
ETSN15 Requirements
Engineering

Lecture 5:
Quality requirements: Lau: 6

The QUality PERformance model [QUPER]

Björn Regnell

http://www.cs.lth.se/krav/

http://www.cs.lth.se/ets170/
http://www.cs.lth.se/ets170/

Functional reqs:

 What the system
shall do

 Often intended to be
implemented as a
whole or else not
implemented at all

 Often regards
input/output data and
functions that
process the input
data to produce the
output

Non-functional reqs (NFR),

Quality
Requirements,
(extra-functional reqs):

 How good the system shall do it
 Often measured on a scale
 Often put constraints on the system

(or the development process)
 Often cross-cutting; may impact many

functions

Performance
Reliability
Usability
Safety, Security
Interoperability
Maintainability
…

But the division is not black and white...

FR & QR are often tightly coupled

In practice it is often difficult to
separate functional and quality
requirements as quality requirements
often are manifested into extra
functionality.

Example: Quality requirement on
security requires a log-in function.

Difficult trade-offs among QR

Quality requirements often counteract
each other.

Common examples:
¨ Higher performance

-> lower maintainability
¨ Higher security

-> lower usability

Requires carefully considered trade-offs!

Quality requirements often
determine choice of architecture

System Architecture

A B

C D

L2
L1

DB

GUI

REQ

REQ REQ

REQ

Cost?
Value?
Long-term vs short-term?

Paper [QUPER]

Supporting Roadmapping of
Quality Requirements

Björn Regnell, Richard Berntsson Svensson, Thomas Olsson,

IEEE Software 25(2) pp 42-47 March-April 2008

Quality Requirements challenge
in market-driven RE

Systematic prioritization of FEATURES
is state-of-art in roadmapping and
platform/product scoping
…but…
Prioritisation of QUALITIES is often
handled ad hoc with no specific support for
roadmapping

One FR imply many different qualities.
How to scope both FR and QR together?

Improving
Quality Requirements

Problem:

Quality requirements such as performance
 are often given without explanation
¨ Would just a little less still be almost as valuable?
¨ Would just a little less be very much cheaper?

One proposed solution:
Estimate cost-benefit breakpoints and barriers with
QUPER = Quality Performance reference model

Cost
&Value
&Quality

It’s 3D

QUPER model views: Benefit, Cost, Roadmap

Useful

Useless

Competitive
advantage

Excessive

Utility breakpoint

Differentiation breakpoint

Quality level

Benefit view

Saturation breakpoint

Quality level

Cost view

barrier

Current Bad Target

Quality level
(Feature X, Segment Y)

Target release n1

Competitor B

Competitor A Target release n2

Utility Differentiation Saturation

Roadmap view

QUPER example steps

val m = Model(
 Quality("mtts") has (
 Gist("Mean time to startup"),
 Spec("Measured in milliseconds using Test startup"),
 Breakpoint("utility") has Value(4000),
 Breakpoint("differentiation") has Value(1500),
 Breakpoint("saturation") has Value(200),
 Target("basic") has (
 Value(2000), Comment("Probably possible with existing architecture.")),
 Target("strech") has (
 Value(1100), Comment("Probably needs new architecture.")),
 Barrier("first") has (Min(1900), Max(2100)),
 Barrier("second") has Value(1000),
 Product("competitorX") has Value(2000),
 Product("competitorY") has Value(3000)),
 Test("startup") verifies Quality("mtts"),
 Test("startup") has (
 Spec("Calculate average time in milliseconds of the startup time over 10
executions from start button is pressed to logon screen is shown."),
 Target("stretch")))

reqT QUPER example

[Example modified from "Setting quality targets for coming releases with QUPER: an industrial case study",
R. Berntsson Svensson, Y. Sprockel, B. Regnell, S. Brinkkemper, Requirements Engineering, DOI: 10.1007/s00766-011-0125-0]

Targets represent
(candidate)
requirements.
The other stuff is
there to define what
we mean with the
targets.

Quper export to svg with reqT

reqT.export.toQuperSpec(m).toSvgDoc.save("q.svg")
reqT.desktopOpen("q.svg")

Discussion
QR

 What quality features of
a word processor do you
appreciate?

