

Content

- Requirements engineering
 - What is a requirement?
 - How to work with them?
 - What is a requirements specification?
 - Thoughts about requirements in the project
- About the base system (Rasmus Ros)

Definition

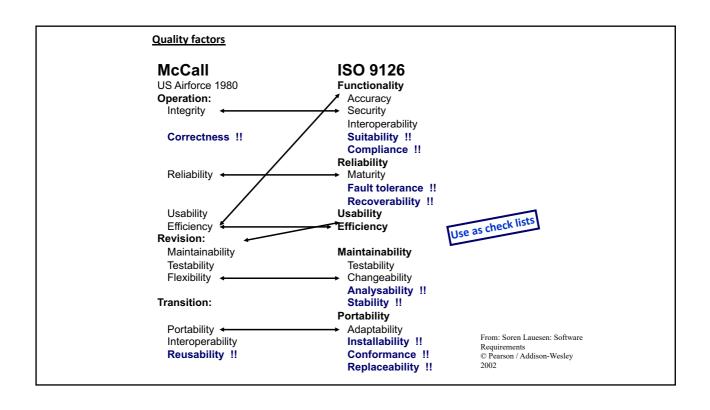
IEEE defines a requirement as

- (1) A condition or capability **needed** by a user to solve a problem or achieve an objective
- (2) A condition or capability that **must** be met or possessed by a system or system component to satisfy a contract, standard, specification, or other formally imposed document
- (3) A documented **representation** of a condition or capability as in (1) or (2)

Abstraction level and target group

Client engineers System end-users System architects

- User Requirements
- System Requirements
- Software Design Specification


System end-users system architects Developers ...

System architects
Software developers

• E.g. [Sommerville, Software Engineering, 6th Ed., 2001]

Different types of requirements

- · Functional requirements
- Quality requirements
 - "limitations" for the product
 - Often affect the whole product
 - Often affect the architecture
 - Different types: product, organization, ...

May be conflicting

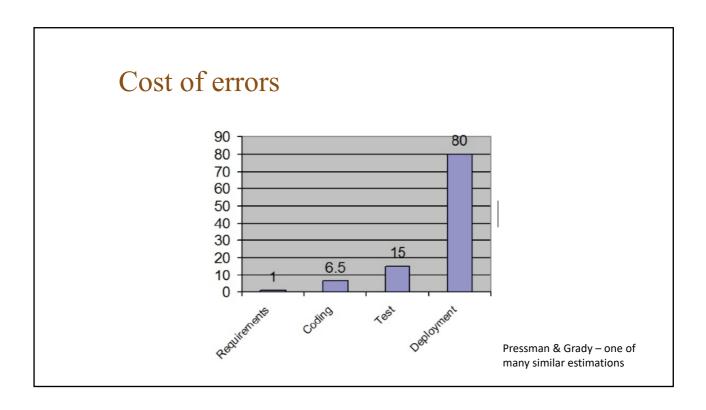
For example

- · Increased performance
 - May mean decreased maintainability
- Increased security
 - May mean decreased usability

Requirements engineering

- · methods and techniques for
 - identification
 - documenting
 - validating
 - evolving
 - tracing
- · requirements throughout the project!

What is Requirements Engineering?

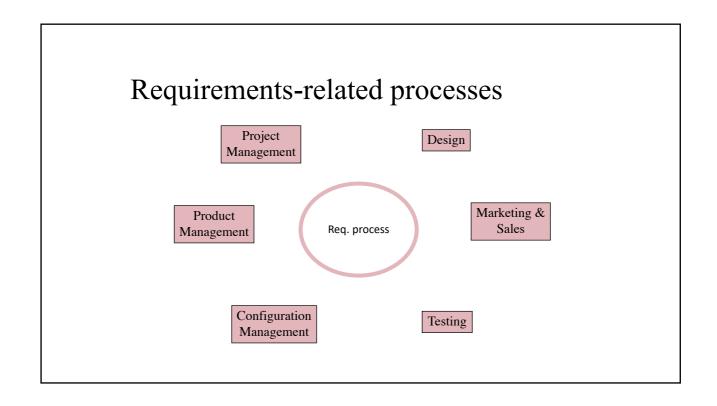

"Requirements engineering is a process that involves all the activities required to create and maintain a requirements document."
 "There are four generic [...] process activities [...] feasibility study, [...] elicitation and analysis, [...] specification, [...] validation"

[Sommerville, Software Engineering, 6th Ed., 2001]

Why are requirements engineering important?

