
EDAP15: Program Analysis
PROGRAM ANALYSIS WITH DATALOGPROGRAM ANALYSIS WITH DATALOG

Christoph Reichenbach

Dependencies

Points-to analysis

Call graph Dataflow analyses

I Mutual dependencies across program analyses
I Either: loss of precision/soundness

I Ignore dependence, run sequentially
I Conservative/optimistic assumptions

I Or: complex engineering
I Each analysis may have to feed worklists of other analyses

2 / 40

Solving Complex Interdependency

I Engineering OO/imperative code for re-use of mutually
dependent worklist analyses is complex

I Alternative: Declarative specification of analyses
I Specify algorithms declaratively
I Declarative language compiler automates handling of mutual
dependencies

I Approaches:
I Attribute Grammars
I SAT / SMT solving
I Prolog
I Datalog

3 / 40

Objects and Relations
I Object: any entity that we care about

I Analogous to primitive value, unique object
I Relation: set of tuples that encode relationships between
objects
Example:
I Elements = {H, He, Li, Be, . . .}
I Objects = Elements ∪ N
I MassNumber ⊆ Element× N

H 1
H 2
H 3
He 2
.

I Elements is also a (unary) relation
4 / 40

Relations and Predicate Symbols
MassNumber ⊆ Element× N =

H 1
H 2
H 3
He 2
.

I We use the terms Relation, Predicate, and Table
interchangeably

I A Predicate Symbol is the name that we assign to a
relation:
I MassNumber is a predicate symbol
I The following tuples make up the relation bound to

MassNumber:
{〈H, 1〉, 〈H, 2〉, 〈H, 3〉, 〈He, 2〉, . . .}

I An atom is a predicate symbol plus parameters:
I MassNumber(H, 1)
I MassNumber(H, x) where x is a variable

5 / 40

Datalog Programs: Syntax

I A Datalog program is a collection of Horn Clauses:

H ← B1 ∧ . . . ∧ Bk .

written as

H :- B1, . . . , Bk .
Head Body

Literals

6 / 40

Datalog Programs: Semantics

B1 . . . Bk
H

I Semantics: if B1, . . . , Bk are true, H is also true
I Order of the conjuncts Bi in the body is irrelevant
I Order of the rules is irrelevant

7 / 40

Rules in Detail
Literals may take parameters:

Head(v1, . . . , vj) :- Body.

I where Body = B1(v 1
1 , . . . , v 1

j1), . . . , Bk(v k
1 , . . . , v k

jk)
I v1, . . . , vj (etc.) are variables
I v1, . . . , vj must also appear in Body
I Semantics:

I For all tuples 〈o1, . . . , ok〉 for which we can show that

Body[v1 7→ o1, . . . , vk 7→ ok]

I we add 〈o1, . . . , ok〉 ∈ Head
I Requires a mechanism to solve unification
I Set semantics: Each tuple added at most once

8 / 40

Datalog by Example

if ... {
a := 7;
print(0);

} else {
a := 8;
a := 9;

}
print(a);

n0

n1 n2

n3 n4

n5

print(a)

a:=7 a:=8

a:=9

e0
a

Assign

Next("n_0", "n_1"), Next("n_0", "n_2"), . . .
Assign("n_1", "a"), Assign("n_2", "a"), . . .In

pu
t

Fa
ct
s

D
er
iv
ed

Fa
ct
s

Reach(n, v , d) :- Assign(d , v), Next(d , n).
Reach(n, v , d) :- Reach(p, v , d), Next(p, n),¬Assign(p, v).

Reach
"n_3" "a" "n_1"
"n_4" "a" "n_2"
"n_5" "a" "n_1"
"n_5" "a" "n_4"

10 / 40

Datalog by Example

if ... {
a := 7;
print(0);

} else {
a := 8;
a := 9;

}
print(a);

n0

n1 n2

n3 n4

n5
print(a)

a:=7 a:=8

a:=9

e0
a

Assign

Next("n_0", "n_1"), Next("n_0", "n_2"), . . .
Assign("n_1", "a"), Assign("n_2", "a"), . . .In

pu
t

Fa
ct
s

D
er
iv
ed

Fa
ct
s

Reach(n, v , d) :- Assign(d , v), Next(d , n).
Reach(n, v , d) :- Reach(p, v , d), Next(p, n),¬Assign(p, v).

