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� Hardware performance counters count interesting events
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Profiler

� Measures: which functions are we spending
our time in?

Execution Stack
return (alt-1)

$fp (alt-1)
. . .
. . .

return (alt-2)
$fp (alt-2)

. . .
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Profiler

� Measures: which functions are we spending
our time in?

� Approach:
� Build stack maps
� Execute program, interrupt regularly
� During interrupt:

� Examine stack
� Infer functions from stack contents

Execution Stack
return (alt-1)

$fp (alt-1)
. . .
. . .

return (alt-2)
$fp (alt-2)

. . .

Can be inaccurate: misses short function calls
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Simulator
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Input
devices CPU Output

devices

Rest of the world
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Simulator

memory.c

input.c cpu.c output.c

Rest of the world

� Software simulates hardware components
� Can count events of interest (memory accesses etc.)

Modern CPUs are very complex: Simulators tend to be
inaccurate
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Software Performance Counters

� Complex software may use high-level properties such as:
� How much time do we spend waiting for the harddisk?
� How often was our program suspended by the operating system

in order to let another program run?
� How much data did we receive through the network?
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� Complex software may use high-level properties such as:
� How much time do we spend waiting for the harddisk?
� How often was our program suspended by the operating system

in order to let another program run?
� How much data did we receive through the network?

� Operating systems collect many of these statistics
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Hardware Performance Counters (1/2)
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Hardware Performance Counters (2/2)

Special CPU registers:
� Count performance events
� Registers must be configured to collect specific performance

events
� Number of CPU cycles
� Number of instructions executed
� Number of memory accesses

. . .
� #performance event types > #performance registers
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Hardware Performance Counters (2/2)

Special CPU registers:
� Count performance events
� Registers must be configured to collect specific performance

events
� Number of CPU cycles
� Number of instructions executed
� Number of memory accesses

. . .
� #performance event types > #performance registers

May be inaccurate: not originally built for software
developers
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Summary

� Performance analysis may require detailed dynamic data
� Profiler: Probes stack contents at certain intervals
� Simulator:

� Simulates hardware in software, measures
� Tends to be inaccurate

� Performance Counters:
� Software:

� Operating System counts events of interest
� Hardware:

� Special registers can be configured to measure CPU-level events
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� Selected CPU
� Selected operating system
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Generality of Performance
Measurements?

Measured performance properties are valid for. . .
� Selected CPU
� Selected operating system
� Compiler version and configuration
� Operating system configuration:

� OS setup
(e.g., dynamic scheduler)

� Processes running in parallel
. . .

� A particular input/output setup
� Behaviour of attached devices
� Time of day, temperature, air pressure, . . .

� CPU configuration (CPU frequency etc.)
. . .

Is that all? 9 / 41
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Unexpected Effects

� User toddm measures run time 0.6s
� User amer measures run time 0.8s
� Both measurements are stable
� Reason for discrepancy:

� Before program start, Linux copies shell environment onto stack
� Shell environment contains user name
� Program is loaded into different memory addresses

⇒ Memory caches can speed up memory access in one case
but not the other

Changing your user name can speed up code
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Unexpected Effects

Mytkowicz, Diwan, Hauswirth, Sweeney: “Producing wrong data
without doing anything obviously wrong”, in ASPLOS 2009
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Linking Order
Is there a difference between re-ordering modules in RAM?
gcc a.o b.o -o program (Variant 1)
gcc b.o a.o -o program (Variant 2)
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Linking Order
Is there a difference between re-ordering modules in RAM?
gcc a.o b.o -o program (Variant 1)
gcc b.o a.o -o program (Variant 2)

(Mytkowicz, Diwan, Hauswirth, Sweeney, ASPLOS’09)
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Adaptive Systems

� Measurement: 11 runs
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Warm-Up Effects
� Performance varies during initial runs
� Eventually reaches steady state
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Warm-Up Effects
� Performance varies during initial runs
� Eventually reaches steady state
� Reason: Adaptive Systems

� Hardware:
� Cache: Speed up some memory accesses
� Branch Prediction: Speed up some jumps
� Translation Lookaside Buffer

� Software:
� Operating System / Page Table
� Operating System / Scheduler
� Just-in-Time compiler

� What sbould we measure?
� Latency: measure first run

Reset system before every run
� Throughput: later runs

Discard initial n measurements
14 / 41



Ignored Parameters

� Performance affected by subtle effects
� System developers must “think like researchers” to spot

potential influences
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Ignored Parameters

� Performance affected by subtle effects
� System developers must “think like researchers” to spot

potential influences

Beware of generalising measurement results!
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Summary

� Modern computers are complex
� Caches make memory access times hard to predict
� Multi-tasking may cause sudden interruptions

. . .
� This makes measurements difficult:

� Must carefully consider what assumptions we are making
� Must measure repeatedly to gather distribution
� Must check for warm-up effects
� Must try to understand causes for performance changes

� Measurements are often not normally distributed
� Mean + Standard Deviation may not describe samples well
� If in doubt, use box plots or violin plots
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Unit Tests

Teal
fun cmp(a, b) = {

if a > b {
return 1;

