
Definition and classification of COTS: a proposal Accepted at ICCBSS, Orlando (FL) February 4-6, 2002.

- 1 / 10 -

Definition and classification of COTS: a proposal

Maurizio Morisio1, Marco Torchiano2

1Dip.Automatica e Informatica, Politecnico di Torino, C.so Duca degli Abuzzi, 24, I-10129
Torino, Italy Fax: +39 011 564 7099 Phone: +39 011 564 7033

morisio@polito.it
2Computer and Information Science Department (IDI) Norwegian Univ of. Science and

Technology (NTNU) O. S. Bragstads plass 2B, N-7491 Trondheim, Norway, Phone: +47 7359
4485 Fax: +47 7359 4466

Marco.Torchiano@idi.ntnu.no

Abstract. COTS based development impacts several issues in software
development. New techniques have been proposed, or existing ones have been
adapted. Several approaches have been proposed for effort and size estimation,
product selection, and architectural mismatches identification. But a
fundamental question must be clarified before: what is a COTS product?
According to the literature a COTS seems to be anything from an operating
system to a UI widget. It appears obvious that a finer level of granularity is
required if we want to acquire a deeper insight in COTS related issues. This
paper proposes a COTS classification scheme, which is as inclusive as possible.
It is intended to provide both researchers and practitioners a tool to characterize
more precisely their work. The next research step will be validating, by
speculation first and empirically later, the influence of COTS classes on issues
in COTS based development.

1 Introduction

In the last decade the use of Commercial Off-The-Shelf (COTS) products as parts of
larger systems has grown steadily. The recent Open Source Software (OSS) tide adds
an important new feature in the COTS market. Now it becomes more and more
common to be able to find a COTS OSS product suitable for a project.

Using one or more COTS products has effects on nearly all activities and products
of the software process: architecture and design, effort and cost estimation, validation
and testing, and reliability. A growing body of research is dedicated to explore these
areas. However, both in research papers and in informal discussions, one question
remains un-answered: what is a COTS product? The definitions found in the literature
are usually very broad, covering a large variety of products. As a result, researchers
and practitioners use the same word with different meanings. Some of these
definitions are discussed in section 2 Existing COTS definitions.

We argue that COTS has to remain a term with broad coverage. But inside this
class of software products a number of subclasses have to be identified. A recent
paper [2] confirms this view, stating that assessment and tailoring efforts vary
significantly by COTS product classes.

Definition and classification of COTS: a proposal Accepted at ICCBSS, Orlando (FL) February 4-6, 2002.

- 2 / 10 -

From a syntactical perspective, the acronym COTS is an adjective, thus it should
be used together with a noun; for the sake of readability we will sometimes use the
acronym by itself as a noun, in these cases COTS should be read as COTS product.

This paper presents the findings of the first phase of our research. Our research
plan is the following:

Phase 1 – General-purpose classification framework
• Identify key, recurring attributes of COTS products, using a broad definition

of COTS (basically, product not developed by the developer of the final
system). Here the research method is a literature search[21] and the use of any
formal or informal knowledge available.

• Identify a set of attributes to describe COTS and structure them.
• Select a number of COTS products, characterize them under the attributes

identified. Analyze the resulting clustering, define classes of COTS products.
Phase 2 – COTS definition
• Review, if needed, the definition of COTS to be used in the study.
Phase 3 – Links with the Software Process
• Using the COTS classes identified in Phase 1, and any available knowledge,

state hypothesis of relationships between COTS classes and activities,
products, attributes of COTS based software processes (e.g. cost models,
selection methods, architectures, testing and validation techniques, etc.).

Phase 4
• Validate empirically the hypothesis defined in Phase 3

This paper presents initial results of Phase 1 of the research. It is organized as

follows:
Section 2: survey of existing COTS definitions
Section 3: proposal of a characterization framework
Section 4. application of the characterization framework

2 Existing COTS definitions

In this section we present a survey of proposals available in the literature, directly or
indirectly linked to the problem of classification and definition of COTS products.

We divided the literature related to COTS products into four parts: (1) definitions
of COTS products, (2) classification of COTS-based systems, (3) attributes of COTS
products, and (4) comparison of COTS products and components.

2.1 COTS Definitions

Oberndorf
In [11] the term COTS product is defined on the basis of the ‘Federal Acquisition

Regulations’. It is defined as something that one can buy, ready-made, from some
manufacturer's virtual store shelf (e.g., through a catalogue or from a price list). It
carries with it a sense of getting, at a reasonable cost, something that already does the

Definition and classification of COTS: a proposal Accepted at ICCBSS, Orlando (FL) February 4-6, 2002.

