
ETSF01: Software Engineering Process
Economy & Quality

Project in Software Project Management

Elizabeth Bjarnason with input from Eva Jönsson
Lund University, Dept. Computer Science

March 8, 2017

Contents	
1 Introduction .. 2

2 Course Project Description ... 2

2.1 Evaluation Method 2
2.2 Course Project Reporting 4

2.2.1 Written report .. 4
2.2.2 Conference presentation .. 5

3 Deliveries .. 6

4 Course Project Assessment .. 7

5 Company Description: DauMob Ltd ... 8

5.1 SW Porting Project 9
5.2 Application Development Projects 10
5.3 Overview of Case Project Types 11

	

1 Introduction	
This document specifies the project in the course ETSF01 Software Engineering Process – Economy & Quality, hereafter
denoted course project. The main objective of the course project is to gain a deeper understanding of how software project
management (SPM) is performed by working with two realistic case projects and evaluating three tools for supporting
SPM, e.g. MS Project, Basecamp, Trello.

The course project is equivalent to 2 ECTS credit points (approx. 50 man-hours per person). Each course project
team consists of six people, who are jointly responsible for the course project. All course project members should be
involved and the total effort should be evenly distributed among participants.

The main learning objectives of the course project are to:
· Connect course content to practice (see Course plan. ‘Färdighet o Förmåga’)
· Gain experience of SPM for your own course project and for given case projects
· Gain experience of assessment and evaluation for different types of software development projects using software

metrics
· Provide a group-learning setting focused on a realistic project setting (the case company)
· Practice technical writing by presenting information in a structured way, both written and oral.

The course project assignment is described in Section 2 and the expected deliverers are outlined in Section 3. The
assessment of the final delivery is described in Section 4 where the grading criteria for the course project assignment
are specified. Finally, a description of the case company to be used for the course project is provided in Section 5.

2 Course	Project	Description	
The main aim of the course project is to perform an evaluation of tools for SPM for two different types of software projects
and development models, namely the two software project types (cases) Application development and Software porting
(see Section 5). The work consists of the following parts:

- Design of an evaluation framework for SPM tools
- Assessment of 3 different SPM tools for managing the software development within one large company by

o simulating the performance of the SPM activities for each of the two project cases
o applying the evaluation framework and thereby measuring various aspects of the tools

- Analyse the obtained measurements, i.e. the evaluation results, and identify the benefits and weaknesses for
each tool and for each of the two project types

- Provide tool recommendations for the two software project types based on an analysis of the evaluation results.
- If any of the SPM activity areas have no (or insufficient) support in a tool, provide recommendations for suitable

tool improvements
- Reporting of the outcome as a written report and through an oral presentation

2.1 Evaluation	Method	
The course project shall be performed with the following method that consists of four steps, see Figure 1 for an overview.

Step I. Planning and Design
The output of this step consists of: 3 SPM tools, 2 fictive case projects (one per project type), and an evaluation framework.
These are produced based on the course material including the case descriptions found in Section 5. The following activities
are to be performed1:

a) Literature study of the course material and additional scientific articles to identify the needs, activities and
challenges common to SPM.

b) Investigate and select SPM tools to evaluate. First perform an initial explorations of available SPM tools. The
tools to include in the evaluation should be selected by considering the project types, their processes and need for
SPM tool support, thereby ensuring that realistic tool candidates are included. You are free to choose any SPM
tool but consider the following:

i. access: You need to be able to use the tool including saving project plans etc., so look for free or trial
versions.

ii. sufficient SPM support for the case projects. Make a rough initial assessment of the tools for SPM activities
and the software development projects that you are to evaluate the tools for.

iii. available documentation: Good descriptions incl. tutorial will support you in the evaluation. Your exercise
tutor will not provide technical support on the tools.

1 Recommendation: Perform these activities in an integrated and iterative fashion, rather than strictly sequentially.

Explore the tools and the SPM needs for each project type by simulating SPM activities for the case projects
(see next point), e.g. by creating sample plans, assigning resources, creating reports etc. An initial exploration
will support selecting suitable tools to evaluate, and a more thorough exploration will support the design of the
evaluation framework.

