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Inter- vs. Intra-Procedural Analysis

» Intraprocedural: Within one procedure
» Data flow analysis so far
» Interprocedural: Across multiple procedures
» Type Analysis, especially. with polymorphic type inference
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Limitations of Intra-Procedural Analysis

Teal-0 Teal-0
a = 7; fun f(x, y) = {
d := f(a, 2); z := 0;
e :=a + d; if x >y {
Z = X;
} else {
z = y;
+
return z;
+

How can we compute Reachable Definitions here?
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A Naive Inter-Procedural Analysis

x = {7} f(x, y) =

inbg = out,, L outp, :Outbg

»out,,: e — {9, 14}

Works rather straightforwardly!
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Inter-Procedural Data Flow Analysis

subroutine start

__»| ENTER

@?e = £(1, B[

(return) |

— EXIT

subroutine end

» Split call sites b, into call (bS) and return (b) nodes
» Intra-procedural edge bS __, bl carries environment/store
» Inter-procedural edge (— ):
> Caller — subroutine, substitutes parameters (for
pass-by-value)
> Caller <= return, substitutes result (for pass-by-result)
» Otherwise as intra-procedural data flow edge
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A Naive Inter-Procedural Analysis

x s {7} A

(bs) — y —{2}

e {1,2,5,7}

Imprecision!
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Context Sensitivity: Valid Paths

f(x, y) =

| return

(return ] NoNmwalidafidthatither \

> [b57 ng b07 bla b37 b4’ b‘g]

| Context-sensitive interprocedural analyses consider only valid paths |

7/39



Summary

» Intraprocedural Data Flow Analysis is highly imprecise with
subroutine calls
» Interprocedural Data Flow Analysis is more precise:
» Split call site into call site + return site
» Add flow edges between call sites, subroutine entry
» Add flow edges between subroutine return, return site
» Carry environment from call site to return site
» Interprocedural analysis must typically consider the entire
program
= whole-program analysis
» Naive interprocedural analysis is context-insensitive
» Merge all callers into one
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Interprocedural Data Flow Analysis

x — {7} £, y) =
y — {2}

x— {1,7}
y—{2,5}

z—{1,2,5,7}

e {1,5,2,7}

Context-insensitive: analysis merges all callers to £ ()

9/39



Inlining

:= £(1, 5)

x — {1} >

o 15}

e {1,5}

return z

Clone subroutine IRs for each calling context




Alternative to Inlining: Summarise
Procedure (Here: Reaching Defs.)

f(x, y) =

» Compose transfer functions:
> transp, o transp, = [z — 0]
> transp, o transp, o trans, = [z — {x}]
> transp, o transp, o transy, = [z — {y}]
> transp, o transp, o (transp, U transp,) = [z — {x, y}]
> transy, o transy, o (transp, Ll transp,) o transp, = [z — {x,y}]
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Procedure Summaries vs Recursion

f calls g calls h calls £

» Reqiures additional analysis to identify who calls whom
» Compute summaries of mutually recursive functions together
» Recursive call edges analogous to loops
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Procedure Summaries

» Composing transfer functions yields a combined transfer
function for £():

transy = [return — {x, y}]

» Use transy as transfer function for £ (), discard f's body
» Advantages:
» Can yield compact subroutine descriptions
» Can speed up call site analysis dramatically
» Disadvantages:
» More complex to implement
» Recursion is challenging
» Limitations:
» Requires suitable representation for summary
» Requires mechanism for abstracting and applying summary
» Worst cases:

> transs is symbolic expression as complex as £ itself
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Representation Relations

Example procedure summary representation:

O «— O

-—

‘May be null’ analysis

» c—d:
if P(c) € in, then P(d) € out,
» Representation Relations relate
iny and out, variables

»RC (VU{0}) x (Yu{0})
»if (0, X) € R:

X always ‘may be null’ in out,
»if (Y, X) € R:

If Y ‘may be null’ in ing:

= X '‘mav be null’ in out,  14/39



Summary

» Context-sensitive analysis distinguishes ‘calling context’
when analysing subroutine
» ‘Who called me’?
» Can go deeper: ‘And who called them?’