Fig 6.1 Quality factors

ISO 9126
Functionality

Accuracy
Security
Interoperability
Suitability !!
Compliance !!

Reliability
Maturity
Fault tolerance !!
Recoverability !!

Usability
Efficiency

Maintainability
Testability
Changeability
Analysability !!
Stability !!

Portability
Adaptability
Installability !!
Conformance !!
Replaceability !!

McCall
US Airforce 1980
Operation:

Integrity

Correctness !!

Reliability

Usability
Efficiency

Revision:
Maintainability
Testability
Flexibility

Transition:

Portability
Interoperability
Reusability !!

Use as check lists

Fig 6.2 Quality grid

Quality factors
for Hotel system

C
ri

ti
c

a
l

Im
p

o
r-

ta
n

t
A

s
u

s
u

a
l

U
n

im
-

p
o

rt
a

n
t

Ig
n

o
re

Operation
Integrity/security X
Correctness X
Reliability/availab. 1
Usability 2
Efficiency X

Revision
Maintainability X
Testability X
Flexibility X

Transition
Portability X
Interoperability 3 4
Reusability X
Installability 5

Concerns:
1. Hard to run the hotel if system

is down. Checking in guests is
impossible since room status
is not visible.

2. We aim at small hotels too.
They have less qualified staff.

3. Customers have many kinds
of account systems. They
prioritize smooth integration
with what they have.

4. Integration with spreadsheet
etc. unimportant. Built-in
statistics suffice.

5. Must be much easier than
present system. Staff in small
hotels should ideally do it
themselves.

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 6.3A Open metric and open target

R1: Product shall detect speed violation and take photo within
0.5 seconds.

R2: Product shall compute a room occupation forecast within
2 minutes.

R3: Product shall compute a room occupation forecast within
4 minutes.

R4: Product shall compute a room occupation forecast within
___ minutes.

R5: Product shall compute a room occupation forecast within
___ minutes. (Customer expects one minute.)

R6: Forecast shall be computed with exponential trend
smoothing and seasonal adjustments.

R7: The supplier shall specify the forecast accuracy for hotels
similar to ours.

Best available
is 4 minutes?

Nobody strives
for 2 minutes

Open target but
how important?

Open target +
expectations

Open metric

Supplier uses
another approach?

Physical
limits

Fig 6.3C Cost/benefit of response time

1 2 3 4 min

1

2

$ or ratio

Cost

Benefit

Benefit/cost

Response time

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 6.4 Capacity and accuracy requirements

Capacity requirements:

R1: The product shall use < 16 MB of memory even if more is available.

R2: Number of simultaneous users < 2000

R3: Database volume:
#guests < 10,000 growing 20% per year
#rooms < 1,000

R4: Guest screen shall be able to show at least 200 rooms booked/occu-
pied per day, e.g. for a company event with a single “customer”.

Accuracy requirements:

R5: The name field shall have 150 chars.

R6: Bookings shall be possible at least two years ahead.

R7: Sensor data shall be stored with 14 bit accuracy, expanding to 18 bits in
two years.

R8: The product shall correctly recognize spoken letters and digits with
factory background noise ___ % of the time. Tape B contains a sample
recorded in the factory.

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 6.5A Performance requirements

Performance requirements:

R1: Product shall be able to process 100 payment transactions per
second in peak load.

R2: Product shall be able to process one alarm in 1 second, 1000
alarms in 5 seconds.

R3: In standard work load, CPU usage shall be less than 50% leaving
50% for background jobs.

R4: Scrolling one page up or down in a 200 page document shall take
at most 1 s. Searching for a specific keyword shall take at most 5 s.

R5: When moving to the next field, typing must be possible within 0.2 s.
When switching to the next screen, typing must be possible within
1.3 s. Showing simple report screens, less than 20 s.
(Valid for 95% of the cases in standard load)

R6: A simple report shall take less than 20 s for 95% of the cases. None
shall take above 80s. (UNREALISTIC)

Cover all product functions?

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig 6.5B Response times, M/M/1

Av
er

ag
e99%

95% 90% 80
%

System load

R
es

p
o

n
se

 f
ac

to
r

Example:
Service time: Time to process one request
Average service time: 8 s (exp. distr.)
Average interarrival time: 10 s (exp. distr.)
System load: 8/10 = 0.8

Service time: Exponential distribution

Average response time:
 5  service time = 40 s

90% responses within:
12  service time = 96 s

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 6.6A Usability

Usability requirements?