The following are examples of tools previously selected for this assignment:

· 2-plan
· Aceproject
· Apache Bloodhound
· Assembla
· Basecamp
· Bug-Genie
· Clarizen
· Collabtive
· Feng Office
· GanttProject
· Gemini Tracker
· MS Project (covered by LU license)
· LibrePlan
· OpenERP
· Project Open
· TACTIC
· Teamwork
· Trello

c) Simulate SPM activities for fictive case projects. Gain an in-depth understanding of the two project types for which
you are to recommend SPM tools. Do this by defining one fictive but realistic case projects for each project type2,
and use these fictive cases to explore the projects needs for SPM and tool support. An example could be an
application development project tasked with developing a new media player version. You then ‘invent’
activities, resources, SPM-related situations etc. for this project. A description of the project types is provided
in Section 5 and details for how these projects perform SPM for each area (activity planning, effort estimation
etc.) are provided during the lectures.

2 The project type descriptions are comparable to ‘class definitions’ (in programming terms) where the fictive projects are
then an instantiation, or ‘object’, or this ‘class’.

Figure 1. The method used to evaluate and recommend SPM tools for the case company.

Course material,
scientific articles

Project type info,
case info

Litterature
study Simulate SPM

for fictive
case projectsInvestigate

SPM tools

3 selected tools

Fictive app dev and
sw porting projects
with example SPM
artefacts, case
project needs etc.

Design
Evaluation

FW

Evaluation FW

I. Planning & Design II. Data collection

Apply
Evaluation

FW

Measurements

III. Analysis

Compare
measurements
against project

needs

Tool recommendations
incl pros and cons

IV. Reporting

Write

Project report &
presentation

Present

d) Design the evaluation framework based on knowledge of SPM gained through the literature study and guided by your
experience of simulating SPM for the fictive case projects. The framework consists of measurements for relevant
factors and is to be used to evaluate software project management tools. This evaluation framework shall cover the
following 5 SPM activities:

· activity planning
· effort estimation
· risk management
· resource allocation
· monitor & control of project execution

For each SPM area, suitable factors to evaluate are to be identified based on the course material, e.g. the textbook,
and on the two case projects (defined by the project group, see Step I above). The evaluation framework should cover
SPM tool requirements relevant for the case projects concerning, e.g. project size & duration, process, dependencies
to other projects etc. Case information is provided in this document and during lectures for each SPM area. In addition,
relevant quality aspects for the tools should also be included in the framework for each SPM area, e.g. usability,
capacity, reliability (see ISO9126, Hughes p. 298).

Measures shall be defined for assessing the identified evaluation factors. Detailed evaluation criteria should be
defined for each evaluation factor. The framework should include both objective and quantitative measures (e.g.
maximum number of activities) and subjective and qualitative measures (e.g. ease of use, suitability for activity). The
Goal-Question-Metric (GQM) method [P1] should be used to define the measures.

Step II. Data collection

Apply the evaluation framework to each of the selected SPM tools. This will result in measurements (data) for the aspects
included in the framework. This data indicates how well the tool meets different requirements.

Step III. Analysis

Compare the obtained measurements again the needs of the case project types, by analysing the collected data (from Step
II) and comparing this against the needs of the case projects (identified in Step I). Based on this analysis, identify strengths
and weaknesses for each tool and recommend one tool for each project type; the one that performs the best for that project
type considering all SPM areas. Two types of recommendations shall be given:

a) tool recommendations each of the two software project types, and

b) tool improvement suggestions for missing or weak SPM support.

These recommendations are given through the written report, see Section 2.2.

Step IV. Reporting

The outcome of the course project shall be reported in a written report and in an oral presentation. The reporting shall cover
the evaluation framework and the results from applying this, tool recommendations per software project type based on the
evaluation framework, and if relevant, recommendations for tool improvements. Details on the reporting can be found in
Section 2.2. The work and the reporting is to be performed iteratively and expected deliveries are outlined in Section 3.

