LUND =0

UINIVERSITY

f ' EDAP15: Program Analysis
DYNAMIC PROGRAM ANALYSIS 2

Christoph Reichenbach




Automatic Performance Measurement

» Profiler:

> Interrupts program during execution
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Automatic Performance Measurement

» Profiler:

> Interrupts program during execution
» Examines call stack

» Simulator:

> Simulates CPU/Memory in software
» Tries to replicate inner workings of machine
> Often also an Emulator (= replicate observable functionality)

» Operating System:
» Counts important system events (network accesses etc.)
» CPU:

» Hardware performance counters count interesting events
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Profiler

» Measures: which functions are we spending ~ Execution Stack
Lo return (alt-1)
our time In!

$fp (alt-1)

return (alt-2)
$£p (alt-2)
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» Approach:
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Profiler

» Measures: which functions are we spending
our time in?
» Approach:

» Build stack maps

» Execute program, interrupt regularly
» During interrupt:

» Examine stack

» Infer functions from stack contents

Execution Stack

return (alt-1)

$fp (alt-1)

return (alt-2)

$fp (alt-2)

| Can be inaccurate: misses short function calls
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Simulator
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Simulator

memory.c

5

input.c :> cpu.c |::> output.c
\ Rest of the world 4=y

» Software simulates hardware components
» Can count events of interest (memory accesses etc.)
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Simulator

memory.c

5

input.c :> cpu.c |::> output.c

L\ Rest of the world 4=y

» Software simulates hardware components
» Can count events of interest (memory accesses etc.)

Modern CPUs are very complex: Simulators tend to be
inaccurate
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Software Performance Counters

» Complex software may use high-level properties such as:
» How much time do we spend waiting for the harddisk?
» How often was our program suspended by the operating system
in order to let another program run?
» How much data did we receive through the network?
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Software Performance Counters

» Complex software may use high-level properties such as:

» How much time do we spend waiting for the harddisk?

» How often was our program suspended by the operating system
in order to let another program run?

» How much data did we receive through the network?

» Operating systems collect many of these statistics
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Hardware Performance Counters (1/2)
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Hardware Performance Counters (1/2)
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Hardware Performance Counters (1/2)
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Hardware Performance Counters (1/2)

Performance
Counter
3 Monitor

IF ID E).( MEM wB
Arithmetic operations
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Hardware Performance Counters (2/2)

Special CPU registers:
» Count performance events

» Registers must be configured to collect specific performance
events

» Number of CPU cycles
» Number of instructions executed
» Number of memory accesses

» #performance event types > #performance registers
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Hardware Performance Counters (2/2)

Special CPU registers:
» Count performance events

» Registers must be configured to collect specific performance
events
» Number of CPU cycles
» Number of instructions executed
» Number of memory accesses

» #performance event types > #performance registers

May be inaccurate: not originally built for software
developers
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Summary

» Performance analysis may require detailed dynamic data
» Profiler: Probes stack contents at certain intervals
» Simulator:
» Simulates hardware in software, measures
» Tends to be inaccurate
» Performance Counters:
» Software:
» Operating System counts events of interest
» Hardware:
> Special registers can be configured to measure CPU-level events
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Generality of Performance
Measurements?

Measured performance properties are valid for. ..

» Selected CPU
» Selected operating system

Is that all?
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Generality of Performance
Measurements?

Measured performance properties are valid for. ..
» Selected CPU
» Selected operating system
» Compiler version and configuration
» Operating system configuration:

» OS setup

(e.g., dynamic scheduler)
» Processes running in parallel

» A particular input/output setup

» Behaviour of attached devices

» Time of day, temperature, air pressure, ...
» CPU configuration (CPU frequency etc.)

| Is that all? o/m



Unexpected Effects

» User toddm measures run time 0.6s
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Unexpected Effects

» User toddm measures run time 0.6s
» User amer measures run time 0.8s
» Both measurements are stable

» Reason for discrepancy:

» Before program start, Linux copies shell environment onto stack
» Shell environment contains user name
» Program is loaded into different memory addresses
= Memory caches can speed up memory access in one case
but not the other

Changing your user name can speed up code
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Unexpected Effects

1600000

1400000

1200000

1000000 —

800000 —

1000 |
2000 |
3000 |
4000 |+

bytes added to empty environment

Mytkowicz, Diwan, Hauswirth, Sweeney: "“Producing wrong data
without doing anything obviously wrong”, in ASPLOS 2009
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Linking Order

Is there a difference between re-ordering modules in RAM?
gcc a.o b.o -o program (Variant 1)
gcc b.o a.o -o program (Variant 2)
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Linking Order

Is there a difference between re-ordering modules in RAM?
gcc a.o b.o -o program

gcc b.o a.o -o program

1.10
AN
)

== _
cycled (02))/ cycles (@3)\\
5
o

(Variant 1)
(Variant 2)

r\_\_t

R JOPe
!

Y

<4

=e

+ default
X alphabetical

gce

bzip2 —

h264ref —

mcf —

gobmk —

hmmer —

sieng —

milc

£
2

sphinx —

libquantum —
perlbench —

(Mytkowicz, Diwan, Hauswirth, Sweeney, ASPLOS'09)
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Adaptive Systems

» Measurement: 11 runs
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Adaptive Systems

» Measurement: 11 runs
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Warm-Up Effects

» Performance varies during initial runs
» Eventually reaches steady state
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Warm-Up Effects

» Performance varies during initial runs
» Eventually reaches steady state

» Reason: Adaptive Systems

» Hardware:
> Cache: Speed up some memory accesses
> Branch Prediction: Speed up some jumps
> Translation Lookaside Buffer

» Software:
> Operating System / Page Table
> Operating System / Scheduler
> Just-in-Time compiler
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Warm-Up Effects

» Performance varies during initial runs
» Eventually reaches steady state

» Reason: Adaptive Systems
» Hardware:

> Cache: Speed up some memory accesses
> Branch Prediction: Speed up some jumps
> Translation Lookaside Buffer

» Software:
> Operating System / Page Table
> Operating System / Scheduler
> Just-in-Time compiler
» What sbould we measure?

» Latency: measure first run
Reset system before every run

» Throughput: later runs
Discard initial n measurements
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Ignored Parameters

» Performance affected by subtle effects

» System developers must “think like researchers” to spot
potential influences
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Ignored Parameters

» Performance affected by subtle effects

» System developers must “think like researchers” to spot
potential influences

Beware of generalising measurement results!
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Summary

» Modern computers are complex

» Caches make memory access times hard to predict
» Multi-tasking may cause sudden interruptions

» This makes measurements difficult:
» Must carefully consider what assumptions we are making
» Must measure repeatedly to gather distribution
» Must check for warm-up effects
» Must try to understand causes for performance changes
» Measurements are often not normally distributed

» Mean + Standard Deviation may not describe samples well
» If in doubt, use box plots or violin plots
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Unit Tests

Teal
fun cmp(a, b) = {
if a > b {
return 1;
}
if a < b {
return -1;
}

return O;

}

fun test() = {
assert cmp(l, 2) == -1;
assert cmp(2, 1) == 1;
}
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Unit Test Quality

Srsss

Teal
fun test() = {
assert cmp(l, 2) == -1;

assert cmp(2, 1) == 1;

}
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Test Coverage

%)
if a>b b, 1
'éisited bb[1] := 1
b return 1
2/
vigited bb[2] := 1
if b > a b, 1
‘éisited_bb[B] =1
b return -1
4
visited bbl4] :=1
return O
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Test Coverage

%)
visited bb[0] :=
if a> b b, 1
'éisited_bb[l] =
b return 1
2/
visited bb[2] :=
if b > a A I}
‘éisited_bb[B] =
b return -1
4)
visited_bb[4] :=
return O

» Test coverage = fraction of visited bb elements updated
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Test Coverage Properties

