

ETSN15 - Requirements
Engineering

Lecture 5:
Market-Driven Requirements Engineering [MDRE]

[INTDEP]

Release Planning [RP]

Preparations for Lab 2

Björn Regnell

http://www.cs.lth.se/krav

Market-Driven Requirements
Engineering (MDRE)

Book chapter [MDRE] in
compendium

● Market-Driven Requirements Engineering for
Software Products

● Regnell, B., & Brinkkemper, S.
● Engineering and Managing Software

Requirements, Eds. A. Aurum and C. Wohlin,
Springer, ISBN 3-540-25043-3, 2005

Characteristics of MDRE
● Success through sales and market share

– (not just customer satisfaction)
● Release Planning focus on

– Time-to-market
– Multiple release

● Continuous evolution
– (not just maintenance)

● Inventing requirements + market analysis
– (not just collecting 1-on-1)

● Stakeholders
– Market segments with potential customers
– Competitors (confidentiality often needed)

● Continuous inflow of requirements
[MDRE]

Decisions outcomes in MDRE

[MDRE]

Product Quality:

Decision Quality:

Finding the golden grains despite
uncertain cost-value estimates

[MDRE]

Some inter-related challenges in MDRE

● Requirements inter-dependency management
● Requirements prioritization
● Release planning

– Balancing market pull and technology push
– Chasm between marketing and development
– Cost-value-estimation (over- & under-est.)
– Overloaded requirements management

[INTDEP] in compendium

An industrial survey of requirements
interdependencies in software product
release planning

Carlshamre, P., Sandahl, K., Lindvall, M.,
Regnell, B., Natt och Dag, J.

IEEE Int. Conf. on Requirements
Engineering (RE01), Toronto, Canada, pp.
84–91 (2001)

Research Method

• survey of five different companies
• a manager of a product/project

was asked to identify and classify
interdependencies among
20 high priority requirements.

Data collection

Different types of interdependencies

Examples:
AND. A printer requires a driver to function, and the driver requires a printer to function.
REQUIRES. Sending an e-mail requires a network connection, but not the opposite.
TEMPORAL. The function Add object should be implemented before Delete object. (This type is doubtful,

which is discussed in section 3.1)
CVALUE. A detailed on-line manual may decrease the customer value of a printed manual.
ICOST. A requirement stating that “no response time should be longer than 1 second” will typically increase

the cost of implementing many other requirements.
OR. In a word processor, the capability to create pictures in a document can either be provided as an

integrated drawing module or by means of a link to an external drawing application.

Expressing interdependencies in reqT
• An AND relation is equivalent to two mutual requires-relations:

Feature("printerX1") requires Feature("driverX")
Feature("driverX") requires Feature("printerX1")

• A requires relation can be non-mutual :

Feature("sendEmail") requires Feature("networkAccess")

• Temporal relations regarding a preferred implementation order can be expressed using precedes:

Function("add") precedes Function("delete")

• Exclusion (xor) can be expressed by an excludes relation (only one is needed as exclusion is mutual):

Design("centralized") excludes Design("distributed")
Design("distributed") excludes Design("centralized")

• Entities that support or hinder each other can be modeled using hurts and helps relations :

Goal("secure") helps Goal("safe")
Goal("secure") hurts Goal("simple")

[Some examples modified from Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Natt och Dag: "An industrial survey of requirements interdependencies in software product release
planning", J.: Int. Conf. on Requirements Engineering (RE01), Toronto, Canada, pp. 84–91, 2001]

Expressing CVALUE dependencies as
Constraints in reqT

val m = Model(
 Req("x") has (Order(1), Benefit(100)),
 Req("y") has Order(1)) // Same release
val c = Constraints(
 Req("y")/Benefit :: {0 to 1000},
 Sum(Req("x")/Benefit, Req("y")/Benefit) === Var("SumXY"),
 Var("SumXY") :: {0 to 2000},
 IfThenElse(
 Req("x")/Order === Req("y")/Order, //If same release
 Var("SumXY") === 400, //then more valuable
 Var("SumXY") === 200 //else less valuable
))

val m2 = (m + c).satisfy
m2: reqT.Model =
Model(
 Req("y") has (Benefit(300), Order(1)),
 Req("x") has (Order(1), Benefit(100)),
 Constraints(
 Var("SumXY") === 400))

