

ETSN15 - Requirements Engineering

Lecture 6: Release Planning

This lecture helps you prepare for the second part of Lab 2 on release planning (esp. [RP], see papers behind moddle wall)

(Lecture 8 helps you prepare for the first part of Lab 2: QR)

Björn Regnell http://www.cs.lth.se/krav

Release Planning

Paper [RP] in compendium

• "The art and science of software release planning" Ruhe, G., & Saliu, M. O, IEEE software, 22(6), 47-53. 2005

What is Release Planning?

Release Planning involves...

 ...prioritization + scheduling under various constraints, e.g., resource and precedence constraints

Example planning parameters

- Requirements priorities (from prioritization)
- Available resources
- Delivery time
- Requirements interdependencies
 - Precedence, Coupling, Excludes
- System architecture
- Dependencies to the code base

What is a good release plan?

- A good release plan should...
 - provides maximum (?) business value by
 - offering the "best" possible blend of features
 - in the "right" sequence of releases
 - satisfy the most important stakeholders
 - be feasible with available resources, and
 - reflect existing dependencies between features
- Release planning is similar to the NP-complete Knapsack problem: https://en.wikipedia.org/wiki/Knapsack_problem

Baseline: Release Planning - on the fly

- Informal process
- Rationale behind decisions not always clear
- Constraints regarding e.g., resources and stakeholders not systematically taken into account
- Already in case of 20 features and 3 releases
 4²⁰ > 1.000.000.000 = 10¹² possibilities

```
reqT> val big = BigInt(4).pow(20)
big: scala.math.BigInt = 1099511627776
```


Investigate with reqT why greedy is not good

https://github.com/reqT/reqT/blob/3.0.x/doc/lab2/greedy.sc

<pre>val m = Model(Feature("a") has (Benefit(90), Cost(100)), Feature("b") has (Benefit(85), Cost(90)), Feature("c") has (Benefit(80), Cost(25)), Feature("d") has (Benefit(75), Cost(23)), Feature("e") has (Benefit(70), Cost(22)), Feature("f") has (Benefit(65), Cost(20)), Feature("g") has (Benefit(60), Cost(10)), Feature("h") has (Benefit(50), Cost(30)), Feature("i") has (Benefit(50), Cost(30)), Feature("j") has (Benefit(45), Cost(30)), Release("r1") has Capacity(100), Release("r2") has Capacity(90))</pre>	<pre>def plan(input: Model,</pre>
---	-----------------------------------

def features(m: Model): Vector[Feature] = m.collect{case f: Feature => f}.distinct def releases(m: Model): Vector[Release] = m.collect{case r: Release => r}.distinct def allocate(m: Model, f: Feature, r: Release): Model = m + (r has f) def isAllocated(m: Model, f: Feature): Boolean = releases(m).exists(r => (m/r).contains(f)) def allocatedCost(m: Model, r: Release): Int = (m/r).entities.collect{case f => m/f/Cost}.sum def isRoom(m: Model, f: Feature, r: Release) = m/r/Capacity >= allocatedCost(m,r) + m/f/Cost def featuresInGreedyOrder(m: Model) = features(m).sortBy(f => m/f/Benefit).reverse def random(m: Model, r: Release): Option[Feature] = scala.util.Random.shuffle(features(m)). filter(f => !isAllocated(m,f) && isRoom(m,f,r)).headOption def greedy(m: Model, r: Release): Option[Feature] = featuresInGreedyOrder(m).find(f => !isAllocated(m,f) && isRoom(m,f,r))