» Inlining is one strategy for context-sensitive analysis

» Copy subroutine bodies for each caller

» Alternative: Procedure summaries built from composed
transfer functions

» Can speed up context-sensitive analysis of popular functions,
compared to inlining

» Needs some suitably abstract analysis for the given program
» Example: IFDS-style Representation Relations

» Recursion is nontrivial:
> Analyse function calls (call graph)

» Analyse strongly connected components together
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Composing Representation Relations

Recall Representation Relations (may be null analysis):

0 x y 0 x vy
X := null;
v = v AN
l 0 x y
— bl
if x 1=y { 0 x ¥
1 |/
y :=1; ¥y
; F ]
{t := x; 0 x vy
X 1=y, \l, X
y = t; } 0 x y 0 x vy

Composed representation relations are again representation relations
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Merging Control-Flow Paths

i)

0 x vy 0 x vy
X := null; % := null
y =7
if x 1=y {
X 1= y; 0 x ¥ 0 x vy
}
y :=1
{t:=x
X =y
y =t} 0 x ¥

L

Logical “Or”
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Dataflow via Graph Reachability
n=(b,v)

» Assume binary latice ({T, L}, C, M, L)
»allb=Tiffa=_1 and b= 1, otherwise allb=TT
> Typical for ‘May be X' analysis (‘may be null’)

» We can encode Dataflow problem as Graph-Reachability
» Graph nodes n = (b, v)

» b: CFG node

» v: Variable or 0

> Variable: Property of interest connected to variable
> 0: Property of interest connected to executing this
statement/block
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Dataflow via Graph Reachability
n=(b,v)

» Assume binary latice ({T, L}, C, M, L)
»alUb=Tiffa= 1 and b= 1, otherwise allb=T
> Typical for ‘May be X' analysis (‘may be null’)

» Equivalently for ‘Must’ analysis:
‘must be null’ = not (‘may be non-null’)

» We can encode Dataflow problem as Graph-Reachability
» Graph nodes n = (b, v)
» b: CFG node

» v: Variable or 0

» Variable: Property of interest connected to variable
> 0: Property of interest connected to executing this
statement/block
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A Dataflow Worklist Algorithm: IFDS

» Context-sensitive interprocedural dataflow algorithm

» Historical name: IFDS
(Interprocedural Finite Distributive Subset problems)

» ‘Exploded Supergraph’: G* = (N*, E¥)
> NE = Ncrg X VU{O}
> Plus parameter/return call edges
» by i, is the CFG ENTER node of the main entry point
0)

» Property-of-interest holds if reachable from (b3,

» Key ideas:
» Worklist-based

» Construct Representation Relations on demand
» Construct ‘Exploded Supergraph’

» CFG of all functions x VU {0}
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IFDS Datastructures

Instead of {({bo, ), (b3, vo)) we also write:
(bo, vo) — (b3, vo)

WORKLIST edge All WORKLIST edges are also PATHEDGE edges
<b07 V0> ------ > <b37 V0>
PATHEDGE edge Result of our analysis
Nf-edge

SUMMARYINST Generated from summary nodes
Otherwise equivalent to Nf-edges
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IFDS Strategy

» Algorithm distinguishes between three types of
nodes:

» Exit nodes (b¢)
» Call nodes (b°)

» Other nodes
b !;!&VTER f

@ = £(1, B[
S \ETD)

e ]
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On-demand processing

Procedure propagate(n; — ny):
begin
if n1 — n, € PATHEDGE then
return
PATHEDGE := PATHEDGE U {n; — no}
WORKLIST := WORKLIST U {n; — np}
end
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Running Example

