q ETSN15 - Requirements
UNIVERSITY Englneerlng
ﬁﬂi@f/éf;\
P A

-
g R
— -‘35\._‘_

Lecture 6: Release Planning

This lecture helps you prepare for the second part of Lab 2
on release planning (esp. [RP], see papers behind moddle

wall)

(Lecture 8 helps you prepare for the first part of Lab 2: QR)

Bjorn Regnell
http://www.cs.lth.se/krav

Release Planning

Paper [RP] In compendium

 “The art and science of

software release planning”

Ruhe, G., & Saliu, M. O,
IEEE software, 22(6), 47-53. 2005

What is Release Planning?

[RP]

Release Planning involves...

 ...prioritization + scheduling under various
constraints, e.g., resource and precedence
constraints

24 week s

[RP]

Example planning parameters

Requirements priorities (from prioritization)
Available resources
Delivery time

Requirements interdependencies
- Precedence, Coupling, Excludes

System architecture
Dependencies to the code base

[RP]

What is a good release plan?

* A good release plan should... RELEASE.RLAN GOOL
— provides maximum (?) business value by e

» offering the “best” possible blend of
features

* in the “right” sequence of releases
— satisfy the most important stakeholders |
- be feasible with available resources, and i & e

- reflect existing dependencies between
features

* Release planning is similar to the

NP-complete Knapsack problem:
https://en.wikipedia.org/wiki/Knapsack problem

https://en.wikipedia.org/wiki/Knapsack_problem

Baseline:
Release Planning - on the fly

* Informal process
* Rationale behind decisions not always clear

* Constraints regarding e.g., resources and
stakeholders not systematically taken into

account

* Already in case of 20 features

and 3 releases
420 > 1.000.000.000.000 = 1012 possibilities

Investigate with regT why greedy is not good

https://github.com/reqT/reqT/blob/3.0.x/doc/lab2/greedy.sc

val m = Model(def plan(input: Model,
Feature("a") has (Benefit(90), Cost(100)), pickNext: (Model,Release)=>0ption[Feature]): Model =
Feature("b") has (Benefit(85), Cost(90)), var result = input
Feature('c") has (Benefit(80), Cost(25)), releases(input).foreach { r =>
Feature("d") has (Benefit(75), Cost(23)), var next = pickNext(result, r)
Feature("e") has (Benefit(70), Cost(22)), while (next.isDefined) {
Feature("f") has (Benefit(65), Cost(20)), result =.allocate(result, next.get, r)
Feature("g") has (Benefit(60), Cost(10)), next = pickNext(result, r)
Feature("h") has (Benefit(55), Cost(30)), } }
Feature("i") has (Benefit(50), Cost(30)), result
Feature("j") has (Benefit(45), Cost(30)), }
Release("rl1") has Capacity(100),
Release("r2") has Capacity(90)) plan(m, random)
plan(m, greedy)

{

def features(m: Model):

Vector[Feature] = m.collect{case f: Feature => f}.distinct
def releases(m: Model): =

Vector[Release] = m.collect{case r: Release => r}.distinct
Model =

def allocate(m: Model, f: Feature, r:

def
def
def

isAllocated(m: Model, f: Feature):

Release):

Boolean

m + (r has f)
releases(m

).exists(r => (m/r).contains(f))

allocatedCost(m: Model, r: Release): Int = (m/r).entities.collect{case f => m/f/Cost}.sum
isRoom(m: Model, f: Feature, r: Release) = m/r/Capacity >= allocatedCost(m,r) + m/f/Cost

def featuresInGreedyOrder(m: Model) = features(m).sortBy(f => m/f/Benefit).reverse

def random(m: Model, r: Release): Option[Feature] = scala.util.Random.shuffle(features(m)).
filter(f => !isAllocated(m,f) && isRoom(m,f,r)).headOption

def greedy(m: Model, r: Release): Option[Feature] =

featuresInGreedyOrder(m).find(f => !isAllocated(m,f) && isRoom(m,f,r))

