

Challenges to Static Analysis

- Static analysis is far from solved
- ▶ Very active research area
- ► Even with current state-of-the-art, some fundamental limitations apply
- ▶ Bounds of computability are only one of them. . .

Reflection

Java

```
Class<?> cl = Class.forName(string);
Object obj = cl.getConstructor().newInstance();
System.out.println(obj.toString());
```

- Instantiates object by string name
- Similar features to call method by name
- ► Challenge:
 - ▶ obj may have any type ⇒ imprecision
 - ► Sound call graph construction very conservative

Approaches

- ▶ Dataflow: what strings flow into string?
 - Common: code draws from finite set or uses string prefix/suffix (e.g., ("com.x.plugins." + . . .))
 - ► Class.forName: class only from some point in package hierarchy
- Dynamic analysis

Dynamic Loading

handle = dlopen("module.so", RTLD_LAZY); op = (int (*)(int)) dlsym(handle, "my_fn");

- ▶ Dynamic library and class loading:
 - ▶ Add new code to program that was not visible at analysis time
- Challenge:
 - ► Can't analyse what we can't see
- ► Approaches:
 - ► Conservative approximation
 - ▶ Tricky: External code may modify all that it can reach
 - With dynamic support and static annotation:
 - ► Allow only loading of signed/trusted code
 - ▶ signature must guarantee properties we care about
 - annotation provides properties to static analysis
 - Proof-carrying code
 - Code comes with proof that we can check at run-time

Native Code

```
Java
class A {
   public native Object op(Object arg);
}
```

- High-level language invokes code written in low-level language
 - ▶ Usually C or C++
 - ▶ May use nontrivial interface to talk to high-level language

Challenge:

- High-level language analyses don't understand low-level language
- Approaches:
 - ► Conservative approximation
 - ► Tricky: External code may modify anything
 - Manually model known native operations (e.g., Doop)
 - ► Multi-language analysis (e.g., Graal)

'eval' and dynamic code generation

Python

```
eval(raw_input())
```

- Execute a string as if it were part of the program
- Challenge:
 - Cannot predict contents of string in general
- Approaches:
 - Conservative approximation
 - ► Tricky: code may modify anything
 - ▶ Dynamically re-run static analysis
 - ► Special-case handling (cf. reflection)

Summary

- ► Static program analysis faces significant challenges:
 - Decidability requires lack of precision or soundness for most of the interesting analyses
 - Reflection allows calling methods / creating objects given by arbitrary string
 - Dynamic module loading allows running code that the analysis couldn't inspect ahead of time
 - ► Native code allows running code written in a different language
 - Dynamic code generation and eval allow building arbitrary programs and executing them
 - ▶ No universal solution
 - Can try to 'outlaw' or restrict problematic features, depending on goal of analysis
 - Can combine with dynamic analyses

More Difficulties for Static Analysis

- Does a certain piece of code actually get executed?
- ▶ How long does it take to execute this piece of code?
- ▶ How important is this piece of code in practice?
- ▶ How well does this code collaborate with hardware devices?
 - ► Harddisks?
 - ▶ Networking devices?
 - Caches that speed up memory access?
 - ▶ Branch predictors that speed up conditional jumps?
 - ▶ The *ALU*(*s*) that perform arithmetic in the CPU?
 - ▶ The *TLB* that helps look up memory?

. .

Impossible to predict for all practical situations

Static vs. Dynamic Program Analyses

	•	
	Static Analysis	Dynamic Analysis
Principle	Analyse program	Analyse program execution
	structure	
Input	Independent	Depends on input
Hardware/OS	Independent	Depends on hardware and OS
Perspective	Sees everything	Sees that which actually happens
Completeness (bug-finding)	Possible	Must try all possible inputs
Soundness (bug-finding)	Possible	Always, for free
	***********	Valoria de Maria

