
ETSN15
Requirements Engineering

Lecture 7:
Validation [Lau:9] & Inspections [INSP]
Tentafrågeupplägg
Agile RE [AGRE + ATCR]

This lecture is input to your current project task:
To develop your Validation Checklist for the ‘customer’
validation efforts during next week.
Work on this at exercise session.

Elizabeth Bjarnason
Björn Regnell
http://www.cs.lth.se/ETSN15

How will you do
requirements validation
in your project?

Requirements Validation
through tests

Different types of dynamic validation:
¨ Manual ”simulation” (walk-through) based on

scenarios/use cases/task descriptions
¨ Paper prototypes. “mock-ups”
¨ Executable prototypes
¨ Pilot tests

Important steps:
¨ Choose suitable test approach, environment, etc.
¨ Choose who will do the testing
¨ Create & Run test cases
¨ Document problems
¨ Fix problems
¨ Consider: How to avoid problems in the future?

Inspections [INSP]
Described already by

M.E. Fagan, IBM, early 70-ies
¨ systematic assessment
¨ documents inspected by others to detect defects

General objectives of inspection methods:
¨ Defect detection
¨ Knowledge dissemination
¨ Team building
¨ Decision-making

The inspection process [INSP]

Overview
meeting

Planning Inspection
meeting

Root-cause
analysis

Request List of
defects

Defect
summary

Report

Prepa-
ration Correction Follow-up

Roles:
Author
Moderator
Reader
Reviewer
Secretary

The actual
individual
reviewing is
done in this
activity

Different methods to detect
defects (reading techniques)

Ad hoc
¨ To your best ability (no specific guidelines)

Checklist
¨ A list of questions or check items direct the review

Perspective-based reading
¨ Different reviewers inspect from different perspectives and

their findings are combined:
e.g. user, designer, tester – perspectives,
or from the perspective of different tasks/use cases

N-fold inspection
¨ N independent groups run inspection process in parallel

Discussion

§ What are the quality criteria for a
requirements specification?

Example

Aircraft that are non-friendly and have an
unknown mission or the potential to enter
restricted airspace within 5 MINUTES shall
raise an alert.

Correct
Incorrect requirements are useless and potentially
dangerous!

If the requirements are not correct, we risk spreading mis-
information within project and to customers.

Complete
Spec covers all necessary reqts to describe the full scope
incl exceptions, error handling etc

Unambiguous
Everyone understands it the same way.

Can everyone read, discuss + agree on what it means?

Clear & Concise
Simply and clearly stated. Makes it easier for others (incl
pure readers) to understand.

Criteria f Good Requirements
(IEEE Std)

Consistent
Are there requirements that contradict each other?

Modifiable
Modifications are easy to make, maintaining consistency of
the whole specification

Verifiable
If a requirement is not verifiable, determining whether it
was correctly implemented is a matter of opinion.

Design independent
Requirement describes functionality from user
perspective, not how to implement

Ranked for importance and stability
Info needed to handle changes; why is req important (reqts
motivation / prio / stakeholder), likely to change?

Traceable
What motivates this reqt? Indicates if it is needed.
Useful when discussing scope &/ reqts changes.

Example
The product shall switch between displaying

and hiding non-printing characters
instantaneously.

Correct
Complete
Unambiguous
Clear & Concise
Consistent
Ranked
Modifiable
Verifiable
Traceable
Design independent

Different kinds of checks

• Content of spec
• Structure of spec
• Consistency of spec

Fig 9.2A Contents check

Does the spec contain:
• Customer, sponsor, background
• Business goals + evidence of tracing

• Data requirements
(database, i/o formats, comm.state, initialize)

• System boundaries & interfaces
• Domain-level reqs (events & tasks)
• Product-level reqs (events & features)
• Design-level reqs (prototype or comm. protocol)
• Specification of non-trivial functions
• Stress cases & special events & task failures

• Quality reqs (performance, usability, security . . .)

• Other deliverables (documentation, training . . .)
• Glossary (definition of domain terms . . .)

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 9.2B Structure check

Does the spec contain:
• Number or Id for each requirement
• Verifiable requirements
• Purpose of each requirement
• Examples of ways to meet requirement
• Plain-text explanation of diagrams, etc.
• Importance and stability for each requirement
• Cross refs rather than duplicate information
• Index
• An electronic version

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 9.2C Consistency checks

Guest

Event list
1.
2.
. . .

Tasks

E/R model

Function list
1.
2.
. . .

CRUD Event
check

Event
check

Support?

Data
exists?