- 3 / 10 -

job. The main characteristics of COTS are: (1) it exists a priori, (2) it is available to
the general public or (3) it can be bought (or leased or licensed).

The meaning of the term “commercial” is a product customarily used for general
purposes and has been sold, leased, or licensed (or offered for sale, lease or license) to
the general public. As for the term “off-the-shelf”, it can mean that the item is not to
be developed by the user, but already exists.

Vidger
The work of Vidger and colleagues, presented in [14] and [15], provides a different

definition of COTS products. They are pre-existing software products; sold in many
copies with minimal changes; whose customers have no control over specification,
schedule and evolution; access to source code as well as internal documentation is
usually unavailable; complete and correct behavioral specifications are not available

SEI
According to the perspective of the SEI, presented in a recent work [5], a COTS

product is: sold, leased, or licensed to the general public; offered by a vendor trying to
profit from it; supported and evolved by the vendor, who retains the intellectual
property rights; available in multiple, identical copies; and used without source code
modification.

Basili and Boehm
Recently Basili and Boehm [2] proposed another definition of COTS. According to

their definition, COTS software has the following characteristics: (1) the buyer has no
access to the source code, (2) the vendor controls its development, and (3) it has a
nontrivial installed base (that is, more than one customer; more than a few copies).
This definition does not include some kind of products like special purpose software,
special version of commercial software, and open source software.

The category of products addressed by such definition presents some specific non-
technical problems, related to the quick turnaround (every 8-9 month) [2] of product
releases. In addition, marketplace consideration adds further variability: in the COTS
products market there are no widely agreed upon standards[16] mainly due to
marketing strategies aimed at obtaining vendor lock-in. Variability and marketing
strategies suggest that there will never be a single unified marketplace of standardized
COTS products [18].

2.2 COTS-based Systems

Carney
In [6] Carney takes the point of view of the delivered system, instead of the part:

he identifies three types of COTS systems as a function of the number of COTS used
and their influence on the final system: turnkey systems are built around a (suite of)
commercial product(s); intermediate systems are built around one COTS but integrate
other components; integrated systems are built by integrating several COTS, all on the
same level of importance.

Wallnau et al.
A similar classification of COTS-based systems is proposed in [17], with the

concepts of COTS-solution systems (one substantial product (suite) is tailored to

Definition and classification of COTS: a proposal Accepted at ICCBSS, Orlando (FL) February 4-6, 2002.

- 4 / 10 -

provide a “turnkey” solution) and COTS-intensive systems (many integrated products
provide system functionality).

2.3 COTS products attributes

Carney and Long
Carney and Long [7] propose two attributes to characterize COTS, origin and

modifiability, and provide some examples.
There is no discussion of cost and property issues, which seems to be sometimes

mixed with the origin axis, while in our opinion it should be discussed separately. No
distinction can be found between what needs to be modified in order to make a
product work and what can be modified in order to better integrate it into the
delivered system.

COCOTS
A classification of COTS products could be derived from the COCOTS models [1].

Some cost drivers could be used to identify COTS products categories: product
maturity, supplier willingness to extend product, product interface complexity,
supplier product support, supplier provided training and documentation. Most of these
attributes are related to the supplier and market conditions and not to technology.

Yakimovich
Several researches addressed the integration problem of COTS products; in

particular the work by Yakimovich et al. [20] proposes a set of criteria for classifying
software architectures in order to estimate the integration effort. The same
characteristics are used to classify both the components and the systems.

Egyed et al.
A methodology for evaluating the architectural impact of software components is

proposed in [8]. Such a method allows the selection of both the components and of a
suitable architectural style. The key point is the identification of architectural
mismatches.

2.4 Components

Component is a term now widely used, and probably as ambiguous as COTS. The
relationship with COTS is strong, but COTS and components should be considered as
two different concepts.

A lot of definitions of component can be found in the literature. A simple and
compact definition is the following: “binary units of independent production,
acquisition and deployment” [13]. But also looser definitions can be found: “a
physical, replaceable part of a system that packages implementation and provides the
realization of a set of interfaces. A component represents a physical piece of
implementation of a system, including software code (source, binary or executable) or
equivalents such as scripts or command files” [12].

In summary we can say that COTS products and components are two sets with a
non-empty intersection but both need a neater definition.

Definition and classification of COTS: a proposal Accepted at ICCBSS, Orlando (FL) February 4-6, 2002.