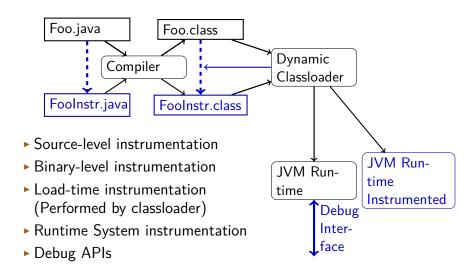
Summary

- Static analyses have known limitations
- Static analysis cannot reliably predict dynamic properties:
 - ▶ How often does something happen?
 - ▶ How long does something take?
- This limits:
 - ▶ Optimisation: which optimisations are worthwhile?
 - ▶ Bug search: which potential bugs are 'real'?
- ► Can use dynamic analysis to examine run-time behaviour

Gathering Dynamic Data

- Instrumentation
- ▶ Performance Counters
- ► Emulation

Gathering Dynamic Data: Java



Comparison of Approaches

- ► Source-level instrumentation:
- + Flexible
- Must handle syntactic issues, name capture, . . .
- Only applicable if we have all source code
- ► Binary-level instrumentation:
- + Flexible
- Must handle binary encoding issues
- Only applicable if we know what binary code is used
- ► Load-time instrumentation:
- + Flexible
- + Can handle even unknown code
- Requires run-time support, may clash with custom loaders
- Runtime system instrumentation:
- + Flexible
- + Can see everything (gc, JIT, ...)
 - Labour-intensive and error-prone
- Becomes obsolete quickly as runtime evolves
- ► Debug APIs:
- + Typically easy to use and efficient
- Limited capabilities

Instrumentation Tools

	C/C++ (Linux)	Java	
Source-Level C preprocessor		ExtendJ	
Binary Level	pin, llvm	soot, asm, bcel, AspectJ	
Load-time ?		Classloader, AspectJ	
Debug APIs strace		JVMTI	

- ► Low-level data gathering:
 - ► Command line: perf
 - ► Time: clock_gettime() / System.nanoTime()
 - ▶ Process statistics: getrusage()
 - ► Hardware performance counters: PAPI

Practical Challenges in Instrumentation

- Measuring:
 - ► Need access to relevant data (e.g., Java: source code can't access JIT)
- Representing (optional):
 - Store data in memory until it can be emitted (optional)
 - ▶ May use memory, execution time, perturb measurements
- Emitting:
 - ▶ Write measurements out for further processing
 - ▶ May use memory, execution time, perturb measurements

Summary

- Different instrumentation strategies:
 - ▶ Instrument source code or binaries
 - Instrument statically or dynamically
 - ▶ Instrument input program or runtime system
- Challenges when handling analysis:
 - In-memory representation of measurements (for compression or speed)
 - ► Emitting measurements

General Data Collection

- ► Events: When we measure
- Characteristics: What we measure
- Measurements: Individual observations
- ► Samples: Collections of measurements

Events

- ► Subroutine call
- Subroutine return
- ► Memory access (read or write or either)
- ► System call
- ► Page fault

. . .

Characteristics

- ► Value: What is the type / numeric value / . . . ?
- Counts: How often does this event happen?
- Wallclock times: How long does one event take to finish, end-to-end?

Derived properties:

- ► Frequencies: How often does this happen
 - ▶ Per run
 - ▶ Per time interval
 - ▶ Per occurrence of another event
- ▶ Relative execution times: How long does this take
 - ▶ As fraction of the total run-time
 - ▶ As fraction of some surrounding event

Perturbation

Example challenge: can we use total counts to decide *whether* to optimise some function f?