Virtual windows

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Book C U O C O U O

CheckinBooked RU U O O U O

CheckinNonbkd C U O C O U O

Checkout U U O R U

ChangeRoom R R O U O

RecordService O C R

PriceChange C UDO C UDO

Missing? D D C?UD? UD

Fig 9.2D CRUD+O matrix

Create, Read, Update, Delete + Overview

Gu
es

t

St
ay

Ro
om

Ro
om

St
at

e

Se
rv

ice

Se
rv

ice
Ty

peEntity

Task

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

SLUT+Ö
Skapa
Läsa
Uppdatera
Ta bort
Översikt

Fig 9.3 Checks against surroundings

Reviews
Review:

Developers and customer
review all parts.

Goal-means analysis:
Goals and critical issues
covered?
Requirements justified?

Risk assessment:
Customer assesses his risk.
Developers assess their risk.
High-risk areas improved.

Tests
Simulation and walk-through

Follow task descriptions. Correct?
Supported?

Prototype test (experiment with
prototypes):
Requirements meaningful and
realistic?
Prototype used as requirement?

Pilot test (install and operate parts
of system):
Cost/benefit?
Requirements meaningful and
realistic?

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Course Project: Validation of R2 (in W6)
¨ Consider how to maximize value of review
¨ Prepare by providing the review group with a Validation

Checklist suitable for your project (Exercise 5!)
¨ Validation Report (by review group) should contain relevant

and useful issues ranked by criticality

See project description

R2 Validation
checklist

+ validation checklist
+ validation report of another project

Authoring group Review group

E5

Review

Validation
report

R3

Your two roles in
validation

• As author make a useful checklist
• As reviewer make a useful validation report

A2 reviews A1’s
R2 SRS etc

Also look at grading
criteria for Validation

[INSP] Check list

Fig 9.4(A) Check list

Project: Noise Source Location, NSL vers. X Date, who: 99-03-15, JPV

Contents check Observations - found & missing Problem?
Customer & sponsor Missing, OK
. . .
Data:
Database contents

Class model as intermediate work
product

. . .
Initial data & states Missing Seems innocent, but caused many

problems particularly when screen
windows were opened.

Functional reqs:
Limits & interfaces
Product-level events
and functions

Mostly as features

. . .
Special cases:
Stress cases
Power failure, HW
failure, config.

Missing Problem. Front-end caused many
problems

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Project: Noise Source Location, NSL vers. X Date, who: 99-03-15, JPV

Contents check (2) Observations - found & missing Problem?
Quality reqs:
Performance

Missing, also in parts not shown
here.

Problem. Response time became
important.

Capacity, accuracy Missing, also in parts not shown
here.

Problem. Data volume, etc.
became important.

Usability Missing Would have been useful
Interoperability Missing External dataformats, robot role,

etc. caused problems
. . .
Other deliverables:
Documentation

Missing Unimportant. Company standards
exist.

. . .

Structure check Observations - found & missing Problem?
ID for each req. OK
Purpose of each
requirement

Good. Domain described.

Consistency checks Observations - found & missing Problem?
CRUD check:
Create, read, update,
delete all data?

Have been made

Tests Observations - found & missing Problem?
Prototype test Not done, nor during development. Should have been done. Caused

many problems later.

Del 1 på Tentan:
Påstående-anledning-frågor

För varje par av påstående/anledning svara med ett av följande alternativ:
A: Både påståendet och anledningen är korrekta uttalanden OCH

anledningen förklarar påståendet på ett korrekt sätt.
B: Både påståendet och anledningen är korrekta uttalanden, men

anledningen förklarar inte påståendet.
C: Påståendet är korrekt, men anledningen är ett felaktigt uttalande.
D: Påståendet är felaktigt, men anledningen är ett korrekt uttalande.
E: Både påståendet och anledningen är felaktiga uttalanden.

Påstående Anledning Svar
Virtuella fönster passar bra för att
beskriva icke-funktionella krav.

Virtuella fönster är en bra hjälp vid validering av
fullständighet av datakrav.

Kontextdiagram är en bra hjälp för
att upptäcka saknade gränssnitt och
diskutera vad som ska levereras.

Ett kontextdiagram ger en lättbegriplig översikt
av systemets avgränsning och dess aktörer.

D

A

Extentor finns på kurswebben!

LÄS kursmaterialet i god tid!!!