- 5 / 10 -

3 COTS characterization framework

In Table 1 we propose a characterization framework for COTS. We propose a number
of attributes and possible values to characterize a COTS product. A COTS product is
described by a single value on each attribute. We designed the attribute framework so
that each attribute has only one value. Multiple values or “don’t care” are not
possible. Different COTS products with the same set of values belong to the same
class.

The attributes we propose are either already defined in literature, or new. The
contribution we want to make is both in organizing the existing attributes in a
consistent framework, and in proposing new ones. The attributes are grouped into
four categories:

• Source: where the product comes from
• Customization: how much the product can or should be customized
• Bundle: in what form the component is delivered, both to the integrator and

to the customer of the system
• Role: what is the intrinsic role the product can assume in the final system

All of the attributes we propose are of ordinal type, except those in the role
category, which are of nominal type.

Table 1. COTS characterization attributes.

Category Attribute Possible Values
Origin
(from [7])

In-house < existing external <
externally developed < special
version of commercial <
independent commercial

Source

Cost & Property Acquisition < license < free
Required Modification
(from [7])

Minimal < parameterization <
customization < internal revision <
extensive rework

Possible Modification None or minimal < parameterization
< customization < programming <
source code

Customization

Interface None < documentation < API < OO
interface < contract with protocol

Packaging Source code < static library <
dynamic library < binary component
< stand-alone program

Delivered Non delivered < partly < totally

Bundle

Size Small < medium < large < huge
Functionality Horizontal, vertical Role
Architectural level OS, middleware, support, core, UI

Definition and classification of COTS: a proposal Accepted at ICCBSS, Orlando (FL) February 4-6, 2002.

- 6 / 10 -

3.1 Source

Origin. We adopt here the definitions proposed in [7]. The possible values we
propose for this attribute are: in-house, existing external, externally developed, special
version of commercial, independent commercial. We consider as commercial a
product that is generally available to the public. So are open source and free software
products.

Cost and property. The COTS can be obtained for a price or free. Obtaining the

COTS could mean acquiring the source code or the executable code. The possible
values we propose for this attribute are: acquisition, ownership of the product
(including source code) is transferred to the buyer; license, a use license fee is
required to use the product; free, no fee is required. Related legal / commercial issues
are liability for defects contained in the COTS, responsibility for maintenance, and
export restrictions.

3.2 Customization

Carney and Long [6] consider the modifiability attribute. We have split it into
required and possible modification.

Required Modification. This attribute corresponds to the modifiability dimension
proposed in [7]. It has five possible values: extensive reworking, internal code
revision, customization, parameterization, minimal. The first two of them assume
access to code, the second two imply some mechanism built into the COTS to modify
its functionality, the last indicate almost no modification.

Possible Modification. This attribute refers to the internal possible customization

of the COTS product. Such kind of modification is not required by the COTS to
deliver its basic functionality. As an example, the open source web server Apache
typically requires only simple parameterization, although its source code is accessible
making any in-depth modification possible. The possible values of this attribute are:
source code, code is available and can be modified; programming, a complete set of
API or interfaces is provided possibly together with a scripting language;
customization, it is possible to define macros or configuration files; parameterization,
parameters can be defined for the product; none or minimal, the product cannot be
modified.

Interface. An important factor, which impacts integration and glueware is

represented by the interface provided by the COTS product. The possible values for
this attribute are: none, no documented interface is provided and reverse engineering
could be required; documentation, there is some documentation of the interfaces
provided (e.g. syntax of the configuration files or protocols); API, a function level
APIs are provided; interface, an object-oriented interface is formally defined by
means of some standard IDL; contract, a contract is defined, that is both a set of
interfaces and a protocol for using such interfaces.

Definition and classification of COTS: a proposal Accepted at ICCBSS, Orlando (FL) February 4-6, 2002.

- 7 / 10 -

This attribute could be very useful also in providing a better definition of
component; putting a threshold on this attribute (e.g. interface) you can say if a
product is a component or not.

3.3 Bundle

Packaging. The COTS can be packaged in different ways. Possible values for this
attribute are: source code, statically linkable binary library, dynamically linkable
library, binary component, stand-alone executable program. Packaging is the form in
which the COTS product is used. A standalone program does not preclude access to
the source code.

Delivered. Considering the product delivered to a customer or user, a COTS

product can be integrated in it or not. If we consider a project developed in C, the C
compiler is not part of the delivered system. However, some tools usually associated
with the C compiler (e.g. the library of I/O functions) are probably integrated in the
final product. Possible values for this attribute are: non-delivered, partly, completely.