Teal-0: main()

var default := null;
fun main() = {
var a := get(3);
default := 1;
var b := get(3);
return b;

Teal-0: get()

fun get(c) = {

if ¢ == 0 {
z := default;

} else {
z := read_int();
if z < 0 {

z := get(c - 1);

}

+

return z;

}
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S

b bge 3
2 [ENTER got | 943

N
»J 1= get(3) @

1 Ve
A

S o
di

where N C (VU {0}) x Ners 775,
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Initialisation
» WORKLIST =

{<brsnain7 0> - <br5nain7 0>}
> Analogous self-loops for
static variables with
property of interest (d)

» e €¢ WORKLIST —
e € PATHEDGE




Initialisation
» WORKLIST =

{<brsnain7 0> - <br5nain7 0>}
> Analogous self-loops for
static variables with
property of interest (d)

» e €¢ WORKLIST —
e € PATHEDGE




Coderura o]

Procedure propagate(n; — m):
begin
if n1 — ny € PATHEDGE then
return
PATHEDGE := PATHEDGE U {n; — ny}
WORKLIST := WORKLIST U {n; — mp}
end

Hi]
Step (regular edge)

> Pick e off the work queue
e=n — N

> np neither call (c) nor exit (e)?

> Find all n, — n3
propagate(n; — n3)

2> Remove e from WORKLIST

> e remains in PATHEDGE
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Coderura o]

0z

A () e —

Step (call edge)

» Pick e = n; — n§ off the work queue
> n5 is call (c)?

> Init called procedure:

> Find all parameter edges
t = nS — (bg,v) € E*
> propagate((bz, v) — (b7, v))

< 0Z2Cd
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Coderura o]

OID Z. CT b7

Step (call edge)

» Pick e = n; — n§ off the work queue
> n5 is call (c)?

> Init called procedure:

> Find all parameter edges
t = nS — (bg,v) € E*
> propagate((bz, v) — (b7, v))

< 0Z2Cd
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OID Z. CT b7

Step (call edge)

» Pick e = n; — n§ off the work queue
> n5 is call (c)?

> Init called procedure:

> Find all parameter edges
t = nS — (bg,v) € E*
> propagate((bz, v) — (b7, v))

|_|> Propagate along intra-edges
(As with regular edges)

Coderura o]

< 0Z2Cd
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A () e —

Step (call edge)

» Pick e = n; — n§ off the work queue
> n5 is call (c)?

> Init called procedure:

> Find all parameter edges
t = nS — (bg,v) € E*
> propagate((bz, v) — (b7, v))

|_|> Propagate along intra-edges
(As with regular edges)

Coderura o]

< 0Z2Cd
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T ) e e—

Step (call edge)

» Pick e = n; — n§ off the work queue
> n5 is call (c)?

> Init called procedure:

> Find all parameter edges
t = nS — (bg,v) € E*
> propagate((bz, v) — (b7, v))

|_|> Propagate along intra-edges
(As with regular edges)

Coderura o]

> Propagate along Summarylnst:

< 0Z2Cd
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bge
““¥NTER g%
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S
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“ENTER get
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1
Step (exit edge)

» Pick e = n; — n5 off the work queue :I_
> n§ is exit (e)?
(n3 is always start node.)

> For each call/return pair nf, n! that

calls the current function, b i

if nf — nj — nS — nl: (,t_ > o
> If nf — nf ¢ SUMMARYINST:

» Add it to SUMMARYINST Rz

> Find all n — nf € PATHEDGE and
propagate(n — nf)
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FNTER main
(return)
FXIT main

LI eturnb
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oo TER main

Coderura o]

°°°-IT main
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return)

(

@ TER main

Coderura o]

FXIT main
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@ TER main

(return)

Coderura o]

FXIT main
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@ TER main

(return)

Coderura o]

FXIT main
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%A A

-Step (call edge)

