detailed reqts

Verification

Dev team

Contractual

Dev teamCustomer
/Product
manager

Managing changes

Request for change Developer Customer
/Product
manager

Customer,
Stakeholder
or Developer

Time frame: Upfront
Format: Structured
Executable: Yes
Specific tooling: Yes

Behaviour-Driven TCR
Benefits Challenges

Elicitation & Validation
EB1 Cross-functional communication EC3 Technical & testing competence
EB3 Addresses barrier of ‘solutions’ EC4 Complex reqts, e.g. quality, ui
EB4 Creativity supported

Verification
VB1 Supports regression testing VC1 (biased) results for HL tests

VC2 Correct reqts info for testing (low
coverage and rate of update + outside
of team)

Managing changes
MB2 Keeping reqts up to date MC3 Multiple products (HWs) in

product line
MB4 Detecting impact of change

Developer:
API impl (s)

Verification

Dev(s):
API impl(s)

Contractual

Dev(s):
API

clients

Systems
architects

Requester
API

board

Systems
architect

Managing Changes

Change
requests

SW
architect

API
board

Systems
architect

Elicitation & Validation

API
specification
test suite

API
request

Stand-alone strict
[ATCR: Company C]

Time frame: Upfront
Format: Semi--structured
Executable: Yes
Specific tooling: No

Stand-alone Strict TCR
Benefits Challenges

Elicitation & Validation
EB1 Cross-functional communication EC3 Ensuring similar competence

Verification
VB1 Supports regression testing

Maintaining Changes
MB1 Communication of changes
MB2 Keeps reqts up to date
MB3 Maintaining reqts-test alignment
MB4 Detecting impact of change
(post-fact)

Customer agreement / contractual
CB1 Resolving conflicting views
CB2 Certification of compliance

TCR: Affect on RE process
[ATCR Table 7]

Paper [AGRE]

Agile Requirements Engineering Practices:
An Empirical Study
by Balasubramaniam Ramesh and Lan Cao
In: IEEE Software, pp. 60-67, January/February 2008

Agile RE practices in 16 companies

Face-to-face
communication

Direct communication between customer and development

 Techniques
User Stories == high-level requirements spec
Complemented by other artefacts, e.g. "backlog"

 Prerequisites
Active involvement of (knowledgeable) customers

Customers can steer project
Avoids time-consuming documentation

Risk of inadequate requirements
On-site customer rep is challenging

Handling more than one customer
Relies on trust rather than agreed requirements

Face-to-face Communication

Perceived Benefits
 Customers can steer the project

in unanticipated directions,
especially when their
requirements evolve owing to
changes in the environment or
their own understanding of the
software solution.

 Informal communication obviates
the need for time-consuming
documentation and approval
processes, which are perceived as
unnecessary, especially with evolving
requirements.

Perceived Challenges
 If intensive interaction between

customers and developers cannot be
established, this approach poses the risk of
wrong or inadequate requirements.

 Achieving on-site customer
representation is difficult (even in the
form of a surrogate product manager).

 When more than one customer group
is involved, achieving
consensus/compromise in the short
development cycle is challenging.

 Customers used to a traditional
development process might not
understand or trust the agile RE
process, which doesn’t produce
detailed requirements.

Iterative RE

Good customer relationship
Clearer and understandable requirements
due to direct customer interaction

Accurate cost and scheduling of project
Neglect of quality requirements

Lack of documentation beyond dev team

Requirements emerge during development based
on initial high-level requirements

 Techniques
Requirements analysis and detailing for each development cycle
Requirements intertwined with design

Iterative RE

Perceived Benefits
 Iterative RE creates a

more satisfactory
relationship with the
customer.

 Requirements are clearer
and more
understandable
because of the
immediate access to
customers and their
involvement in the project
when needed.

Perceived Challenges
 Cost & Schedule Estimation for entire project:

Difficult, since the project scope is subject to
constant change. Obtaining management support
for such projects could be challenging.

 Minimal documentation: When a communication
breakdown occurs the lack of documentation
might cause a variety of problems (e.g.,
scalability, evolution, introduction of new team
members).

 Neglect of quality requirements: Especially
during early development cycles, customers
often focus on core functionality and ignore
quality reqts such as scalability, maintainability,
portability, safety, or performance.

Extreme Prioritization
& Constant Planning

Customer provides business prio
Re-prioritization supported by dev process
Early validation minimizes need & cost for
major changes

Other criteria suffer, e.g. quality
Instability in dev work

Inadequate architecture and
increased costs

Refactoring requires time and experience

Aim to deliver most valuable features first
Responsive to changes in customer demands

 Techniques
Work on most valuable features first
Continuously revise prioritisation & planning (for each iteration)
Constant feedback from customer

Extreme Prioritization
Perceived Benefits
 Involved customers can provide

business reasons => clear
understanding of the customer’s
priorities helps the development
team better meet customer needs.

 agile RE built and provides
numerous opportunities for
reprioritization.