Optimal vs. Greedy

val optimal = Model(

Feature("a") has (Benefit(90), Cost(100)),
Feature("b") has (Benefit(85), Cost(90)),
Feature("c") has (Benefit(80), Cost(25)),
Feature("d") has (Benefit(75), Cost(23)),
Feature("e") has (Benefit(70), Cost(22)),
Feature("f") has (Benefit(65), Cost(20)),
Feature("g") has (Benefit(60), Cost(10)),
Feature("h") has (Benefit(55), Cost(30)),
Feature("i") has (Benefit(50), Cost(30)),
()

Feature("j") has (Benefit(45), Cost(30)
Release("rl") has (Capacity(100),
Feature("c"), Feature("d"), Feature("e"), Feature("f"), Feature("g")),
Release("r2") has (Capacity(90),
Feature("h"), Feature("i"), Feature("j")))

def sumAllocatedBenefit(m: Model): Int =
releases(m).map(r => (m/r).collect{case f: Feature => m/f/Benefit}.sum).sum

val beneftitOptimal sumAllocatedBenefit(optimal)
val benefitGreedy sumAllocatedBenefit(plan(m,greedy))
val ratio = benefitGreedy.toDouble / beneftitOptimal

How to estimate benefit and cost?

* Use prioritsation techniques [PRIO]

* Implemented in reqT and used in labl.:
ordinal-scale comparisons
ratio-scale $100-method

Table 4. 3. Aspects to Prioritize.

Aspect Prioritization Technigue Perspective

Strategic importance AHP Product Manager
Customer importance 100-dollar / Top-ten' Customers

Penalty AHP Product Manager

Cost 100-dollar Developers

Time Numerical A:aiignmf:nt (7) Pm_in:ct Mana_a&r

Risk Numerical Assignment (3) Regquirements Specialist

Volatility Ranking Requirements Specialist

Example from [PRIO]

Table 4. 3. Aspects to Prioritize.

Aspect Prioritization Technigue Perspective

Strategic importance AHP Product Manager
Customer importance 100-dollar / Top-ten' Customers

Penalty AHP Product Manager

Cost 100-dollar Developers

Time Numerical Assignment (7) Project Manager

Risk MNumerical Assi gnment (3) Requirements Spec 1alist
Volatility Ranking Requirements Specialist

Example from [RP]

Featurres, resource consumption, and stakeholder feature evaluations

Resources Stakeholder S (1) Stakeholder 5(2)
Analyst & Budget (US$
designers (hrs) Developers (hrs) QA (hrs) in thousands) Value Urgency Value Urgency
Feature f(/) rii,1) rii.2) rii,3) rii.4) value(1,7/) urgency(1,i) value(2,i) urgency(2,i)
1. Cost reduction of transceiver 150 120 20 1,000 6 (5 4,0 2 (0, 3, 6)
2. Expand memory on BTS 15 10 8 200 1 (50 4) 5 (9,0, 0
controller
3. FCC out-of-band emissions 400 100 20 200 9 (9,0,0) 3 (27,0
4. Software quality initiative 450 100 40 0 5 (2, 7,0) 1 (7,2, 0)
5. USEast Inc., Feature 1 100 500 40 0 3 (7, 2,0 2 (9,0,0
6. USEast Inc., Feature 2 200 400 25 25 9 (7.2,0) 3 (5. 4,0
1. China Feature 1 50 250 20 500 5 (9,0,0) 3 (2.7,0)
8. China Feature 2 60 120 19 200 1 (8,1,0) 1 (0,0,9)
9. 12-carrier BTS for China 280 150 40 1,500 6 (9,0,0) 5 (0,8, 1)
10. Pole-mount packaging 200 300 40 500 2 (5, 4,0) 1 (0,0,9)
11. Next-generation BTS 250 375 50 150 1 (8,1,0) 5 (0,7, 2)
12. India BTS variant 100 300 25 50 3 (9,0,0) 1 (0, 6, 3)
13. Common feature 01 100 250 20 50 1 (9,0,0) 9 (9,0,0)
14. Common feature 02 0 100 15 0 8 (9,0,0) 3 (6, 3, 0)
15. Common feature 03 200 150 10 0 1 (0,0,9) 5 (3.6,0)
Total resource consumption 2,615 3,225 392 4,375
Available capacity, Release 1 1,300 1,450 158 2,200
Available capacity, Release 2 1,046 1,300 65 1,750

