

ETSN15 - Requirements
Engineering

Lecture 6: Release Planning
This lecture helps you prepare for the second part of Lab 2
on release planning (esp. [RP], see papers behind moddle
wall)

(Lecture 8 helps you prepare for the first part of Lab 2: QR)

Björn Regnell

http://www.cs.lth.se/krav

Release Planning

Paper [RP] in compendium

● “The art and science of
software release planning”
Ruhe, G., & Saliu, M. O,
IEEE software, 22(6), 47-53. 2005

What is Release Planning?

[RP]

Release Planning involves...

● ...prioritization + scheduling under various
constraints, e.g., resource and precedence
constraints

[RP]

Example planning parameters

● Requirements priorities (from prioritization)
● Available resources
● Delivery time
● Requirements interdependencies

– Precedence, Coupling, Excludes
● System architecture
● Dependencies to the code base

[RP]

What is a good release plan?
● A good release plan should...

– provides maximum (?) business value by
● offering the “best” possible blend of

features
● in the “right” sequence of releases

– satisfy the most important stakeholders
– be feasible with available resources, and
– reflect existing dependencies between

features
● Release planning is similar to the
NP-complete Knapsack problem:
https://en.wikipedia.org/wiki/Knapsack_problem

https://en.wikipedia.org/wiki/Knapsack_problem

Baseline:
Release Planning - on the fly

● Informal process
● Rationale behind decisions not always clear
● Constraints regarding e.g., resources and

stakeholders not systematically taken into
account

● Already in case of 20 features
and 3 releases
420 > 1.000.000.000.000 = 1012 possibilities

[RP]

Investigate with reqT why greedy is not good

https://github.com/reqT/reqT/blob/3.0.x/doc/lab2/greedy.sc

val m = Model(
 Feature("a") has (Benefit(90), Cost(100)),
 Feature("b") has (Benefit(85), Cost(90)),
 Feature("c") has (Benefit(80), Cost(25)),
 Feature("d") has (Benefit(75), Cost(23)),
 Feature("e") has (Benefit(70), Cost(22)),
 Feature("f") has (Benefit(65), Cost(20)),
 Feature("g") has (Benefit(60), Cost(10)),
 Feature("h") has (Benefit(55), Cost(30)),
 Feature("i") has (Benefit(50), Cost(30)),
 Feature("j") has (Benefit(45), Cost(30)),
 Release("r1") has Capacity(100),
 Release("r2") has Capacity(90))

def features(m: Model): Vector[Feature] = m.collect{case f: Feature => f}.distinct
def releases(m: Model): Vector[Release] = m.collect{case r: Release => r}.distinct
def allocate(m: Model, f: Feature, r: Release): Model = m + (r has f)
def isAllocated(m: Model, f: Feature): Boolean = releases(m).exists(r => (m/r).contains(f))
def allocatedCost(m: Model, r: Release): Int = (m/r).entities.collect{case f => m/f/Cost}.sum
def isRoom(m: Model, f: Feature, r: Release) = m/r/Capacity >= allocatedCost(m,r) + m/f/Cost
def featuresInGreedyOrder(m: Model) = features(m).sortBy(f => m/f/Benefit).reverse

def random(m: Model, r: Release): Option[Feature] = scala.util.Random.shuffle(features(m)).
 filter(f => !isAllocated(m,f) && isRoom(m,f,r)).headOption

def greedy(m: Model, r: Release): Option[Feature] =
 featuresInGreedyOrder(m).find(f => !isAllocated(m,f) && isRoom(m,f,r))

def plan(input: Model,
 pickNext: (Model,Release)=>Option[Feature]): Model = {
 var result = input
 releases(input).foreach { r =>
 var next = pickNext(result, r)
 while (next.isDefined) {
 result = allocate(result, next.get, r)
 next = pickNext(result, r)
 }
 }
 result
}

plan(m, random)
plan(m, greedy)

Optimal vs. Greedy

val optimal = Model(
 Feature("a") has (Benefit(90), Cost(100)),
 Feature("b") has (Benefit(85), Cost(90)),
 Feature("c") has (Benefit(80), Cost(25)),
 Feature("d") has (Benefit(75), Cost(23)),
 Feature("e") has (Benefit(70), Cost(22)),
 Feature("f") has (Benefit(65), Cost(20)),
 Feature("g") has (Benefit(60), Cost(10)),
 Feature("h") has (Benefit(55), Cost(30)),
 Feature("i") has (Benefit(50), Cost(30)),
 Feature("j") has (Benefit(45), Cost(30)),
 Release("r1") has (Capacity(100),
 Feature("c"), Feature("d"), Feature("e"), Feature("f"), Feature("g")),
 Release("r2") has (Capacity(90),
 Feature("h"), Feature("i"), Feature("j")))

def sumAllocatedBenefit(m: Model): Int =
 releases(m).map(r => (m/r).collect{case f: Feature => m/f/Benefit}.sum).sum

val beneftitOptimal = sumAllocatedBenefit(optimal)
val benefitGreedy = sumAllocatedBenefit(plan(m,greedy))
val ratio = benefitGreedy.toDouble / beneftitOptimal

How to estimate benefit and cost?

● Use prioritsation techniques [PRIO]
● Implemented in reqT and used in lab1:

ordinal-scale comparisons
ratio-scale $100-method

Example from [PRIO]

Example from [RP]

Example from [RP]

WAS:
weighted
average
satisfaction
of stakeholder
priorities

Example from [RP]

WAS:
weighted
average
satisfaction
of stakeholder
priorities

Example (Part 2)

“qualified RP” =
covers at least 95% of the
objective function’s
maximum value

TODO!

● Lab2: Quality Requiremenst (Lecture 8) and Release Planning.
Mandatory Preparations: http://cs.lth.se/krav/labs/lab2/
– Read [PRMAN], [RP] and [QUPER], [Lau:6]
– Bring written representations of: 3 QR, 3 Features, 2 Stakeholders from your project.

● Lecture 7 – Validation, inspections, Agile RE
– This lecture covers research papers etc and if you attend you will save much effort

when you study for the exam and when you plan your project work.

● Lecture 8 – Quality Requirements:
– Let’s try “efterläsning”: You watch this video

http://cs.lth.se/krav/quality-requirements/
BEFORE the lecture and at the lecture we will actively discuss QR in your projects.

● Exercise 5 – Validation
– Practical work that you must do in your project anyway

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 16
	Slide 17
	Slide 18
	Slide 19