Reach
"n_3" "a" "n_1"
"n_4" "a" "n_2"
"n_5" "a" "n_1"
"n_5" "a" "n_4"

10 / 40

Datalog Literals and Terms

I Literals in Datalog communicate about tuples in a relation:

Assign("n_1", "a")

I The parameters of the literal are called Terms, must be:
I Variable, or
I Constant

I Ground literals (like the above) have only constants as
terms

I Below is a literal, but not a ground literal:

Assign(n, "a")

11 / 40

Datalog Programs: Syntax

Program ::= 〈Rule〉?
Rule ::= 〈Atom〉 :- 〈Literal〉 ? .
Atom ::= 〈PredicateSymbol〉 (〈Terms〉?)

| 〈Term〉=〈Term〉
| 〈Term〉≤〈Term〉

Terms ::= 〈Term〉
| 〈Terms〉 , 〈Term〉

Term ::= 〈Variable〉 | 〈Constant〉
Literal ::= 〈Atom〉

| ¬〈Atom〉

PredicateSymbol ::= id
Variable ::= id
Constant ::= number | string . . .

12 / 40

Negation

I Negation is a popular extension to pure Datalog:

Accessible(room) :-Doors(room, door),¬Locked(door).

I Paradoxical rules may be disallowed:

Accessible(room) :- ¬Accessible(room).

I Variables that only occur negatively and in the head may be
disallowed:

Available(room) :- ¬Reserved(room).

13 / 40

IDB and EDB

I Two types of database tables:
I EDB = Extensional Database

I Elements explicitly enumerated
I In Datalog: Input relations

I IDB = Intensional Database
I Elements described by their properties
I In datalog: Derived from rules

I Output marked explicitly in typical Datalog implementations

14 / 40

Interesting Properties

I Monotonicity:
I Datalog without negation is monotonic

I Adding EDB tuples can only ever add IDB tuples
I Complexity:

I Consider Datalog with the following properties:
I Negation of EDB relations only
I Numeric constants in bodies
I (=) and (≤) (can be simulated through EDBs)

I This extension of Datalog can express exactly all problems in
the complexity class P.

15 / 40

Summary

I Datalog programs are sets of Horn clauses:

Head(v) :- Body1(. . .), . . . , Bodyk(. . .)

I The rule Head and the conjuncts of the Body are Literals
I Literals consist of a Predicate Symbol and Terms
I Terms can be variables or constants
I Negation is permitted in some extensions
I Datalog reasons over relations that are bound to the
predicate symbols

I Relations can be IDB (derived) or EDB (enumerated,
typically input)

16 / 40

The Soufflé System

I Datalog implementation
I UPL licence (Open Source)
I Extends Datalog both syntactically and semantically
I Reads/emits various file formats (sqlite, csv, . . .)
Running souffle code.dl:

code.dl

C Pre-
processor

Datalog
codegen

C++
code

gcc/Clang

Binary
EDB
input
facts

Computed
output
relations

Execution

17 / 40

Soufflé Example

.decl Next(node: symbol, succ: symbol)

.decl Assign(node: symbol, var: symbol)

.decl Reach(node: symbol, var: symbol, def: symbol)

Reach(n, v, d) :- Assign(d, v), Next(d, n).

Reach(n, v, d) :- Reach(p, v, d), Next(p, n),
!Assign(p, v).

I Predicates must be declared with .decl
I Comments can be written in C/C++ style
I Parameters are typed. Two primitive types:

I symbol: A string
I number: A 32 bit signed integer

18 / 40

Input Relations

.decl Next(node: symbol, succ: symbol)

.input Next(IO=file, filename="next.csv", delimiter=",")

I .input directive marks relation as EDB
I Read from external file

I Here, the input file is a text file of comma-separated inputs

next.csv:
n_0,n_1
n_0,n_2
n_1,n_3
n_2,n_4
n_3,n_5
n_4,n_5

Equivalent Soufflé code:
Next("n_0", "n_1").
Next("n_0", "n_2").
Next("n_1", "n_3").
Next("n_2", "n_4").
Next("n_3", "n_5").
Next("n_4", "n_5").