Example from [RP]

Two qualified release plan alternatives, listing
the release to which each feature is assigned and
each weighted average satisfaction

WAS y Release Plan x1 Release Plan x2
Weig hted Feature f(i) x1G) WAS(Gi,k) x2() WAS(ik)

ave rag e 1. Cost reduction of transceiver 1 84.0 1 84.0

. . 2. Expand memory on BTS controller 1 281.0 1 281.0

satisfaction 3. FCC out-of-band emissions 1 252.0 3 0.0

4. Software quality initiative 3 0.0 1 233.8

Of_St_a !(ehOIder 5. USEast, feature 1 1 134.4 3 0.0

prlOrltleS 6. USEast, feature 2 2 516.6 3 0.0

1. China feature 1 2 271.2 1 88.2

8. China feature 2 2 43.2 1 19.6

9. 12-carrier BTS for China 3 0.0 2 12.0

10. Pole-mount packaging B 0.0 3 0.0

11. Next-generation BTS 3 0.0 3 0.0

12. India BTS variant 3 0.0 2 715.6

13. Common feature 01 1 37.8 1 516.6

14. Common feature 02 1 8.4 1 2717.2

15. Common feature 03 2 54.0 2 54.0

Objective function value F(x) 1,694.6 1,708.0
.

Example from [RP]

Two qualified release plan alternatives, listing
the release to which each feature is assigned and
each weighted average satisfaction

WAS y Release Plan x1 Release Plan x2
Weig hted Feature £ (i) x1G) WAS(Gi,k) x2() WAS(ik)

ave rag e 1. Cost reduction of transceiver 1 84.0 1 84.0

. . 2. Expand memory on BTS controller 1 281.0] 281.0

satisfaction 3. FCC out-of-band emissions 252.0 0.0

4. Software quality initiative 0.0 233.8

Of_St_a !(ehOIde r 5. USEast, feature 1 134.4 0.0

prlOrltleS 6. USEast, feature 2 2 516.6 3 0.0

1. China feature 1 2 271.2 1 88.2

8. China feature 2 2 43.2 1 19.6

9. 12-carrier BTS for China 3 0.0 2 12.0

10. Pole-mount packaging B 0.0 3 0.0

i - . 11. Next-generation BTS 3 0.0 3 0.0

qualified RP” = 12. India BTS variant 3 0.0 2 75.6

covers at least 95% of the 13. Common feature 01 1 37.8 1 516.6

objective function’s 14. Common feature 02 1 8.4] 277.2

maximum value 15. Common feature 03 2 54.0 2 54.0

Objective function value F(x) 1,694.6 1,708.0

TODO!

Lab2: Quality Requiremenst (Lecture 8) and Release Planning.
Mandatory Preparations: http://cs.lth.se/krav/labs/lab2/

- Read [PRMAN], [RP] and [QUPER], [Lau:6]
— Bring written representations of: 3 QR, 3 Features, 2 Stakeholders from your project.
Lecture 7 — Validation, inspections, Agile RE

— This lecture covers research papers etc and if you attend you will save much effort
when you study for the exam and when you plan your project work.

Lecture 8 — Quality Requirements:

- Let’s try “efterlasning”: You watch this video
http://cs.lth.se/krav/quality-requirements/
BEFORE the lecture and at the lecture we will actively discuss QR in your projects.

Exercise 5 — Validation
- Practical work that you must do in your project anyway

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 16
	Slide 17
	Slide 18
	Slide 19