Size. An important factor is the size of the COTS, we propose a simple

classification in 4 groups ranging from small, like UI widgets, to huge, like the Oracle
8 DBMS or the Windows NT operating system. The approach we adopt is based
essentially on the size of the COTS product (the figures in MB are indicative): small
means less than 0.5 MB, medium means from 0.5MB to 2MB, large means from 2MB
to 20MB, huge means more than 20MB.

An alternative measure is based on the number of use cases supported by the
product[9]. While this method has the potentiality to become a good measure of the
computational size of software products, it has several drawbacks. The size and
complexity of each use case may vary greatly and thus the measure of the size could
be inaccurate. Besides, use cases for COTS products usually are not available.

3.4 Role

Type of functionality. COTS offer a variety of functions, however they can be
classified in two broad categories. horizontal, the functionality is not specific to a
domain, but can be reused across many different application domains (e.g DBMSs,
GUIs, networking protocols, web browsers); vertical, the functionality is specific to a
domain, and can be reused only in the domain (e.g. financial applications, accounting,
Enterprise Resource Planning, manufacturing, health care management, and satellite
control). Horizontal COTS have been available on the market for a long time,
experience and know how about them are usually widely available. As a result, using
horizontal COTS is usually less risky and more common than using vertical COTS.

Architectural Level. This attribute is somewhat similar to the previous one, but it

refers to a generic layered computing architecture. The levels we propose are:
Operating System; Middleware, software which enable communication and

Definition and classification of COTS: a proposal Accepted at ICCBSS, Orlando (FL) February 4-6, 2002.

- 8 / 10 -

integration; Support, elements that cover a well defined and standardized role in the
architecture but do not provide vertical functionality; Core, products which provide
domain specific functionalities; User Interface, highly reusable user interface
components.

4 Application

We have defined the attributes in Table 1 with an exhaustive approach, including all
attributes that, by speculation, could be relevant to characterize and distinguish COTS
products. Table 2 shows that the proposed attributes are able to discriminate products
that any practitioner considers as COTS, but also as very different from one another,
not only in terms of the functionality offered, such as operating system, file sharing
utility, or user interface widget. For lack of space we limit the list to three products.

However, some attributes could be useless to characterize certain COTS products,
or the number of attributes could be too high for any practical use. We need to
discriminate the necessary and sufficient attributes.

Table 2. Attribute values for two COTS products.

COTS Product
Attribute MS Windows NT Samba MS Chart Control

Origin Indep. Comm. Indep. Comm Indep. Comm.
Cost & Property License Free License
Required Modification Parameterization Parameterization Minimal
Possible Modification Programming Source code Programming
Interface API API Contract
Packaging Standalone Standalone Binary Component
Delivered Completely Completely Completely
Size Huge Large Small
Functionality Horizontal Horizontal Horizontal
Architectural Level OS Middleware UI

4.1 Hypotheses

We identified a set of hypotheses about the possible impact of the attribute values on
the development process of the delivered system. An overview of these hypotheses is
presented in Table 3.

Table 3. Attribute impact.

Attribute Impact on the process
Origin ease of change, availability of certification, control on

product customization, marketplace competition

So
ur

ce

Cost & Property acquisition and maintenance costs

Definition and classification of COTS: a proposal Accepted at ICCBSS, Orlando (FL) February 4-6, 2002.

- 9 / 10 -

Required
Modification

customization cost, comprehension effort, integration effort

Possible
Modification

adaptability, ease of integration

C
us

to
m

iz
at

io
n

Interface ease of integration, language/middleware lock-in,
architectural contstraints and mismatches

Packaging porting and adaptation effort, configuration management,
platform constraints

Delivered redistribution issues (both legal and commercial)

B
un

dl
e

Size learnability, setup effort
Functionality reusability across projects, availability of required

functionality

R
ol

e Architectural
level

the choice of the product can be dictated by external
factors, different integration problems

5 Conclusions

Based on the attributes we presented and the definition found in the literature we
propose the following definition of COTS products:

• Origin >= special version of commercial
• Cost & Property >= license
• Required modification =< customization
• Possible modification >= parameterization
• Interface >= API
• Packaging >= static library
• Delivered = totally
• Size >= medium
• Functionality = vertical
• Architectural level in { support, core }

The main contributions of this work are:

• a survey of current COTS definitions
• the proposal of a new COTS definition: as a result COTS remains a broad

term but we identified a set of attributes that can discriminate different
COTS products

• a set of hypotheses about the impact of the defined attributes on the COTS
based development process

Both the attributes we identified and the impact hypotheses we formulated are not
definitive. They are to be considered as statements to set an initial framework and
stimulate discussion.