Perceived Challenges
 Only business value prio might

cause major problems in the long
run (e.g., ‘omitted’ quality reqts).

 Continuous reprioritization, when
not practiced with caution, may
lead to instability

Constant Planning
Perceived Benefits
 The early and constant

validation of requirements
largely minimizes the need
for major changes.

 Thus, the cost of change
request decreases
dramatically compared to
traditional software
development.

Perceived Challenges
 Often, architecture (early cycles) becomes

inadequate as requirements change and
redesign of the architecture adds significantly
to project cost.

 Refactoring depends on developers’
experience and schedule pressure.

 Refactoring often doesn’t fully address the
problem of inadequate/inappropriate
architecture.

Prototyping &
Reviews & Acc Test

Efficient validation
Assess project status
Trust: Customer, Mgmt
Early problem identification

Risks with evolving prototypes in production
Unrealistic expections regarding leadtime

Weak formal validation, consistency checks
Dev of acc tests require access to customers

Communicate through prototypes and frequent review meetings
Involves customers, developers and testers
Requirements validation and refinement through feedback

 Techniques
End-of-sprint sign-off meeting

Prototyping
Perceived Benefits
 Avoids incurring overhead of

creating formal requirements
documents.

Perceived Challenges
 Risk in production mode may cause

problems with features such as scalability,
security, and robustness.

 Quick deployment of prototypes in the
early stages may create unrealistic
expectations among customers. unwilling
to accept longer development cycles for
more scalable and robust implementations

Reviews and Acceptance Tests
Perceived Benefits
 ascertain project on target?
 increase customer trust and

confidence
 identify problems early.
 obtain management support

Perceived Challenges
 Weak validation due to lack of

stringency: formal modeling,
consistency checking

 acceptance testing requires access
to the customers

Test-Driven
Development

Tests capture complete requirements
Traces to production code facility reqts
changes

Requires competence in testing,
requirements understanding and

customer collaboration
Most organizations fail to implement this practice

Developers create test before writing new code
Tests specify expected behaviour of code

Test-driven Development

Perceived Benefits
 traceability facilitates

incorporating changes. Tests
may be used to capture
complete requirements and
design documentation that
are linked to production code.
This.

Perceived Challenges
 developers aren’t accustomed to

writing tests before coding. Also,
consistently following the practice
demands a lot of discipline.

 Moreover, TDD requires a thorough
understanding of the requirements and
extensive customer collaboration;
involves refining low-level
specifications iteratively.

 most organizations reported that they’re
unable to implement this practice.

Summary of Benefits & Challenges of Agile RE
Practices Benefits Challenges
Face-to-face
communication

• Customers can steer the project
• No time-consuming documentation

• If no intensive interaction then bad reqts.
• On-site customer representation is difficult

Iterative RE • Better relationship with the customer
• More understandable reqts

• Cost & Schedule Estimation
• Lack of documentation
• Neglect of non-functional requirements

Extreme
prioritization

• Customers provide business reasons
• Opportunities for reprioritization.

• Business value not enough
• May lead to instability

Constant
planning

• Minimizes the need for major changes
• Cost of addressing a change decreases

• Early architecture becomes inadequate
• Refactoring isn’t always obvious

Prototyping • Help communicate with customers to
validate and refine requirements

• Risky to deploy prototypes into production
• Create unrealistic expectations

Test-driven
development

• Gives traceability that make changes
easier

• Developers unused to test before coding
• Requires a thorough understanding of

reqts and extensive collaboration between
the developer and the customer

Reviews &
acceptance tests

• Help to know if project is on target
• Increase customer trust and confidence
• Identify problems early
• Obtain management support

• No formal model or verification of reqts
• Consistency checking or formal

inspections seldom occur.
• Difficult if lacking customer access

To do …
 Read [AGRE], [ATCR], Lau:9, [INSP]
 Exercise E5 Validation (project validation preparation, bring your System

Requirements specification + litterature)

Week 6
 Project deliverables (see project descr / course programme):

 Release R2 & Validation checklist (Sun 23.59)
 Validation Report based on checklist from other group (Fri)
 Handled in Canvas: as assignment submission and via Canvas mail (SRS

R2+checklist+Validation Report)
 Project meeting with supervisor
 Sign-up for exam (tentaanmälan öppnar på måndag!)

Week 7
 Submit Conf Presentation MATERIAL (CP) Tue W7 before 12.00 hrs
 Prepare Qs as “discussant” (review) group
 Tue W7 be there 15.10 latest for PROJECT CONFERENCE

Mandatory examination!