Project conference
Wed W7 come 13:15 latest
§ CP – Conference Presentation

¨ Submit presentation material Monday at 12.00 hrs
we will use one computer

¨ Exactly!! 8 minutes presentation; will be interrupted!
¨ Contents:

l ~ 1 minute about project mission
l ~ 3 minutes overview of project results
l ~ 4 minutes about methods and experiences

¨ Max 1 minute for switching to next group (no Q&A)
¨ One or max 2 presenters (not too much time on switching)
¨ Practice before to keep time and focus on the most important!
¨ If you want to practice English this is a good chance!

(Swedish is also Ok)

Order of examination: Project
Mandatory attendance!

Intro 13:15
A1
A2
A3
B1
--- 15 min break
B2
B3
B4

Agile Requirements Engineering

[AGRE] [ATCR]

”We don’t do requirements. We are agile.”

Principle-Driven Approach
based on Agile Manifesto

More valuable
Individuals & interactions
Working software
Customer collaboration
Responding to change

Valuable
Processes and tools
Comprehensive documentation
Contract negotiation
Following a plan

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler,
James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin,
Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas
The Agile Manifesto, http://agilemanifesto.org/, 2001

Reqts Design Impl Testing

Reqts Design Impl Testing

Reqts Design Impl Testing

Reqts Design Impl Testing

• Same activities, different sizing and timing
→ Different principles and management approach
→ Different people detailing requirements
→ Different documentation formats

Traditional Development Process

Agile Development Process – Integrated RE

+ a preparatory phase:
High-level requirements

RE in Agile Projects [AGRE]
Level of detail at dev start

Traditional project

Agile project

Practices
• Iterative RE: Gradual detailing
• Work order

• Extreme prioritization: Just-in-time
• Constant planning

• Integrated RE:
Dev roles more involved in RE

– Face-to-face communication
– Reviews & tests
– Prototyping
– Test-driven development

All projects have
requirements ==

ideas/decisions of what product should do

In Agile projects, some reqts are documented
- as traditional requirements
- as user stories & acceptance criteria
- as backlog entries
- as test cases
- combo of “requirements” and other artefacts
Many requirements are NOT documented

”We don’t do requirements. We are agile.”

User story & Acceptance
Criteria (TCs)

User story
As a user, I can cancel a flight reservations

Acceptance criteria / test cases
- Verify that a premium member can cancel the same day

without a fee
- Verify that a non-premium member is charged 10% for a

same-day cancellation
- Verify that an email confirmation is sent
- Verify that the hotel is notified of any cancellation

Cohn, Mike. User stories applied: For agile software
development. Addison-Wesley Professional, 2004.
Good book on hands-on agile requirements!

Test cases as Requirements
Paper [ATCR]
Bjarnason, Unterkalmsteiner, Borg, & Engström (2016). A multi-case study

of agile requirements engineering and the use of test cases as
requirements. Information and Software Technology, 77, 61-79.

Case study of 3 companies
• Company A: Medium-sized, Networking equipment

• De facto practice
• Company B: Small, Consultants

• Tool-supported Behaviour-driven development
• Company C: Large, Telecom

• Story-test driven for manual test cases
• Stand-alone strict and manual

Variation points of TCR [ATCR]

- Documentation time frame
upfront or after-the-fact (during testing)

- Requirements format
ranging from natural language to structured

- Machine executable specification
automated tests

- Tool support for TCR

De facto TCR [ATCR: Company A]

Time frame: After-the-fact
Format: General
Executable: Partly
Specific tooling: No

System
architect

Product
manager

Elicitation &
Validation

Project
manager

Developer

Software
design

Requests,
needs

Stakeholder Sr engineer

Product
reqts
spec

Test
cases

Backlog

Business
plan

Product
strategy

Roadmap

Project
order

Product
proposal

Software

Implementation

System
tester

Architectural
doc

Developers
Managing
changes

System
architect

Project
manager

Product
manager

System
tester

Impact
analysis

Change
requests

Test results
de facto reqts

Verification

System
Tester

System
Architect

Developer

Test scope
selection

Issue reports

Behaviour-Driven TCR
[ATCR: Company B]

User stories,
Acceptance
test cases
(in tool)

Customer
/Product
manager

Elicitation & Validation

Dev team

Informal
reqts
summary

User stories
&
Acceptance
criteria / test
cases

Customer
requirements

Software

software
behaviour

Bi-weekly meeting

Detailed reqts

Verification

Dev team

Contractual

Dev teamCustomer
/Product
manager

Managing changes

Request for change Developer Customer
/Product
manager

Customer,
Stakeholder
or Developer

Time frame: Upfront
Format: Structured
Executable: Yes
Specific tooling: Yes

Developer:
API impl (s)