We plan to revise the attribute list and validate the hypotheses about its impact
onto the development process.

Definition and classification of COTS: a proposal Accepted at ICCBSS, Orlando (FL) February 4-6, 2002.

- 10 / 10 -

6 References

[1] C.Abst, B.Boehm, E.Clark. “COCOTS: A COTS Software Integration Lifecycle Cost
Model - Model Overview and Preliminary Data Collection Findings", Technical report
USC-CSE-2000-501, USC Center for Software Engineering, 2000.

[2] V.Basili, B.Boehm. “COTS-Based Systems Top 10 List” IEEE Computer 34(5), May
2001, pp 91-93

[3] P.Brereton, D.Budgen. "Component-Based Systems: A Classification of Issues". IEEE
Computer Vol. 33, No. 11; November 2000, pp. 54-62

[4] L.Brownsword, D.Carney, T.Oberndorf. “The Opportunities and Complexities of
Applying Commercial-Off-the-Shelf Components” SEI Interactive, 6/98, 1998, avail. at
http://interactive.sei.cmu.edu/Features/1998/June/Applying_COTS/Applying_COTS.htm

[5] L.Brownsword, T.Oberndorf, C.Sledge. "Developing New Processes for COTS-Based
Systems". IEEE Software July/August 2000, pp. 48-55

[6] D.Carney. “Assembling Large Systems from COTS Components: Opportunities,
Cautions, and Complexities”. SEI Monographs on Use of Commercial Software in
Government Systems, Software Engineering Institute, Pittsburgh, USA, June 1997.

[7] D.Carney, F.Long. “What Do You Mean by COTS?”. IEEE Software, March/April 2000,
pp. 83-86.

[8] A.Egyed, N.Medvidovic, C.Gacek. “Component-based perspective on software mismatch
detection”. IEE Proceedings-Software, Volume: 147 Issue: 6, December 2000

[9] M.Tsagias, B.Kitchenham. “An Evaluation of the Business Object Approach to Software
Development”. The Journal of Systems and Software 52, 2000, pp 149-156

[10] M.Morisio, C.Seaman, A.Parra, V.Basili, S.Kraft, S.Condon. “Investigating and
Improving a COTS-Based Software Development Process”. 22nd International
Conference on Software Engineering, Limerick, Ireland, June 2000.

[11] T.Oberndorf. “COTS and Open Systems - An Overview”. 1997, available at
http://www.sei.cmu.edu/str/descriptions/cots.html#ndi

[12] OMG, “Unified Modeling Language Specification” version 1.3, June 1999.
[13] C.Szyperski. “Component Software Beyond Object Oriented Programming”. Addison-

Wesley, 1998.
[14] M.Vigder, M.Gentleman, J.Dean. "COTS Software Integration: State of the Art".

Technical Report NRC No. 39190, 1996.
[15] M.Vidger, J.Dean. “An Architectural Approach to Building Systems from COTS

Software Components”. In Proceedings of the 1997 Center for Advanced Studies
Conference (CASCON 97), Toronto, Ontario, 10-13 November, 1997, available at
http://seg.iit.nrc.ca/English/abstracts/NRC40221abs.html

[16] J.Voas. "Faster, better, cheaper". IEEE Software, May/June 2001, pp. 96-97
[17] K.Wallnau, D.Carney, B.Pollak. “How COTS Software Affects the Design of COTS-

Intensive Systems”. SEI Interactive, 6/98, 1998, available at
http://interactive.sei.cmu.edu/Features/1998 /June/cots_software/Cots_Software.htm

[18] K.Wallnau. "On Software Components and Commercial ('COTS') Software". In
Proceedings of 1999 International Workshop on Component-Based Software
Engineering, Los Angeles, CA, USA, May 17-18, 1999

[19] H.Wang, C.Wang. "Open Source Software Adoption: A Status Report". IEEE Software,
March/April, 2001

[20] D.Yakimovich, J.Bieman, V.Basili. “Software Architecture Classification for Estimating
the Cost of COTS Integration”. Proceedings of the 21st International Conference on
Software Engineering, Los Angeles, USA, 1999, pp. 296 –302.

[21] M.Zelkowitz, D.Wallace. "Experimental Models for Validating Technology" In IEEE
Computer 31(5), May 1998, pp. 23-31