2.2 Course	Project	Reporting	
The project shall be reported through a written report and an oral presentation.

2.2.1 Written	report	
The report shall be written in the IEEEtran Proceedings Format3, using maximum 7 pages4 for the main report including
tables, figures etc., to present the main message of the report. Additional pages may be used for appendix. Note that the
grading will be performed on the main part of the report and not on the appendix. Thus, the main parts must contain
sufficient information to meet the assessment criteria, see Section 4. The appendix may be used for additional information
that is not vital for the main report, but that provides additional details (e.g. screen shots of resulting case plans and reports).

3 http://www.ieee.org/conferences_events/conferences/publishing/templates.html Use US Letter format. For LaTeX: use
the LaTeX class file IEEEtran v 1.8 (http://www.ctan.org/tex-archive/macros/latex/contrib/IEEEtran/IEEEtran.cls) and
the following configuration (without option ‘compsoc’ or ‘compsocconf’): \documentclass[conference]{IEEEtran}
4 Note: the format and page limit are strict, and final reports that fail to meet these requirements will not be graded.

The report must be original work by each student group, and adhere to the department’s guidelines on plagiarism5. The
final project reports will be checked via Urkund6.

The main report shall contain:

· Title and authors

· Abstract: A brief summary of all parts of the report; context, addressed topic, what you’ve done, outcome,
potential application of outcome. The main purpose of the abstract is to attract people to read your report.

· Introduction section: An introduction to software project management and to your course project including a
description of the evaluated tools. At least two (2) scientific publications are to be referenced appropriately in the
description of SPM. The purpose is to introduce the reader to the topic by providing contextual information.

· Method section: A description of the method you used to conduct the evaluation. Describe the activities performed
during the evaluation and dependencies between them. Examples of activities are tool selection, analysis of case
project types, design of framework etc. Motivate your choices, e.g. why select these tools, why these evaluation
factors etc. These are important aspects of your method. The description is ideally complemented by an overview
picture that shows your activities, their input and output, and relationships between them. In addition, consider
the limitations of your evaluation and steps taken to increase the validity of your findings, e.g. how reliable are
your recommendations, and to which extent the results are valid also for other companies and project types?

· Case Projects: A description of the project types for which the tools are evaluated. The description shall include
both a high-level description (e.g. project context and main challenges) and a description of the fictive case
projects that you have designed, including examples of plans, resource schedules etc7. The main purpose is to
report on the characteristics of the projects that you have considered in your evaluation. In addition, this section
is to provide the reader with necessary background information to follow the motivation for the design of the
evaluation framework and the tool recommendations.

· Evaluation Framework: A description of the evaluation framework including the assessed factors and measures
of these. References to scientific publications can be used to motivate your choice of factors.

· Tool Evaluation and Improvements: The results of the evaluation based on the evaluation framework. Report the
results per tool and for each SPM area, including improvement recommendations for SPM areas for which there
is none (or very weak) support. The purpose is to describe the assessment results and discuss the strengths and
weaknesses of each tool, and to motivate the given tool improvement suggestions.

· Tool Recommendation per Project Type: For each of the two evaluated projects types discuss the strengths and
weaknesses for each tool based on the evaluation framework and for each SPM area, and recommend one (overall)
tool for each project type. The recommendations shall be clearly based on the outcome of applying the evaluation
framework and motivated by the characteristics and needs of the case projects.

· Conclusions: main conclusions of the report. The purpose is to summarise the main points in the report.

· References: list of references used in the report

2.2.2 Conference	presentation	
Each course project group is to present the results for one SPM activity area, e.g. effort estimation. This is done on the last
exercise session of the course. Your exercise tutor will select the SPM activity area you are to present.