R1: System shall be easy to use??

R2: 4 out of 5 new users can book a guest in 5 minutes, check
in in 10 minutes, . . . New user means . . . Training . . .

Achieving usability
• Prototypes (mockups) before programming.
• Usability test the prototype.
• Redesign or revise the prototype.

Easier programming. High customer satisfaction.

Defect types

Program error: Not as intended by the programmer.

Missing functionality: Unsupported task or variant.

Usability problem: User cannot figure out . . .

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 6.6B Usability problems

Examples of usability problems

P1: User takes long time to start search. Doesn’t notice “Use F10”.
Tries many other ways first.

P2: Believes task completed and result saved. Should have used
Update before closing.

P3: Cannot figure out which discount code to give customer.
Knows which field to use.

P4: Crazy to go through 6 screens to fill 10 fields.

Problem classification

Task failure: Task not completed - or believes it is completed.

Critical problem: Task failure or complaints that it is cumbersome.

Medium problem: Finds out solution after lengthy attempts.

Minor problem: Finds out solution after short attempts

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 6.6C Usability test & heuristic evaluation

FacilitatorUsability test
Realistic introduction
Realistic tasks

Note problems
• Observe only or
• Think aloud & ask

Heuristic evaluation
Expert’s predicted problems
 Inspection/Review

Usability test:
Cover all tasks?
Mockups find same problems
as test with final system?

Usability test
findings

Heuristic
evaluation

Real
problems

UserLog keeper

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 6.6D Defects & usability factors

Usability
Fit for use = tasks covered
+
Ease of use =

Ease of learning
Task efficiency
Ease of remembering
Subjective satisfaction
Understandability

Usability
factors

Functional
requirements

Defect correction
Program errors Usability problems
Expected Surprising?
Inspection OK Inspection low hit-rate
Detect in test stage Detect in design stage
Mostly simple Often redesign
Test equipment OK Subjects hard to find

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 6.7(A) Usability requirements

Problem counts
R1: At most 1 of 5 novices shall encounter critical problems during

tasks Q and R. At most 5 medium problems on list.

Task time
R2: Novice users shall perform tasks Q and R in 15 minutes.

Experienced users tasks Q, R, S in 2 minutes.

Keystroke counts
R3: Recording breakfast shall be possible with 5 keystrokes per

guest. No mouse.

Opinion poll
R4: 80% of users shall find system easy to learn. 60% shall

recommend system to others.

Score for understanding
R5: Show 5 users 10 common error mesages, e.g. Amount too

large. Ask for the cause. 80% of the answers shall be correct.

Risk

C
us

t.
S

up
pl

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 6.7(B) Usability requirements

Design-level reqs
R6: System shall use screen pictures in app. xx, buttons work as

app. yy.

Product-level reqs
R7: For all code fields, user shall be able to select value from

drop-down list.

Guideline adherence
R8: System shall follow style guide zz. Menus shall have at most

three levels.

Development process reqs
R9: Three prototype versions shall be made and usability tested

during design.

Risk

C
us

t.
S

up
pl

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 6.8A Threats

Product
Payslip

Curious eyesWire tapping

Threats Violate Preventions

Input, e.g. Examples
Mistake Integrity Logical checks
Illegal access Authenticity Signature
Wire tapping Confidentiality Encryption

Storing, e.g.
Disk crash Availability RAID disks
Program error Integrity Test techniques
Virus deletes data Availability Firewall

Output, e.g.
Transmission Availability Multiple lines
Fraud Confidentiality Auditing
Virus sends data Authenticity Encryption

Wire tapping
Disk crash

From: Soren Lauesen:
Software Requirements
© Pearson / Addison-Wesley 2002

Fig 6.9 Security requirements

R1: Safeguard against loss of database. Estimated losses to be < 1 per 50
years.

R2: Safeguard against disk crashes. Estimated losses to be < 1 per 100 years.

R3: Product shall use duplicated disks (RAID disks).

R4: Product shall safeguard against viruses that delete files. Remaining risk to
be < ______.

R5: Product shall include firewalls for virus detection.