Optimal vs. Greedy

```
val optimal = Model(
    Feature("a") has (Benefit(90), Cost(100)),
    Feature("b") has (Benefit(85), Cost(90)),
    Feature("c") has (Benefit(80), Cost(25)),
    Feature("d") has (Benefit(75), Cost(23)),
    Feature("e") has (Benefit(65), Cost(20)),
    Feature("f") has (Benefit(65), Cost(20)),
    Feature("g") has (Benefit(60), Cost(10)),
    Feature("b") has (Benefit(55), Cost(30)),
    Feature("i") has (Benefit(50), Cost(30)),
    Feature("i") has (Benefit(50), Cost(30)),
    Feature("j") has (Benefit(50), Cost(30)),
    Feature("j") has (Benefit(45), Cost(30)),
    Feature("j") has (Capacity(100),
        Feature("c"), Feature("d"), Feature("e"), Feature("f"), Feature("g")),
    Release("r2") has (Capacity(90),
        Feature("j")))
```

```
def sumAllocatedBenefit(m: Model): Int =
   releases(m).map(r => (m/r).collect{case f: Feature => m/f/Benefit}.sum).sum
val beneftitOptimal = sumAllocatedBenefit(optimal)
val benefitGreedy = sumAllocatedBenefit(plan(m,greedy))
val ratio = benefitGreedy.toDouble / beneftitOptimal
```

How to estimate benefit and cost?

- Use prioritsation techniques [PRIO]
- Implemented in reqT and used in lab1: ordinal-scale comparisons ratio-scale \$100-method

Aspect	Prioritization Technique	Perspective
Strategic importance	AHP	Product Manager
Customer importance	100-dollar / Top-ten1	Customers
Penalty	AHP	Product Manager
Cost	100-dollar	Developers
Time	Numerical Assignment (7)	Project Manager
Risk	Numerical Assignment (3)	Requirements Specialist
Volatility	Ranking	Requirements Specialist

Table 4. 3. Aspects to Prioritize.

Example from [PRIO]

Table 4. 3. Aspects to Prioritize.

Aspect	Prioritization Technique	Perspective		
Strategic importance	AHP	Product Manager		
Customer importance	100-dollar / Top-ten1	Customers		
Penalty	AHP	Product Manager		
Cost	100-dollar	Developers		
Time	Numerical Assignment (7)	Project Manager		
Risk	Numerical Assignment (3)	Requirements Specialist		
Volatility	Ranking	Requirements Specialist		

Example from [RP]

Table 1

Features, resource consumption, and stakeholder feature evaluations

	Resources			Stakeholder S (1)		Stakeholder S(2)		
	Analyst &			Budget (US\$	t (US\$			
Footure f(i)	designers (hrs)	Developers (hrs)	QA (hrs)	in thousands)	Value	Urgency	Value	Urgency
reature / (/)	<i>r</i> (<i>t</i> , 1)	Γ(1, Ζ)	r(1,3)	r (1,4)	value(1,7)	urgency(1,7)	value(2,1)	urgency(z,r)
1. Cost reduction of transceiver	150	120	20	1,000	6	(5, 4, 0)	2	(0, 3, 6)
2. Expand memory on BTS	75	10	8	200	7	(5, 0, 4)	5	(9, 0, 0)
controller								
3. FCC out-of-band emissions	400	100	20	200	9	(9, 0, 0)	3	(2, 7, 0)
4. Software quality initiative	450	100	40	0	5	(2, 7, 0)	7	(7, 2, 0)
5. USEast Inc., Feature 1	100	500	40	0	3	(7, 2, 0)	2	(9, 0, 0)
6. USEast Inc., Feature 2	200	400	25	25	9	(7, 2, 0)	3	(5, 4, 0)
7. China Feature 1	50	250	20	500	5	(9, 0, 0)	3	(2, 7, 0)
8. China Feature 2	60	120	19	200	7	(8, 1, 0)	1	(0, 0, 9)
9. 12-carrier BTS for China	280	150	40	1,500	6	(9, 0, 0)	5	(0, 8, 1)
10. Pole-mount packaging	200	300	40	500	2	(5, 4, 0)	1	(0, 0, 9)
11. Next-generation BTS	250	375	50	150	1	(8, 1, 0)	5	(0, 7, 2)
12. India BTS variant	100	300	25	50	3	(9, 0, 0)	7	(0, 6, 3)
13. Common feature 01	100	250	20	50	7	(9, 0, 0)	9	(9, 0, 0)
14. Common feature 02	0	100	15	0	8	(9, 0, 0)	3	(6, 3, 0)
15. Common feature 03	200	150	10	0	1	(0, 0, 9)	5	(3, 6, 0)
Total resource consumption	2,615	3,225	392	4,375				
Available capacity, Release 1	1,300	1,450	158	2,200				
Available capacity, Release 2	1,046	1,300	65	1,750				