19 / 40

Output Relations

.decl Reach(node: symbol, var: symbol, def: symbol)

.output Reach(IO=file, filename="reach.csv", delimiter=",")

I Analogous to .input
I Default settings write to Distance.csv as tab-separated
values:
.decl Reach(node: symbol, var: symbol, def: symbol)
.output Reach

20 / 40

Built-In Predicates

I Soufflé provides built-in infix predicates on number× number:

>, >, <=, >=

I The following predicates are defined for all types:

=, !=

ShoppingList(name, price) :-
AvailableItem(name, price),
price < 20,
name = "Chocolate".

21 / 40

Terms and Functions

I Soufflé extends Datalog’s Terms to Expressions:

Area(obj, height*width) :- Rectangle(obj, height, width).
Volume(obj, edge^3) :- Cube(obj, edge).

I Expressions do not participate in unification
Not allowed (x cannot be bound in body):
C(a, x) :- B(a, x + 1).

I Expressions break the termination guarantee:
Number(x + 1) :- Number(x).

22 / 40

Summary

I Soufflé is an extension of Datalog
I Two built-in types: symbol, number
I Built-in predicates on numbers, strings
I Terms are extended to support built-in operations (addition,
etc.)

I Explicit declaration for input and output behaviour
I Aggregation operations for summing up or computing the
minimum etc.

I Conjunctive heads and Disjunctions add syntactic sugar

23 / 40

Evaluating Datalog

I Several evaluation strategies
I Incremental on input:

I Exploit monotonicity: grow IDB facts as EDB grows
I For negative literals:

I Delete and re-derive
I Optimisations available (counting, provenance tracking)

I On-demand:
I Forward-chaining:

I Find rule heads that match fact that we’re checking
I Recursively try to prove atoms in body
I Memoise results

24 / 40

Evaluating Datalog Efficiently

I Populate all IDB tables according to rules
I State of the art for full evaluation: Semi-Naive Evaluation

I Needs dependency graph between relations
I X depends on Z iff:

I there is a rule X(. . .) :- . . . Z(. . .) . . ., or
I there is a rule X(. . .) :- . . . Y(. . .) . . ., and Y depends on Z

25 / 40

Nonrecursive Case

Example:
H(x , y) :- A(x ,_, z), B(x , y , z).

I Requirement: A, B do not depend on H
I Implementation idea: nested loops:

for 〈x1,_, y1〉 ∈ A do
for 〈x2, y2, z2〉 ∈ B do

if x1 = x2 and y1 = y2 then
H := H ∪ {〈x1, y1〉}

done
done

I Faster looping possible by exploiting representation (e.g.,
sorted B-trees)

26 / 40

Nonrecursive Case with Test

Example:
H(x , y) :- A(x , y), B(x , y).

I Requirements:
I A, B do not depend on H
I All variables occurring in B(. . .) are bound by literals to the left
of B(. . .)

I Implementation idea: contains-check instead of loop:
for 〈x1, y1〉 ∈ A do

if 〈x1, y1〉 ∈ B then
H := H ∪ {〈x1, y1〉}

done
done

27 / 40

Simple Recursion
Example:

H(x , z) :- A(x , y), H(y , z).

I Implementation idea: fixpoint:
RH := H
do

∆H = ∅
for 〈x1, y1〉 ∈ A do

for 〈y2, z2〉 ∈ RH do
if y1 = y2 and 〈x1, z2〉 /∈ H then begin

H := H ∪ {〈x1, z2〉}
∆H := ∆H ∪ {〈x1, z2〉}

end
done
RH := ∆H

done
while ∆H 6= ∅

I ∆H acts as worklist
28 / 40

Evaluation Strata

I Strategy:
I Evaluate dependencies first
I Evaluate mutual dependencies together
I Evaluate recursive dependencies with fixpoint

I Stratify predicates based on dependencies:
EDB0 EDB1 EDB2

A

B

C D

E

F G

Strata:
1 Nonrecursive: A
2 Fixpoint: E
3 Fixpoint: B, C, D
4 Fixpoint: F, G

29 / 40

Negation

I Evaluating negative literals ¬P(v1, . . . , vk):
I Static check: all v1, . . . , vk must be bound before testing literal
I Static check: P must be evaluated in earlier stratum
I Use negated ‘contains’ check