The presentation shall cover, for the given SPM activity area (if nothing else is stated),
- the evaluation framework and a brief description of your case projects’ needs.
- a brief introduction to the evaluated tools including all areas. Mention strong/weak areas and outline tool

improvement recommendations.
- for each of the evaluated case projects and tools, what are the strengths and weaknesses relative the needs of the

case project.
- overall (considering all SPM areas), which tool is recommended for each project type? The recommendations

shall be motivated by evaluation results and case project characteristics.

5 http://cs.lth.se/english/education/cooperation_or_plagiarism
6 http://www.urkund.se
7 Spacious examples can be placed in the appendix.

3 Deliveries	
The course projects will use an iterative approach with 3 incremental deliveries: drafts 1 & 2, and final report. The
evaluation framework and the report are gradually extended as each SPM activity area is covered in the lectures. You will
provide and receive feedback on drafts 1 and 2 at the scheduled exercise sessions (exercise 2 and 3). Each group is to gather
received feedback, analyse and take appropriate action in updating their report.

The course project has the following three deliveries (see course schedule for deadlines):

1. Report draft 1 and SPA I review
Draft 1 shall contain an outline of the report in IEEE format with heading levels 1 and 2, and at least short sentences
(in your own words!) of the planned content for each section. The report shall contain opening paragraphs in the
Introduction section (as discussed in Exercise 1), an initial description of the select tools (in Introduction section)
and of the project cases (in section on Case Projects), a draft of the method planned to be applied (see Section 2.1)
and a first version of the evaluation framework covering at least

a. activity planning
b. effort estimation

This version of the report will be peer reviewed at Exercise 2 (SPA I) and you will review reports from other
groups, see instructions for exercises.

2. Report draft 2 and SPA II review
Draft 2 shall be a full draft of all sections in IEEE format. The Evaluation framework is described for all SPM
areas and has been used to assess the tools. The report contains initial results, and recommendations for tool
selection and tool improvements based on these. This version of the report will be peer reviewed at Exercise 3
(SPA II) and you will review reports from other groups, see instructions for exercises.

3. Final report
Full report covering all requested points, see Section 2.2. The final report will be graded according to the criteria
found in Section 4.

TIP: Use the SPA check-lists (see exercises on course web pages) to review and improve on your own final report.
The check-lists are designed to align with and support you in working towards the grading criteria.

All hand-ins shall be in pdf format. Name the pdf file <Group ID> + {‘v1’| ‘v2’ | ‘final’ } and submit as follows:

· Draft 1 and draft 2: submit draft of report and via moodle.cs.lth.se. Instructions will be provided on the course
web page.

· Final report: submit report to etsf01@cs.lth.se and etsf01.lu@analys.urkund.se .
NOTE: The subject line must contain exactly: ‘Report’ + <Group ID> + <student IDs of all group members>.
For example, ‘Report Group A3 ain09aha jur10eib …’

	

4 Course	Project	Assessment	
The report (excluding any appendix) is graded fail–pass (U, G), and up to 10 bonus points can be awarded.

Minimum requirement for Pass Criteria for bonus Bonus
points

Scope of work, see Sections 2 and 3. All requested content is included.
Note: SPA I and II reviews are assessed
individually, i.e. each student submits their
assigned review for passing grade.

Form
Use of IEEE template including
formatting of pages, title, names,
headings, paragraphs, table and figure
captions, references, etc.

Correct template used and page limitations
observed.

Structure, see Section 2.2.1. In-line with project description.
Language and Writing:
spelling/grammar, clarity and
appropriateness of expression, correct
use of terminology (no slang!) See
exercise 1.

Good, clear and correct use of language
with some flow including Top-Down
structure.

Excellent flow of text and arguments
including use of standard moves in
Introduction. Excellent use of references. 2

Report Content, see Section 2.2.1
Introduction, see exercise 1 Appropriate use of (at least) 2 scientific

references to describe SPM and the 5 SPM
areas.

Excellent description of SPM and 5 areas
including main challenges and benefits,
and using several (more than 2) scientific
references.

1

Evaluation Method, see Section 2.1 Good description of how you have
conducted the evaluation.

Excellent description of the applied
method and steps taken to mitigate threats
to validity.