Verification

Dev(s):
API impl(s)

Contractual

Dev(s):
API

clients

Systems
architects

Requester
API

board

Systems
architect

Managing Changes

Change
requests

SW
architect

API
board

Systems
architect

Elicitation & Validation

API
specification
test suite

API
request

Stand-alone strict
[ATCR: Company C]

Time frame: Upfront
Format: Semi--structured
Executable: Yes
Specific tooling: No

TCR: Affect on RE process
[ATCR Table 7]

Paper [AGRE]

Agile Requirements Engineering Practices:
An Empirical Study
by Balasubramaniam Ramesh and Lan Cao
In: IEEE Software, pp. 60-67, January/February 2008

Agile RE practices in 16 companies

Face-to-face
communication

Direct communication between customer and development

§ Techniques
User Stories == high-level requirements spec
Complemented by other artefacts, e.g. "backlog"

§ Prerequisites
Active involvement of (knowledgeable) customers

Customers can steer project
Avoids time-consuming documentation

Risk of inadequate requirements
On-site customer rep is challenging

Handling more than one customer
Relies on trust rather than agreed requirements

Iterative RE

Good customer relationship
Clearer and understandable requirements
due to direct customer interaction

Accurate cost and scheduling of project
Neglect of quality requirements

Lack of documentation beyond dev team

Requirements emerge during development based
on initial high-level requirements

§ Techniques
Requirements analysis and detailing for each development cycle
Requirements intertwined with design

Extreme Prioritization
& Constant Planning

Customer provides business prio
Re-prioritization supported by dev process
Early validation minimizes need & cost for
major changes

Other criteria suffer, e.g. quality
Instability in dev work

Inadequate architecture and
increased costs

Refactoring requires time and experience

Aim to deliver most valuable features first
Responsive to changes in customer demands

§ Techniques
Work on most valuable features first
Continuously revise prioritisation & planning (for each iteration)
Constant feedback from customer

Prototyping &
Reviews & Acc Test

Efficient validation
Assess project status
Trust: Customer, Mgmt
Early problem identification

Risks with evolving prototypes in production
Unrealistic expections regarding leadtime

Weak formal validation, consistency checks
Dev of acc tests require access to customers

Communicate through prototypes and frequent review meetings
Involves customers, developers and testers
Requirements validation and refinement through feedback

§ Techniques
End-of-sprint sign-off meeting

Test-Driven
Development

Tests capture complete requirements
Traces to production code facility reqts
changes

Requires competence in testing,
requirements understanding and

customer collaboration
Most organizations fail to implement this practice

Developers create test before writing new code
Tests specify expected behaviour of code

Summary of Benefits & Challenges of Agile RE
Practices Benefits Challenges
Face-to-face
communication

• Customers can steer the project
• No time-consuming documentation

• If no intensive interaction then bad reqts.
• On-site customer representation is difficult

Iterative RE • Better relationship with the customer
• More understandable reqts

• Cost & Schedule Estimation
• Lack of documentation
• Neglect of non-functional requirements

Extreme
prioritization

• Customers provide business reasons
• Opportunities for reprioritization.

• Business value not enough
• May lead to instability

Constant
planning

• Minimizes the need for major changes
• Cost of addressing a change decreases

• Early architecture becomes inadequate
• Refactoring isn’t always obvious

Prototyping • Help communicate with customers to
validate and refine requirements

• Risky to deploy prototypes into production
• Create unrealistic expectations

Test-driven
development

• Gives traceability that make changes
easier

• Developers unused to test before coding
• Requires a thorough understanding of

reqts and extensive collaboration between
the developer and the customer

Reviews &
acceptance tests

• Help to know if project is on target
• Increase customer trust and confidence
• Identify problems early
• Obtain management support

• No formal model or verification of reqts
• Consistency checking or formal

inspections seldom occur.
• Difficult if lacking customer access

To do …
§ Read [AGRE], [ATCR], Lau:9, [INSP]
§ Exercise E5 Validation (project validation preparation, bring your System

Requirements specification + litterature)

Week 6
§ Project deliverables (see project descr / course programme):

¨ Release R2 & Validation checklist (Mon)
¨ Validation Report based on checklist from other group (Fri)
¨ Handled in Canvas: as assignment submission and via Canvas mail (SRS

R2+checklist+Validation Report)
§ Project meeting with supervisor

Week 7
§ Submit Conference Presentation MATERIAL (CP) Mon W7 before

12.00 hrs
§ Wed W7 be there 13.15 latest for PROJECT CONFERENCE

Mandatory examination!