Expressing CVALUE dependencies as
Constraints in reqT

val m = Model(
 Req("x") has (Order(1), Benefit(100)),
 Req("y") has Order(2)) // Different releases
val c = Constraints(
 Req("y")/Benefit :: {0 to 1000},
 Sum(Req("x")/Benefit, Req("y")/Benefit) === Var("SumXY"),
 Var("SumXY") :: {0 to 2000},
 IfThenElse(
 Req("x")/Order === Req("y")/Order, //If same release
 Var("SumXY") === 400, //then more valuable
 Var("SumXY") === 200 //else less valuable
))

val m2 = (m + c).satisfy
m2: reqT.Model =
Model(
 Req("y") has (Benefit(100), Order(2)),
 Req("x") has (Order(1), Benefit(100)),
 Constraints(
 Var("SumXY") === 200))

Not always straight forward …

• “if R2 is completely worthless to the customer without R1,
and we would thus never do R2 without R1, do we classify
the relationship as REQUIRED or just CVALUE?”

• REQUIRES sometimes arises from the opposite reasoning:
“If we do R2, then we can do R1 too!”, which implies that
the direction of the relationship could be the opposite;
could e.g. be called “ENABLES” or "HELPS"

Summary of identified interdependencies

1. 10% of the requirements are responsible for roughly 50% of
the interdependencies

2. 20% of the requirements are responsible for roughly 75% of
all interdependencies

3. About 20% of the requirements are singular
4. Customer-specific: more functionality-related ;

Market-driven: more value-related dependencies

Example of dependency structures

Coupling measures

I =#dependencies
R =#requriements

i = #dep. betw. 2 partitionsRelease
coupling:

In survey:
10-22%

Requirements Prioritization
(summary from week 1)

Book chapter [PRIO] in
compendium

● Requirements prioritization
● Berander, P., & Andrews, A.
● Engineering and Managing Software

Requirements, Eds. A. Aurum and C. Wohlin,
Springer, ISBN 3-540-25043-3, 2005

Filtering requirements

Karlsson, Joachim, and Kevin Ryan. "A cost-value approach for prioritizing
requirements." IEEE software 14.5 (1997): 67-74.

Prioritization scales

[PRIO][PRIO]

Ratio scale

ex: $, h,

% (relative)

Numeric relations:
A=2*B

Categorization

e.g.: must, ambiguous,
volatile

Partition in groups
without greater-less
relations

Ordinal scale

e.g.: more expensive,
higher risk,
higher value

Ranked list
A>B

Prioritization techniques
● Grouping, numbering assignment (grading)
● Ranking (sorting)
● Top-ten (or Top-n)
● Analytical Hierarchy Process (AHP)
● 100$ test
● Combination of techniques

On Lab 1 you used:
– ordinal-scale prio with sorting by pair-wise comparisons and
– ratio-scale prio with the 100$ test

One (simplistic) approach to manage interdependencies:
– grouping

[PRIO][PRIO]

Tools can help find
inconsistencies

[PRIO][PRIO]

has more value for
customer than

has more value for
customer than

has more value for
customer than

Image enhancement

Voice control

Adress book

???!

Release Planning

Paper [RP] in compendium

● The art and science of software release
planning

● Ruhe, G., & Saliu, M. O.
● IEEE software, 22(6), 47-53. 2005

What is Release Planning?

[RP]

Release Planning involves...

● ...prioritization + scheduling under various
constraints, e.g., resource and precedence
constraints

[RP]

Example planning parameters

● Requirements priorities (from prioritization)
● Available resources
● Delivery time
● Requirements interdependencies

– Precedence, Coupling, Excludes
● System architecture
● Dependencies to the code base

[RP]

What is a good release plan?

● A good release plan should
– Provide maximum business

value by
● offering the best possible

blend of features
● in the right sequence of

releases
– satisfy the most important stakeholders involved
– be feasible with available resources, and
– Reflect existing dependencies between features

[RP]

Baseline: Release Planning - on
the fly

● Informal process
● Rationale behind decisions not always clear
● Constraints regarding e.g., resources and

stakeholders not systematically taken into
account

● Already in case of 20 features
and 3 releases
420 > 1.000.000.000.000 = 1012 possibilities

[RP]