» Statement Coverage: is each statement executed?
<= each Basic Block is executed
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Test Coverage Properties

» Statement Coverage: is each statement executed?
<= each Basic Block is executed

» Edge Coverage: is each CFG edge taken?
> Challenge

@ f prlnt(l)

\//A;' if ...
™~

o) et /
s O Qe

3 a
print(2) eturn
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Test Coverage Properties

» Statement Coverage: is each statement executed? @
<= each Basic Block is executed

» Edge Coverage: is each CFG edge taken? U
» Challenge:
1print(l)

LIRERY if ...
€1 /
b3
print(2)

» Path Coverage: is each CFG path taken?

b.
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Test Coverage Properties

» Statement Coverage: is each statement executed?
<= each Basic Block is executed

» Edge Coverage: is each CFG edge taken?
» Challenge:
1print(l)

Or:
o if ...

€1 /
b.
%print (2) Eeturn

» Path Coverage: is each CFG path taken?

» Need to limit Number of loop iterations checked
» Must restart tracking block coverage on every method entry

b.
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Summary

» Unit Tests are a simple form of dynamic program analysis

» Minimal tooling needed
» Custom checks
» Limited to what underlying language can express directly

» Test Coverage tells us how much of our code gets analysed
by at least one unit test

» Implement by setting markers on relevant basic blocks

» Different criteria, such as:

» Statement Coverage
» Edge Coverage: may require helper BBs
» Path Coverage: paths through CFG (usually excluding loops)

21/41



Tainted Values (1/2)

Python

username = request.GET[’user’]

q = sql.query("SELECT * from Users WHERE name=’"
+ username + "")

user_data = g.run

HI, THIS 15 OH, DEAR - DID HE | DID YoU REALLY WELL WEVE LOST THIS

YOUR SON SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
WERE HAVING SOME N a WAY — Robert'); DROP T HOPE YQURE HAPPY.

(COMPUTER TROUBLE. / TABLE Stulerrts; - 7

X AND T HOPE

, ~ OH. YES UTTLE “~ YOUVE LEARNED

BOBBY TABLES, TO SAMZE YOUR

iﬁ f?i WE CALL HIM. DATABASE INPUTS.
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Tainted Values (2/2)

C
int parse_package(s* out, uint8x gata) {
char username[9] = { 0 };
—_—
int username_len = datal[O0];
// spec says: length <= 8
+ .
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Tainted Values (2/2)

Stack
C ret parse_package
int parse_package(s* out, uint8+ data) { username_len

char username[9] = { 0 }; &s%rhghé.g_
U0

0
int username_len = datal[0]; 00|
// spec says: length <= 8 ‘0
memcpy (username, data+l, username_len);
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Tainted Values (2/2)

Stack
C ret parse_package
int parse_package(s* out, uint8* data) { username_len=16
char username[9] = { 0 }; 0Oj]0|0]O
int username_len = datal[0]; 0jJ]0|0]O
// spec says: length <= 8 0

memcpy (username, data+l, username_len);
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Tainted Values (2/2)

Stack
C ret parse_package
int parse_package(s* out, uint8* data) { username_len=16
char username[9] = { 0 }; 0Oj]0|0]O
int username_len = datal[0]; 0jJ]0|0]O
// spec says: length <= 8 0
memcpy (username, data+l, username_len); ret memcpy
. memcpy locals
}
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Tainted Values (2/2)

Stack

C ret parse_package

int parse_package(s* out, uint8+ data) { username_len=16

char username[9] {0} = >
int username_len = datal[O0];
// spec says: length <= 8
memcpy (username, data+l, username_len); -

—

memcpy locals
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Tracing ‘Tainted’ Values

Taint Analysis:

» Track tainted values

» Remove taint if values are sanitised

» Detect if they reach sensitive sinks

» NB: Static taint analysis may also be possible

Unsafe input Leaking secrets

» Taint source: Network ops » Taint source: Plaintext passwd.
» Sanitiser: SQL string escape » Sanitiser: cryptographic hash
» Taint sink: SQL query string » Taint sink: Network ops
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Dynamic Taint Analysis