Example from [RP]

Table 2

Two qualified release plan alternatives, listing the release to which each feature is assigned and each weighted average satisfaction

Release Plan x1 Release Plan x2 Feature f(i) x1(i)WAS(i, k) x2(i) WAS(i,k) Cost reduction of transceiver 84.0 84.0 1 1 2. Expand memory on BTS controller 1 287.0 1 287.0 3. FCC out-of-band emissions 252.0 0.0 1 3 4. Software quality initiative 3 1 233.8 0.0 5. USEast, feature 1 134.4 3 0.0 1 6. USEast, feature 2 2 516.6 3 0.0 7. China feature 1 277.2 2 1 88.2 8. China feature 2 2 43.2 19.6 1 9. 12-carrier BTS for China 3 72.0 2 0.0 3 0.0 3 0.0 Pole-mount packaging 11. Next-generation BTS 3 0.0 3 0.0 12. India BTS variant 3 0.0 2 75.6 13. Common feature 01 1 37.8 516.6 1 14. Common feature 02 1 1 277.2 8.4 15. Common feature 03 2 54.0 2 54.0 Objective function value F(x)1,708.0 1,694.6

WAS: weighted average satisfaction of stakeholder priorities

Example from [RP]

Table 2

Two qualified release plan alternatives, listing the release to which each feature is assigned and each weighted average satisfaction

WAS: weighted average satisfaction of stakeholder priorities

"qualified RP" = covers at least 95% of the objective function's maximum value

	Rele	ase Plan x1	Release Plan x2	
Feature f(i)	x1(i)	WAS(<i>i</i> , <i>k</i>)	x2(i)	WAS(<i>i</i> , <i>k</i>)
1. Cost reduction of transceiver	1	84.0	1	84.0
2. Expand memory on BTS controller	1	287.0	1	287.0
3. FCC out-of-band emissions	1	252.0	3	0.0
4. Software quality initiative	3	0.0	1	233.8
5. USEast, feature 1	1	134.4	3	0.0
6. USEast, feature 2	2	516.6	3	0.0
7. China feature 1	2	277.2	1	88.2
8. China feature 2	2	43.2	1	19.6
9. 12-carrier BTS for China	3	0.0	2	72.0
10. Pole-mount packaging	3	0.0	3	0.0
11. Next-generation BTS	3	0.0	3	0.0
12. India BTS variant	3	0.0	2	75.6
13. Common feature 01	1	37.8	1	516.6
14. Common feature 02	1	8.4	1	277.2
15. Common feature 03	2	54.0	2	54.0
Objective function value $F(x)$		1,694.6		1,708.0

TODO!

- Lab2: Quality Requiremenst (Lecture 8) and Release Planning. Mandatory Preparations: http://cs.lth.se/krav/labs/lab2/
 - Read [PRMAN], [RP] and [QUPER], [Lau:6]
 - Bring written representations of: 3 QR, 3 Features, 2 Stakeholders from your project.
- Lecture 7 Validation, inspections, Agile RE
 - This lecture covers research papers etc and if you attend you will **save much effort** when you study for the exam and when you plan your project work.
- Lecture 8 Quality Requirements:
 - Let's try "efterläsning": You watch this video http://cs.lth.se/krav/quality-requirements/
 BEFORE the lecture and at the lecture we will actively discuss QR in your projects.
- Exercise 5 Validation
 - Practical work that you must do in your project anyway