}
if a < b {

return -1;
}
return 0;

}

fun test() = {
assert cmp(1, 2) == -1;
assert cmp(2, 1) == 1;

}
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Unit Test Quality

if a > bif a > b
b0

return 1return 1
b1

if b > aif b > a
b2

return -1return -1
b3

return 0return 0
b4

Teal
fun test() = {

assert cmp(1, 2) == -1;
assert cmp(2, 1) == 1;

}
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Test Coverage

visited_bb[0] := 1
if a > b
visited_bb[0] := 1
if a > b

b0

visited_bb[1] := 1
return 1
visited_bb[1] := 1
return 1

b1

visited_bb[2] := 1
if b > a
visited_bb[2] := 1
if b > a

b2

visited_bb[3] := 1
return -1
visited_bb[3] := 1
return -1

b3

visited_bb[4] := 1
return 0
visited_bb[4] := 1
return 0

b4
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if a > b
visited_bb[0] := 1
if a > b

b0

visited_bb[1] := 1
return 1
visited_bb[1] := 1
return 1

b1

visited_bb[2] := 1
if b > a
visited_bb[2] := 1
if b > a

b2

visited_bb[3] := 1
return -1
visited_bb[3] := 1
return -1

b3

visited_bb[4] := 1
return 0
visited_bb[4] := 1
return 0

b4

� Test coverage = fraction of visited_bb elements updated
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Test Coverage Properties

� Statement Coverage: is each statement executed?
⇐⇒ each Basic Block is executed
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Test Coverage Properties

� Statement Coverage: is each statement executed?
⇐⇒ each Basic Block is executed

� Edge Coverage: is each CFG edge taken?
� Challenge:

if ...if ...
b0 print(1)

if ...
print(1)
if ...

b1

returnreturn
b2print(2)print(2)

b3

e1
e2

� Path Coverage: is each CFG path taken?
� Need to limit Number of loop iterations checked
� Must restart tracking block coverage on every method entry
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Summary

� Unit Tests are a simple form of dynamic program analysis
� Minimal tooling needed
� Custom checks
� Limited to what underlying language can express directly

� Test Coverage tells us how much of our code gets analysed
by at least one unit test

� Implement by setting markers on relevant basic blocks
� Different criteria, such as:

� Statement Coverage
� Edge Coverage: may require helper BBs
� Path Coverage: paths through CFG (usually excluding loops)
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Tainted Values (1/2)

Python
username = request.GET[’user’]
...
q = sql.query("SELECT * from Users WHERE name=’"

+ username + "’")
user_data = q.run
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Tainted Values (2/2)

C
int parse_package(s* out, uint8* data) {

char username[9] = { 0 };
int username_len = data[0];
// spec says: length <= 8
memcpy(username, data+1, username_len);
...

}
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Stack
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Tainted Values (2/2)

C
int parse_package(s* out, uint8* data) {

char username[9] = { 0 };
int username_len = data[0];
// spec says: length <= 8
memcpy(username, data+1, username_len);
...

}

Stack

ret parse_package
username_len=16

memcpy locals
. . .
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Tracing ‘Tainted’ Values

Taint Analysis:
� Track tainted values
� Remove taint if values are sanitised
� Detect if they reach sensitive sinks
� NB: Static taint analysis may also be possible

Unsafe input
� Taint source: Network ops
� Sanitiser: SQL string escape
� Taint sink: SQL query string

Leaking secrets
� Taint source: Plaintext passwd.
� Sanitiser: cryptographic hash
� Taint sink: Network ops
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Dynamic Taint Analysis

query_l = "SELECT ...’"
query_r = "’"
username = request.GET[’user’]
...
query_str = query_l + username
query_str = query_str + query_r
q = sql.query(query_str)
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Dynamic Taint Analysis

query_l = "SELECT ...’" query_l = "SELECT ..."�

query_r = "’" query_r = "’"�

username = request.GET[’user’] username = "..."t

...
query_str = query_l + username query_str = "..."t

query_str = query_str + query_r query_str = "..."t

q = sql.query(query_str) Fault!
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Dynamic Taint Analysis

Strategy:
� Annotate tainted values with taint tags or shadow values

s = read_network() // string in s will be tainted
t = "foo" + "bar" // string in t will be untainted

� Extend operators to propagate taint:
⊕ � t
� � t
t t t

"foo"v [1] = "o"v

"foo"v+"bar"w = "foobar"v⊕w

� Check taint sinks for tainted input
� Needs instrumentation (shadow values) or explicit support by

runtime (e.g., Perl, Ruby)
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Conditionals

� Should conditionals propagate taint?

Python
if secret_password == ’’:

network_send(’Account disabled, cannot log in’);
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Conditionals

� Should conditionals propagate taint?
� Usually such control dependencies don’t propagate taint

Python
if secret_password == ’’:

network_send(’Account disabled, cannot log in’);
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Attackers vs. Taint Ananlysis
Is taint analysis ‘sound enough’ to detect attempts
to expose sensitive data?
� Often-proposed technique: Taint analysis in Dalvik VM
� Can attackers subvert this analysis?
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C

if (secret_password[i] & 1) {
network_send("Meaninless Message");

} else {
network_send("Something Else");

}

28 / 41



Attackers vs. Taint Ananlysis
Is taint analysis ‘sound enough’ to detect attempts
to expose sensitive data?
� Often-proposed technique: Taint analysis in Dalvik VM
� Can attackers subvert this analysis?