2

Case Projects, see Section 5. Good description of the SPM needs for the
two included software project types i.e.
Application Development and Software
Porting, through one fictive case example
per type. Include example schedules and
reports etc. in the appendix.

Excellent description of the two case
projects, including project context, SPM
needs and challenges. 2

Evaluation framework, see Section 2.1 Appropriate properties defined for each of
the 5 SPM areas including quality
characteristics. Appropriate measurements
including scales for each property; a good
combination of subjective and objective
assessment.

Tool evaluation and Improvements, see
Section 2.1

Clear reporting of the evaluation results for
each tool. For tools without support for
certain SPM areas, motivated tool-specific
improvement suggestions are provided.

Tool recommendation per Project type,
see Section 2.1

For the two project types, a tool
recommendation is given for each project
clearly motivated by evaluation results,
and based on a discussion on pros and
cons.

The tool recommendations per project
type are excellently motivated, and
discussed based on the evaluation results
and on the case project characteristics and
needs.

2

Oral presentation, see Section 2.2.2
Clarity of message & adapted to
audience, see Exercise 1.

Clear and understandable. Excellent clarity, audience contact,
interest grabbing. Clear evidence of use
of the classical rhetorical model. 1Timeliness An overview of the work performed and

the main conclusions are presented within
the given time frame.

5 Company	Description:	DauMob	Ltd	

DauMob Ltd is a whole-owned subsidiary of a company producing consumer devices. DauMob has around 4,000
employees and develops mobile devices such as mobile phones and tablets for a highly competitive and fast moving
consumer market. The customers consist of the end users (anonymous consumers) and of key customers. The key customers
are network operators that purchase customised product versions to sell to their own customers together with subscriptions
to their mobile networks. The products are developed on the Android OSS platform and the hardware components are
provided by external vendors. The majority of the company’s development effort is spent on software development
including internal software development and using software components from third party vendors. The company is
experiencing challenges in managing their software projects and is looking for new and improved tools that can support
them in managing the complex reality in which they develop software.

There are several types of software projects that span the life time of a product from the conception of a product idea to the
launch and eventual death of a product. For example, a new idea can be explored in a proof-of concept project or prepared
for development in a pre-study project. There may be internal hardware projects that develop and adapt hardware to the
company’s product lines. When the hardware and middleware layers are updated a software porting project is responsible
for adapting the existing software layers to run on the new underlying layers. Application development projects are used to
develop new software functionality both as applications embedded in the device and stand-alone (downloadable). The SW
platform projects are very large projects that tie together HW and MW versions and bundle it with the set of available
applications (developed by App Dev projects). A SW platform project is responsible for developing a new major release
of the SW platform (see Figure 2), and includes one SW porting project and a number of application development projects.
The software produced by the software platform projects is combined with product-specific hardware in product projects
that are responsible for the individual consumer products. Once a product is released to the market the responsibility for
upgrades and bug fixes is handled by a maintenance project until the decision is taken to no longer support the product,
i.e. product death.

There are dependencies between all these software projects. In addition, there are also dependencies to an internal HW
project responsible for the hardware platform, and to external software suppliers, which supply component to both the
software platform and to applications. Furthermore, the software projects deliver to product projects and to the companies
(on-line) SW update centre. See figure 1 for an overview of the software project types and dependencies.

Figure 1. An overview of DauMob’s main software development projects including dependencies.

The product architecture consists of a hardware layer, a middleware layer, an embedded application layer and
applications, see Figure 2. The hardware layer, a.k.a. hardware platform, is made up of hardware components, drivers and
low-level software. The middleware layer consists of the Google Android OSS Platform. The embedded application layer
contains applications that in addition to the Android functionality also access the hardware platform, e.g. native camera
or display functionality, and can thereby provide more integration functionality than pure Android applications. This
layer contains software for around 20-25 different functional areas, e.g. user interface framework, media player,
messaging, communication etc. Finally, there are applications that run on the Android operating system.