Investigate with reqT why
greedy is not good

val m = Model(
 Feature("a") has (Benefit(90), Cost(100)),
 Feature("b") has (Benefit(85), Cost(90)),
 Feature("c") has (Benefit(80), Cost(25)),
 Feature("d") has (Benefit(75), Cost(23)),
 Feature("e") has (Benefit(70), Cost(22)),
 Feature("f") has (Benefit(65), Cost(20)),
 Feature("g") has (Benefit(60), Cost(10)),
 Feature("h") has (Benefit(55), Cost(30)),
 Feature("i") has (Benefit(50), Cost(30)),
 Feature("j") has (Benefit(45), Cost(30)),
 Release("r1") has Capacity(100),
 Release("r2") has Capacity(90))

def features(m: Model): Vector[Feature] = m.tip.collect{case f: Feature => f}
def releases(m: Model): Vector[Release] = m.tip.collect{case r: Release => r}
def allocate(m: Model, f: Feature, r: Release): Model = m + (r has f)
def isAllocated(m: Model, f: Feature): Boolean = releases(m).exists(r => (m/r).contains(f))
def allocatedCost(m: Model, r: Release): Int = (m/r).entities.collect{case f => m/f/Cost}.sum
def isRoom(m: Model, f: Feature, r: Release): Boolean = m/r/Capacity >= allocatedCost(m,r) + m/f/Cost
def featuresInGreedyOrder(m: Model): Vector[Feature] = features(m).sortBy(f => m/f/Benefit).reverse

def random(m: Model, r: Release): Option[Feature] = scala.util.Random.shuffle(features(m)).
 filter(f => !isAllocated(m,f) && isRoom(m,f,r)).headOption

def greedy(m: Model, r: Release): Option[Feature] =
 featuresInGreedyOrder(m).find(f => !isAllocated(m,f) && isRoom(m,f,r))

def plan(input: Model,
 pickNext: (Model,Release)=>Option[Feature]): Model = {
 var result = input
 releases(input).foreach { r =>
 var next = pickNext(result, r)
 while (next.isDefined) {
 result = allocate(result, next.get, r)
 next = pickNext(result, r)
 }
 }
 result
}

plan(m, random)
plan(m, greedy)

Optimal vs. Greedy

val optimal = Model(
 Feature("a") has (Benefit(90), Cost(100)),
 Feature("b") has (Benefit(85), Cost(90)),
 Feature("c") has (Benefit(80), Cost(25)),
 Feature("d") has (Benefit(75), Cost(23)),
 Feature("e") has (Benefit(70), Cost(22)),
 Feature("f") has (Benefit(65), Cost(20)),
 Feature("g") has (Benefit(60), Cost(10)),
 Feature("h") has (Benefit(55), Cost(30)),
 Feature("i") has (Benefit(50), Cost(30)),
 Feature("j") has (Benefit(45), Cost(30)),
 Release("r1") has (Capacity(100), Feature("c"), Feature("d"), Feature("e"), Feature("f"),

Feature("g")),
 Release("r2") has (Capacity(90), Feature("h"), Feature("i"), Feature("j")))

def sumAllocatedBenefit(m: Model) =
 releases(m).map(r => (m/r).collect{case f: Feature => m/f/Benefit}.sum).sum

val beneftitOptimal = sumAllocatedBenefit(optimal)
val benefitGreedy = sumAllocatedBenefit(plan(m,greedy))
val ratio = benefitGreedy.toDouble / beneftitOptimal

Example from [RP]

Example from [RP]

WAS:
weighted
average
satisfaction
of stakeholder
priorities

Example from [RP]

WAS:
weighted
average
satisfaction
of stakeholder
priorities

Example (Part 2)

TODO!

● Exercise 3 on functional requirements (Lauesen chapter 2-5)
● Hand in Release R1 on Monday 09:00 & book meeting with supervisor
● Lab2 is not until next week but...

– Two parts: Quality requirements and Release planning
– Please note: Preparations for lab2 includes a lot of reading + working and take

significantly more time compared to lab1, and is based on you attending both
lectures and exercises (which help you with parts of your preparations)

– Read [QUPER, RP]

● Next week’s lecture on quality requriements is “flipped”:
– You watch the QUPER-video before the lecture
– You come to the lecture on QR
– You do Exercise 4 where you work on QR in your project
– You do Lab 2 (bring preparations)

	Slide 1
	Slide 2
	Slide 3
	Slide 7
	Slide 9
	Slide 10
	Slide 11
	[INTDEP] in compendium
	Research Method
	Data collection
	Different types of interdependencies
	Expressing interdependencies in reqT
	Expressing CVALUE dependencies as Constraints in reqT_clipboard0
	Expressing CVALUE dependencies as Constraints in reqT
	Not always straight forward …
	Summary of identified interdependencies
	Example of dependency structures
	Coupling measures
	Slide 23
	Slide 24
	Slide 29
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 49
	Slide 50
	Slide 51
	Slide 52