— query_l = "SELECT ...’"
_~ query_r = "’"
—— username = request.GET[’user’]

query_str = query_l + username

—— query_str = query_str + query_r
— q = sql.query(query_str)
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Dynamic Taint Analysis

query_l = "SELECT ...’" query_1 = "SELECT ..."
query_r = nhon query_r — nosn
username = request.GET[’user’] username = "..."

query_str = query_l + username
query_str = query_str + query_r
q = sql.query(query_str)

25/41



Dynamic Taint Analysis

query_l = "SELECT ...’" query_l = "SELECT ..:"¢
query_r = non query_r = none
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Dynamic Taint Analysis
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Dynamic Taint Analysis

query_l = "SELECT ...’"
query_r = non
username = request.GET[’user’]

query_str = query_l + username
query_str = query_str + query_r
q = sql.query(query_str)

query_1l = "SELECT ..."¢
query r = nyne

username = "..."!
query_str="..."t
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Dynamic Taint Analysis

query_l = "SELECT ...’" query_1l = "SELECT ..."¢
query_r = non query_r = none
username = request.GET[’user’] username = "..."!

query_str = query_l + username query_str="..."!

query_str = query_str + query_r query_str="..."f
q = sql.query(query_str) Fault!

o
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Dynamic Taint Analysis

Strategy:

» Annotate tainted values with taint tags or shadow values
s = read network() // string in s will be tainted
t = "foo" + "bar" // string in t will be untainted

- R

C— <
» Extend operators to propagate taint:

EI "fOO"V[]_] — ngnv

€ et
t t t llfoollV+|lbarl|W — llfoobarllv@w

» Check taint sinks for tainted input

» Needs instrumentation (shadow values) or explicit support by
runtime (e.g., Perl, Ruby)
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Conditionals

» Should conditionals propagate taint?

Python

¥
if secret_password == ’’:
network_send(’Account disabled, cannot log in’);
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Conditionals

» Should conditionals propagate taint?
» Usually such control dependencies don't propagate taint

Python

if secret_password == ’’:
network_send(’Account disabled, cannot log in’);

27 /41



Attackers vs. Taint Ananlysis

Is taint analysis ‘sound enough’ to detect attempts
to expose sensitive data?

» Often-proposed technique: Taint analysis in Dalvik VM
» Can attackers subvert this analysis?
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Attackers vs. Taint Ananlysis

Is taint analysis ‘sound enough’ to detect attempts
to expose sensitive data?

» Often-proposed technique: Taint analysis in Dalvik VM
» Can attackers subvert this analysis?

C

if (secret_password[i] & 1) {
network_send("Meaninless Message");
} else {
network_send("Something Else") ;

}
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Attackers vs. Taint Ananlysis

Is taint analysis ‘sound enough’ to detect attempts
to expose sensitive data?

» Often-proposed technique: Taint analysis in Dalvik VM
» Can attackers subvert this analysis?

C
for (i = 0; i < 16; ++i) {
for (k = 0; k < 8; ++k) {
if (secret_password[i] & 1 << k) {
network_send("Meaninless Message");
} else {
network_send("Something Else") ;
}
P}

28 /41



System Command Attack

C

char d_secret[1024];
strcpy(d_secret, "/tmp/");
strcat(d_secret, secret); // taint d_secret

int iopipes[2];
pipe(iopipes);

if (fork()) { // create child process
// connect pipes
execv("/bin/rm", d_secret); // call external ’rm’

}
char[1024] buf; // untained!
read(iopipes[0], ...); // read output from ’rm’
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System Command Attack

}

char[1024] buf; // untained!

read(iopipes[0], ...); // read output from ’rm’
System call will print e.g.:
rm: cannot remove ’/tmp/mysecretstring’: No such file or
directory