- ▶ On each method entry: get current time
- On each method exit: get current time again, update aggregate
- ▶ Reading timer takes: ~ 80 cycles
- ▶ Short f calls may be much faster than 160 cycles
- ► Also: measurement needs CPU registers
 - ⇒ may require registers
 - \Rightarrow may slow down code further

Measurements perturb our results, slow down execution

Sampling

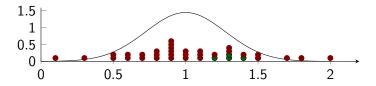
Alternative to full counts: Sampling

- ▶ Periodically interrupt program and measure
- Problem: how to pick the right period?
 - System events (e.g., GC trigger or safepoint) System events may bias results
 - 2 Timer events: periodic intervals
 - May also bias results for periodic applications
 - ▶ Randomised intervals can avoid bias
 - ► Short intervals: perturbation, slowdown
 - ► Long intervals: imprecision

Samples and Measurements

Samples are collections of measurements

- ▶ Bigger samples:
 - ► Typically give more precise answers
 - ► May take longer to collect
- ► Challenge: representative sampling



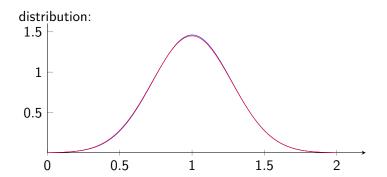
Carefully choose what and how to sample

Summary

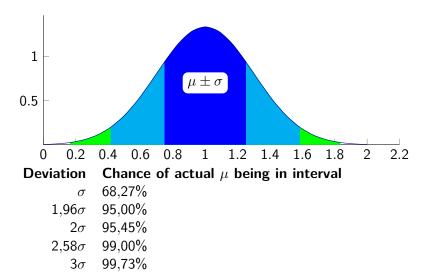
- ▶ We measure Characteristics of Events
- ► Sample: set of Measurements (of characteristics of events)
- Measurements often cause perturbation:
 - Measuring disturbs characteristics
 - ▶ Not relevant for all measurements
 - Measuring time: more relevant the smaller our time intervals get
- Can measure by:
 - ► Counting: observe every event
 - Gets all events
 - Maximum measurement perturbation
 - ► Sampling: periodically measure
 - ► Misses some events
 - ► Reduces perturbation

Presenting Measurements

	P1	P2		
Mean μ	1,001	0,999	Assuming normal	
Standard Deviation σ	0,273	0,275	Assuming normal	

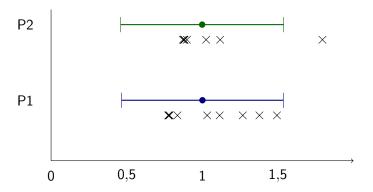


Standard Deviation, Assuming Normal Distribution



How Well Does Normal Distribution Fit?

Representation with error bars (95% confidence interval):

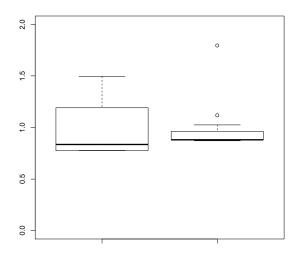


Mean + Std.Dev. are misleading if measurements don't observe normal distribution!

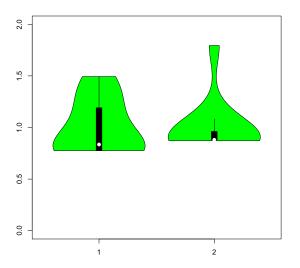
Box Plots

- Split data into 4 Quartiles:
 - ▶ Upper Quartile (1st Q): Largest 25% of measurements
 - ▶ Lower Quartile (4th Q): Smallest 25% of measurements
 - ▶ Median: measured value, middle of sorted list of measurements
- ▶ Box: Between 1st/4th quartile boundaries Box width = inter-quartile range (IQR)
- ▶ 1st Q whisker shows largest measured value $\leq 1.5 \times IQR$ (from box)
- 4th Q whister analogously
- Remaining outliers are marked

Box plot: example



Violin Plots



Summary

- We don't usually know our statistical distribution
- ► There exist statistical methods to work precisely with confidence intervals, given certain assumptions about the distribution (not covered here)
- Visualising without statistical analysis:
 - ▶ Box Plot
 - Splits data into quartiles
 - ► Highlights points of interest
 - ▶ No assumption about distribution

▶ Violin Plot

- ► Includes Box Plot data
- ▶ Tries to approximate probability distribution function visually
- ► Can help to identify actual distribution