30 / 40

Summary

I Different evaluation strategies for Datalog
I Semi-Naive Evaluation is state-of-the art for full evaluation

I Find dependencies
I Cluster rules by dependencies
I Stratify evaluation
I Iterate with Deltas (equivalent to worklists)

I Practical implementations use further optimisation strategies

31 / 40

Doop

I Points-to analysis framework for Java bytecode
I Core analysis implemented in Datalog

I Based on Andersen’s Analysis
I Supports different forms of x-sensitivity: call-site, field,
object.

32 / 40

Doop Overview

Java Bytecode

Doop Fact
Generator

Datalog
Implementation

EDB
facts

doop.dl Output

I Doop first generates EDB facts by scanning programs
I Then analyses the facts using Datalog code
I Different (Datalog-based) analyses available
I Output:

I Call graph
I Points-to graph

33 / 40

MetaDL

Java Sources

javac

Java Bytecode

Doop Fact
Generator

Datalog
Implementation

EDB
facts

analysis.dl Output

I Current Datalog program analyses (including Doop) work on
an intermediate representation of the analysed program
I The intermediate representation is produced by a fact extractor
(or a chain of) implemented in an imperative language

I The IR abstractions are typically far-removed from the source
I How do we enable software developers to write custom
declarative analyses?

34 / 40

MetaDL

I How do we enable software developers to write custom
declarative analyses?

I By providing an analysis language that uses abstractions of
the analysed programming language
I Syntactic patterns

I ... and a few other well-understood concepts:
I types
I declarations
I source locations

35 / 40

MetaDL

Java Sources

javac

Java Bytecode

Doop Fact
Generator

Datalog
Implementation

EDB
facts

analysis.dl Output

Java Sources

MetaDL

analysis.mdl Output

Datalog
Implementation

Java Compiler
(ExtendJ)

36 / 40

Extending Datalog

I Syntactic patterns - a kind of atom
I <: public class ‘a extends ‘b { .. } :>
I <: ‘x = ‘b.‘m(.., ‘p, ..) :>
I quantified over the entire analysed program

I A new type of object: ASTNode
I Represented by metavariable terms: ‘a, ‘b, ‘x, ‘m, ...

I Special predicates:
I DECL(n, d), connects a named term, n, to its declaration, d.
I TYPE(n, t), connects a term, n, to its type, t.

37 / 40

A simple nullness check

VarMayBeNull(v) :- <: ‘v = null :>, DECL(‘v, v).
VarMayBeNull(v) :- <: ‘v = ‘w :>, DECL(‘v, v),

DECL(‘w, w), VarMayBeNull(w).
ArgMayBeNull(m, i) :- <: ‘b.‘f(.., ‘v, ..) :>,

DECL(‘f, m), DECL(‘v, v),
VarMayBeNull(v), INDEX(‘v, i).

ArgMayBeNull(m, i) :- <: ‘b.‘f(.., ‘n, ..) :>
‘n <: null :>, INDEX(‘n, i).

VarMayBeNull(‘p) :- ArgMayBeNull(m, i),
m <:..‘t ‘n(..,‘p,..){..}:>,
INDEX(‘p, i).

I We identify the null variables by their declaration, hence the
use of the DECL predicate.

38 / 40

How does MetaDL perform?

I The language is sufficient for implementing static bug
detectors from established bug checkers
I The top 5 bug detectors (by number of reports generated) in
Error Prone and SpotBugs

I In a declarative and compact way:
I Reduced the number of SLOC/check by 10x for the SpotBugs
detectors

I And by 2x for Error Prone detectors
I Reasonably fast:

I The MetaDL prototype is 2x slower than SpotBugs and 10x
slower than Error Prone

39 / 40

Research

I MetaDL spans the following research threads:
I Automatic derivation of program analysis languages
I Representation of patterns and programs in Datalog
I Parsing in the presence of ambiguity
I Interaction between Datalog and attribute grammars

40 / 40