R6: Product shall follow good accounting practices. Supplier shall obtain
certification.

R7: Product shall prevent users deleting invoices before transfer to the account
system.

R8: The supplier shall as an option offer features for checking and reserving
deposits made by credit cards.

R9: The supplier must enclose a risk assessment and suggest optional
safeguards.

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Examples: Capacity and Performance <=> Usability

Model(
 Quality("dbCapacity") has
 Spec("#guests < 10,000 growing 20% per year, #rooms < 1,000"),
 Quality("calendarAccuracy") has
 Spec("Bookings shall be possible at least two years ahead."),
 Quality("forecastPerformance") has
 Spec("Product shall compute a room occupation forecast within

___ minutes. (Customer expects one minute.)"),
 Quality("taskTimeUsability ") has
 Spec("Novice users shall perform tasks Q and R in 15 minutes.

Experienced users tasks Q, R, S in 2 minutes."),
 Quality("taskTimeUsability") requires (Task("Q"), Task("R"),

Task("S")),
 Quality("peakLoadPerformance") has
 Spec("Product shall be able to process 100 payment transactions

per second in peak load."))

[Examples modified from Lauesen: "Software Requirements – Styles and Techniques"]

Fig 6.10 Maintainance

Product

Corrective
maintenance

Preventive
maintenance

New release
Perfective
maintenance

Maintenance cycle:
Report: Record and acknowledge.
Analyze: Error, change, usability, mistake?

Cost/benefit?
Decide: Repair? reject? work-around?

next release? train users?
Reply: Report decision to source.
Test: Test solution. Related defects?
Carry out: Install, transfer user data, inform.From: Soren Lauesen: Software Requirements

© Pearson / Addison-Wesley 2002

Maintenance performance
R1: Supplier’s hotline shall analyze 95% of reports within 2 work

hours. Urgent defects (no work around) shall be repaired
within 30 work hours in 95% of the cases.

R2: When reparing a defect, related non-repaired defects shall be
less than 0.5 in average.

R3: For a period of two years, supplier shall enhance the product
at a cost of ___ per Function Point.

Support features
R4: Installation of a new version shall leave all database contents

and personal settings unchanged.

R5: Supplier shall station a qualified developer at the customer’s
site.

R6: Supplier shall deposit code and full documentation of every
release and correction at ____________.

Risk

C
us

t.
S

up
pl

Fig 6.11A Maintainability requirements

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Development process requirements
R7: Every program module must be assessed for maintainability

according to procedure xx. 70% must obtain “highly
maintainable” and none “poor”.

R8: Development must use regression test allowing full re-
testing in 12 hours.

Program complexity requirements
R9: The cyclomatic complexity of code may not exceed 7. No

method in any object may exceed 200 lines of code.

Product feature requirements
R10: Product shall log all actions and provide remote diagnostic

functions.

R11: Product shall provide facilities for tracing any database field
to places where it is used.

Fig 6.11B Maintainability requirements

Risk

C
us

t.
S

up
pl

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Fig 6.3B Planguage version of target etc.

Forecast speed [Tag]: How quickly the system
completes a forecast report [Gist]

Scale: average number of seconds from
pushing button, to report appearing.

Meter: Measured 10 times by a stopwatch
during busy hours in hotel reception.

Must: 8 minutes, because the competitive
system does it this fast.

Plan: ____ (supplier, please specify).

Wish: 2 minutes.

Past: Done as batch job taking about an hour.

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

To Do this week W4…
 Read Lau: 6, [QUPER]
 Exercise 4: Quality requirements
 W4: meeting with project supervisor: discuss scope & plan
 Lab 2: Quality Requirements and Release Planning
 Next week: lecture by Elizabeth Bjarnasson:

Validation, Inspections, Interdependencies, Agile RE

	Slide 1
	Slide 2
	FR & QR are often tightly coupled
	Difficult trade-offs among QR
	Quality requirements often determine choice of architecture
	Paper [QUPER] in compendium
	Quality Requirements challenge in market-driven RE
	Improving Quality Requirements
	QUPER model views: Benefit, Cost, Roadmap
	QUPER example steps
	reqT QUPER example
	Quper export to svg with reqT
	Discussion QR
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Examples: Capacity and Performance <=> Usability
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	To Do this week W4…