Standish Group Survey Top 10 Challenges (% of Responses)

1. Lack of User Input	12.8%
2. Incomplete Requirements	12.3%
3. Changing Requirements	11.8%
4. Lack of Executive Support	7.5%
5. Technology Incompetence	7.0%
6. Lack of Resources	6.4%
7. Unrealistic Expectations	5.9%
8. Unclear Objectives	5.3%
9. Unrealistic Time Frames	4.3%
10. New Technology	3.7%


Why is RE difficult?

- Stakeholders don't know what they really want
- Stakeholders express requirements in their own terms
- Different stakeholders have conflicting requirements
- Organisational and political factors may influence
- The requirements change during the process
- + hard to know the result is "good enough"
- + hard to find right level of abstraction

The RE process

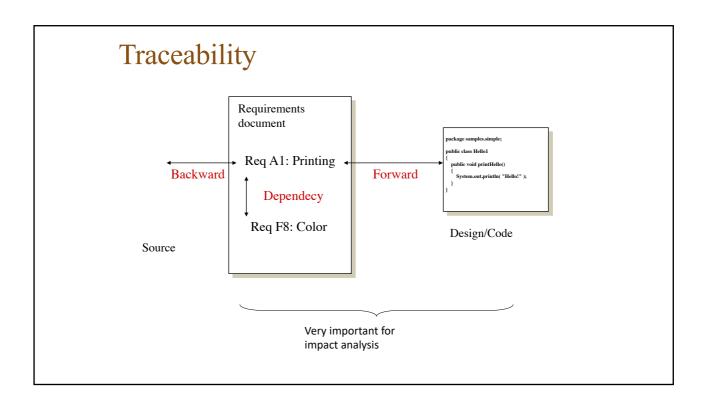
- Requirements elicitation
- Requirements analysis
- Requirements documentation
- Requirements validation

Elicit Requirements

- To discover the needs of the stakeholders
- The requirements are elicited through
 - Consultation with stakeholders
 - System documents
 - Domain knowledge
 - Market surveys

Validate Requirements

- To check that we have elicited and documented the right requirements
- Are the requirements "sufficiently"
- Correct?
- Complete?
- Consistent?
- Unambiguous?
- Realistic?
- Verifiable?
- ..



Requirements validation techniques

- Requirements reviews (inspections)
 - Systematic manual analysis of the requirements
- Prototyping
 - Using an executable model of the system to check requirements.
- Test-case generation
 - Developing tests for requirements to check testability
- Automated consistency analysis
 - Checking the consistency of a structured requirements description

Requirements change management

- Should apply to all proposed changes to the requirements
- Principal stages
 - Problem analysis. Discuss requirements problem and propose change
 - Change analysis and costing. Assess effects of change on other requirements
 - Change implementation. Modify requirements document and other documents to reflect change

Requirements specification

- goal
 - documents the customer's requirements to the system, such that developers know exactly what is required from the system
- quality in requirements specification
 - correctness
 - completeness
 - verifiable
 - unambiguous
 - consistent
 - traceable
 - organized
 - motivated

Problems with natural language requirements

- Lack of clarity
 - Precision is difficult without making the document difficult to read
- Requirements confusion
 - Functional and non-functional requirements tend to be mixedup
- Requirements amalgamation
- Several different requirements may be expressed together

Requirements division

- Structure of GS:SRS
 - background and goals
 - terminology
 - system requirements
 - functional requirements, divided in:
 - overall requirements valid for all services
 - divided up by services => one section in SRS per service
 - interface/interaction requirements in special section
 - interface towards hardware
 - quality requirements (non-functional requirements)
 - usability, extendability, trustable, ...
 - project requirements
 - development environment, testing, releasing, ...

Requirements numbering

- to allow things to be traceable to requirements:
 - running numbers pre-fixed by section number
 - why is this a good idea?
- for example same structure as example SRS
- (do **NOT** change requirements in older documents remove the old one and add a new one)

	Req 1	Req 2	Req 3	Req 4	Req 5	
Test 1		x	x			
Test 2			x			
Test 3	x			x		
Test 4		x				
Test 5						

All requirements should be tested All tests should test at least one requirement

Working with the SRS (proposed way of working)

- SG develops a "template" and gives instructions on how requirements should be written
- project groups analyze and develop requirements (distribution of work)
- SG puts requirements together and fixes terminology
- Make an "interaction table" and check that "all" interactions (sufficently) are specified
- TG acts as informal reviewers
- SVVS depends on SRS => synchronization problems?

Some thoughts about the SRS

- Try to think about all requirements i.e. try to be complete
 - Normal ways of using the system
 - Non-normal ways of using the system
 - Wrong ways of using the system
 - "Interections" between different main functions of the system
 - both "normal" and "non normal"
- Develop requirements in several steps
 - involve many group members
 - ...but get a consistent set of requirements
 - Inspections and other ways of getting feedback important