For this course project, we will focus on two projects namely on a software porting project and an application development
project.

5.1 SW	Porting	Project	
The SW porting project ports the previous version of the software platform to the new HW platform version delivered by
the internal HW project. The internal HW project is responsible for selecting and composing hardware components
purchased from external HW vendors into a company HW platform including low-level software for drivers etc. for the
product line and for each product. This HW platform contains a basic (google vanilla) version of the Android OSS platform
as provided by the HW vendors. The SW porting project applies relevant proprietary patches to this Android OSS
implementation. These patches are company-specific, and either fix bugs in the Android implementation or tweak the
Android functionality to match the company’s specific requirements, e.g. for camera behaviour.

This software sub-project mainly applies a phase-based development model with the following phases: architectural design
and planning, implementation (porting), system testing including software certification, and maintenance. No explicit
requirements phase is performed rather requirements are managed and discussed during the design phase. In addition, the
requirements that this project aims to deliver are the ones supported by the previous version of the application software
platform, but on a new version of the Android OSS platform.

This project type aims to minimize the lead time and thereby the time to market (TTM) of the company’s products. An
incremental delivery model is applied with 2 pre-releases, before the main release of the HW platform. This is followed by
bi-weekly maintenance releases during the maintenance phase. The design and planning phase has a lead time of 2-3
months, while the implementation phase is approx. 3-5 months. The maintenance phase starts after the first full release.
This phase lasts until all the projects to which the SW porting project delivers are completed in order to support these
projects with HW issues including bug fixes.

The project is staffed by 2 project managers, 1 requirements coordinator, 1 senior architect, 1 integration and configuration
manager, 1 system test leader and 1 quality coordinator. These roles coordinate and lead the work in the project. There are
people working on porting each of the 20-25 software areas of the software platform. For each area the following roles are
involved in this porting project: 1 team leader, 1 product owner (responsible for any requirements impact that might surface)
and 1 architect that all work part-time, and 1-3 developers. The developers are responsible for porting the application
software for their area and for function testing it.

The design and planning phase involves analysing the impact of the new Android version on the previous software platform
version. For example, functionality previously supported in proprietary SW platform code may now be available in the
Android OSS, partly or fully, thus requiring changes to the SW platform code. When previously supported functionality is
affected in a non-trivial way the product owner of the affected technical area is consulted to also include business /
requirements aspects on the final decision.

Figure 2. An overview of the architectural layers.

Hardware
platform

Embedded application software

Applications

Google Android
OSS Platform

Low-level software incl drivers

Hardware components

20-25 functional
modules / areas, e.g.
camera, messaging,
user interface

Software
platform

Middleware

The porting effort per software area is estimated and planned during the design and planning phase. This includes
identifying the dependencies between the areas, as well as, to the intermittent releases available from the Internal HW
project before the final version of the HW platform is delivered. The identified dependencies then affect the planning with
the aim of minimizing the risk of delays and the risk of chains of delays.

The execution plan for the SW porting project including the pre-releases is an important input to the planning for the SW
platform and feature development projects. As implementation phases progresses the progress is tracked and reported on a
weekly basis to the projects to which the SW porting project delivers. The project managers continuously deal with
occurring delays and risks, and proactively try to avoid them and to minimize the impact of these.

5.2 Application	Development	Projects	
The application development projects develop, test and deliver new or extended software functionality, e.g. a new media
player, or a pre-loaded game. These project can either deliver pre-installed applications to be bundled with the consumer
product or as downloadable applications. This makes it possible to meet late customer requirements and market needs by
quickly providing the requested functionality, sometimes even after the products have been released through applications
downloadable through the company’s SW Update Centre and Android Market. In this way application development can
provide an important competitive advantage.

These projects apply an agile development process inspired by the Scrum method. Each application development project
team has the full responsibility for detailing the requirements, designing, implementing and testing a feature. The Scrum
iterations (sprints) in which the implementation takes place are preceded by a design and planning phase. In this phase, the
main user stories of the feature are agreed and prioritized, and technical dependencies are identified. The user stories are
placed in the product backlog in the order agreed for implementation and a high-level plan is made indicating when the
application will be completed. This plan is provided to the project managers of the SW platform project to which the
application development project delivers.