C

char d_secret[1024];
strcpy(d_secret, "/tmp/");
strcat(d_secret, secret); // taint d_secret

int iopipes[2];
pipe(iopipes);

if (fork()) { // create child process
// connect pipes
execv("/bin/rm", d_secret); // call external ’rm’
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Side Channel Attacks

Many more attacks possible:
» Timing attacks:
» Two threads
» One sends signal to other, with delays
» Delay loop length dependent on secret
> File length attack:
» Write dummy file
> File length (or other metadata) encodes secret
» Graphics buffer attack:

» Write to screen
» Read back with OCR
> Or adjust widget position / font size to encode secret
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Summary

» Dynamic taint analysis tracks tainted values
(from taint sources)

» Tags also referred to as shadow values

» Removes taint if values are sanitised

» Detects attempts to use tainted values in taint sinks
» Still many weaknesses in analysis:

» Control-dependence attacks
» System command attacks
» Side-channel attacks

» Can be strengthened with symbolic techniques
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Dynamic Binary Analysis

» Binary Analysis: Analyse binary executables

» Applicable to any executable program
» Only requires binary code
» Unaware of source language

» Dynamic Binary Analysis
» Analyser runs concurrently with program-under-analysis
> Can adaptively instrument / analyse / intercede
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Dynamic Binary Instrumentation (1/3)

Input Code

Instrumentation

Instrument

Copy-and-Annotate
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Dynamic Binary Instrumentation (2/3)

Intermediate Representation Input Code
r---o _ Disassemble

F====
F-————
F==""
F----
r-oT o

Instrumentation

Resynthesise

>§
Disassemble-and-Resynthesise
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Dynamic Binary Instrumentation (3/3)

» Copy-and-Annotate (e.g., pin):
> Inserts code into binary
> Inserted code must maintain state (registers!)

» Disassemble-and-Resynthesise (e.g., valgrind, qemu):
» Decomposes program into IR

> Instrumentation on IR-level
> Easier/faster to track shadow values in some cases

> Shadow registers
» Shadow memory
> Must model system calls for proper tracking
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Application: Finding Memory Errors

» Reads from uninitialised memory in C can trigger undefined
behaviour

» Approach: Track information: which bits are uninitialised?
» Requires shadow registers, shadow values
» Almost every instruction must be instrumented

Shadow values Program

x: [T short x;
x: [T x |= 0x7;
x: [T if (x & 0x10) {
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Example: Valgrind’s Memcheck

» Valgrind is Disassemble-and-Resynthesise-style Binary
Instrumentation tool

» Memcheck: tracks memory initialisation (mostly) at bit level
> Less precise for floating point registers

» Valgrind uses dynamic translation:

> Translate & instrument blocks of code at address until return /
branch

> Instrumented code jumps back into Valgrind core for lookup /
new translation
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Challenges

» System calls

> System calls may affect shadow values (e.g., propagate
taintedness)
» Must be modelled for precision

» Self-modifying code

» Used e.g. in GNU libc
> Must be detected, force eviction of old code (expensive checks!)

38/41



Valgrind
Valgrind

> Binary instrumenter
» Available platforms:
» x86/Linux (partial) and Darwin
» AMD64 /Linux and Darwin
» PPC64/Linux, PPC64LE/Linux (< Power8)
» S390X/Linux
» ARM(64)/Linux (> ARMv7)
» MIPS32/Linux, MIPS64/Linux
» Solaris
» Android
» Analyses (focus on Simulation):
» Call analysis
» Cache analysis
» Memcheck
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Qemu

QEMU

» Binary instrumenter and translator
» Focus on emulation
> Runs kernel + user space

» Translate from one ISA to another (e.g., run ARM on
ADM64)

» Emulates system:
» Graphics, networking, sound, input devices, USB, ...

» Almost two dozen platforms supported
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Summary

» Binary instrumentation is a form of low-level dynamic
analysis

» Two main schemes:
» Copy-and-Annotate: insert new code
» Disassemble-and-Resynthesise: merge analysis subject code

with annotation code

» Shadow values supported through shadow registers and

shadow memory
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