C
for (i = 0; i < 16; ++i) {

for (k = 0; k < 8; ++k) {
if (secret_password[i] & 1 << k) {

network_send("Meaninless Message");
} else {

network_send("Something Else");
}

} }

28 / 41



System Command Attack

C
char d_secret[1024];
strcpy(d_secret, "/tmp/");
strcat(d_secret, secret); // taint d_secret

int iopipes[2];
pipe(iopipes);
...
if (fork()) { // create child process

// connect pipes
execv("/bin/rm", d_secret); // call external ’rm’

}
char[1024] buf; // untained!
read(iopipes[0], ...); // read output from ’rm’
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System Command Attack

C
char d_secret[1024];
strcpy(d_secret, "/tmp/");
strcat(d_secret, secret); // taint d_secret

int iopipes[2];
pipe(iopipes);
...
if (fork()) { // create child process

// connect pipes
execv("/bin/rm", d_secret); // call external ’rm’

}
char[1024] buf; // untained!
read(iopipes[0], ...); // read output from ’rm’

System call will print e.g.:
rm: cannot remove ’/tmp/mysecretstring’: No such file or
directory
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Side Channel Attacks

Many more attacks possible:
� Timing attacks:

� Two threads
� One sends signal to other, with delays
� Delay loop length dependent on secret

� File length attack:
� Write dummy file
� File length (or other metadata) encodes secret

� Graphics buffer attack:
� Write to screen
� Read back with OCR
� Or adjust widget position / font size to encode secret
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Summary

� Dynamic taint analysis tracks tainted values
(from taint sources)

� Tags also referred to as shadow values
� Removes taint if values are sanitised
� Detects attempts to use tainted values in taint sinks
� Still many weaknesses in analysis:

� Control-dependence attacks
� System command attacks
� Side-channel attacks

� Can be strengthened with symbolic techniques
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Dynamic Binary Analysis

� Binary Analysis: Analyse binary executables
� Applicable to any executable program
� Only requires binary code
� Unaware of source language

� Dynamic Binary Analysis
� Analyser runs concurrently with program-under-analysis
� Can adaptively instrument / analyse / intercede
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Dynamic Binary Instrumentation (1/3)

Input Code

Instrumentation
Instrument

Copy-and-Annotate
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Dynamic Binary Instrumentation (2/3)

Input CodeIntermediate Representation

Instrumentation

Resynthesise

Disassemble

Disassemble-and-Resynthesise
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Dynamic Binary Instrumentation (3/3)

� Copy-and-Annotate (e.g., pin):
� Inserts code into binary
� Inserted code must maintain state (registers!)

� Disassemble-and-Resynthesise (e.g., valgrind, qemu):
� Decomposes program into IR
� Instrumentation on IR-level
� Easier/faster to track shadow values in some cases

� Shadow registers
� Shadow memory
� Must model system calls for proper tracking
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Application: Finding Memory Errors

� Reads from uninitialised memory in C can trigger undefined
behaviour

� Approach: Track information: which bits are uninitialised?
� Requires shadow registers, shadow values
� Almost every instruction must be instrumented

Shadow values Program

short x;x:
x:
x:

x |= 0x7;
if (x & 0x10) {
. . .
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Example: Valgrind’s Memcheck

� Valgrind is Disassemble-and-Resynthesise-style Binary
Instrumentation tool

� Memcheck: tracks memory initialisation (mostly) at bit level
� Less precise for floating point registers

� Valgrind uses dynamic translation:
� Translate & instrument blocks of code at address until return /

branch
� Instrumented code jumps back into Valgrind core for lookup /

new translation
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Challenges

� System calls
� System calls may affect shadow values (e.g., propagate

taintedness)
� Must be modelled for precision

� Self-modifying code
� Used e.g. in GNU libc
� Must be detected, force eviction of old code (expensive checks!)
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Valgrind

� Binary instrumenter
� Available platforms:

� x86/Linux (partial) and Darwin
� AMD64/Linux and Darwin
� PPC64/Linux, PPC64LE/Linux (≤ Power8)
� S390X/Linux
� ARM(64)/Linux (≥ ARMv7)
� MIPS32/Linux, MIPS64/Linux
� Solaris
� Android

� Analyses (focus on Simulation):
� Call analysis
� Cache analysis
� Memcheck
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Qemu

� Binary instrumenter and translator
� Focus on emulation
� Runs kernel + user space
� Translate from one ISA to another (e.g., run ARM on

ADM64)
� Emulates system:

� Graphics, networking, sound, input devices, USB, . . .
� Almost two dozen platforms supported
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Summary

� Binary instrumentation is a form of low-level dynamic
analysis

� Two main schemes:
� Copy-and-Annotate: insert new code
� Disassemble-and-Resynthesise: merge analysis subject code

with annotation code
� Shadow values supported through shadow registers and

shadow memory
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