The implementation is performed in sprints (iterations) of 3-5 weeks. Before a sprint starts user stories at the top of backlog
are selected to fill up the work load of the sprint. The user stories are then detailed within the feature project, and
implemented and tested.

An application development project varies widely in both size and lead time. The entire project can have a lead time of 9
weeks to 2 years. The following roles are involved in an application development project: 1 product owner, 1 project
sponsor, 1 scrum master (project manager), 1-20 developers who are also testers, and possibly one dedicated tester. The
product owner represents the customer, and is responsible for requirements and scope decisions including clarifying what
the customer wants. The project sponsor is responsible for ensuring that there are sufficient resources to execute the project.
The developers and the tester are responsible for iteratively detailing the requirements for each sprint in collaboration with
the product manager, and develop and verify software that meets those requirements. The project manager is responsible
for planning, risk management and monitoring the project, and to communicate the status to the SW platform project. The
reporting to the SW platform project is done on a weekly basis and includes progress, remaining effort and risks of delays
or quality issues.

When an application project is initiated an initial investigation (1-2 weeks) is performed to identify high-level requirements
and rough effort and time estimates. In some cases the business requirements are very high-level, e.g. a Tetris-like game,
and the development team is free to implemented such a game without detailed discussion with the product owner. In other
cases the product owner has specific input to the detailed requirements. The product owner thus act as the customer in
requirements discussions and decisions, so called proxy customer. The requirements are validated through demos with the
product owner.

The plan mainly consists of number of resources and delivery dates for main and possible pre-releases for validation
purposes. Since time-to-market is a critical aspect of these projects, requirements scope is reduced whenever the delivery
dates are at risk. The plan is communicated to the SW platform projects and to the product project for which the application
is developed. Progress is tracked on a daily basis within the application development project, and reported to the receiving
projects on a weekly basis.

5.3 Overview	of	Case	Project	Types	
Scope Development

method
Plan Organization

Proof of
Concept

Make a prototype
and pitch a new idea
towards the
business unit.

Optional, though if
pure software then
agile is preferred. If
very hardware
dependent then a
phase-based plan is
the choice.

Informal
planning
dependent on the
selected method.
At least an initial
project
specification and
end of project
report.

Very small team
often with the
development
engineer as project
manager. Team
members are
selected dependent
on the system
impact of the
innovation.

Pre-Study Invent a new feature
proposal. Focus on
an idea and not
necessarily to
implement it. The
step after this could
be proof of concept
or a feature
development
project.

Brainstorming,
workshop and
analysing trends.

Part of an
Innovation
Sprints or
extraction of
Roadmap plans.
Initial Project
specification and
End of project
report.

Very small team
just a few
engineers.

SW Porting Upgrade existing
SW platform with
new HW and a new
OS release. The
requirements are
defined by the
existing product.

Waterfall, phase-
based model

Incremental
release time plan
with focus on
time to market.

Medium size with a
project team, which
has defined roles
and responsibilities

Application
Development

Develop, test and
deliver a specific
feature for example
a Media Player
Application.

Agile, Scrum
method

Scrum iterations
(sprints) and
Product Backlog
plan with user
stories in priority
order. High level
time plan.

Small size with
dedicated product
owner and
developers
focusing only on
this feature.

SW Platform The scope is to
combine a porting
project with many
feature development
projects. The
business unit
provides the project
with prioritized
requirements as
input to the different
feature backlogs.

The method is both
phase-based with
embedded Scrum
based feature
development teams.

Traditional time
plan with
synchronization
gates to align
with the outcome
of all the
embedded
feature projects.

Large project
consisting of sub
projects such as a
SW Porting Project
and many
Application
development
projects. A team of
sub-project
managers.

Maintenance Responsible for
maintenance
releases and bug
fixes of a release
product.