> Pick e = n; — n§ off the work queue

> n is call (c)?
> Init called procedure:
» Find all parameter edges
t =nS — (b, v) € E*
> propagate((b3, v) = (b, v))
> Propagate along intra-edges
(As with regular edges)

> Propagate along Summarylnst:
(As with regular edges)
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d := null
o oY ""ZNTER main
by
) Ta := get(3)
il by ofz°c
¥ 1(retur
b,
= 1
vy := get(a) N
4 3(return) £i
b4
® I I J eturn b
LR Pl IT main
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/

Worklist empty: Done \

» Can now read results off of ‘4
PATHEDGE

> e.g. at end of main():

> a may be null
Yy

> b and d definitely non-null
U

0
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The IFDS Algorithm: Initialisation and

Propagation)

Procedure Init():

begin
WORKLIST := PATHEDGE := ()
propagate(<brsnain’ 0> - <brs;13in7 0>)
ForwardTabulate()

end

Procedure propagate(n; — n):
begin
if N1 — n, € PATHEDGE then
return
PATHEDGE := PATHEDGE U {n; — ny}
WORKLIST := WORKLIST U {n; — mp}
end
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IFDS: Forward Tabulation

Procedure ForwardTabulate():
begin
while np — n; € WORKLIST do
WorkList := WorkList \ {ng — n;}
(bo, o) = no; (b1, v1) = m
if by is neither Call nor Exit node then
foreach n, — n, € E*:
propagate(ny — m2)
else if b; is Call node then begin
foreach call edge m — np € E*:
propagate(n, — )
foreach non-call edge n1 — ny € E* U SUMMARYINST:
propagate(ng — n2)
end else if b; is Exit node then begin
foreach caller/return node pair bf, b/ that calls by and vars v, v1 do
ns = (b, w); nr = (bf,v1)
if {ns = no,np — m,m — n,} C E* and not n; — n, € SUMMARYINST then
SUMMARYINST := SUMMARYINST U {ns — n,}
foreach n, — n, € PATHEDGE:
propagate(n;, n)

end done end done end
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Summary: IFDS Algorithm

» Computes yes-or-no analysis on all variables
» Original notion of ‘variables’ is slightly broader)
» Represents facts-of-interest as nodes (b, v):
> b is node (basic block) in CFG
» v is variable that we are interested in
> Uses
> ‘Exploded Supergraph’ G*
> All CFGs in program in one graph
> Plus interprocedural call edges

» Representation relations
» Graph reachability
» A worklist

» Distinguishes between Call nodes, Exit nodes, others
» Demand-driven: only analyses what it needs
> Whole-program analysis

» Computes Least Fixpoint on distributive frameworks
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Beyond True and False

» What if abstract domain is not boolean?
reg, {T,AV, A= A0 1}
» Multiple boolean properties per variable
> easy for powerset lattice P({+, —,0})
» Limitation: Transfer functions only depend on one variable
» Some problems not representable, others must adapt lattice

Consider by = [y = 0 - x}

trans,, =

O e——0 O
[ ]
[ ]
[ ]

This is how the algorithm was originally proposed
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BONUS SLIDES



Extending IFDS?

» Not all analyses map well to IFDS
» Core ideas are appealing:

» Automatically compute procedure summaries
» Exploit graph reachability + worklist for dependency tracking

It is possible to extend this to other classes of problems

31/39



Linear Reaching Values

Statement ‘ ing ‘ outy

x 1= 42 M M with [x — 42]
x =y + 1| M={ly—c],...} | Mwith [x — ¢+ 1]
x =y *x7 | M={[y—c|,...} | Mwith [x — c x7]
x:=y+z | M M with [x — T]

» “M with [x — €]” means “Remove from M any [x — ...] if
it exists, and then add [x — e]".
» The above sketches a distributive reaching values analysis

» Each annotation of form vi — ¢1 X v» + &
> Tradeoff: no support for adding / multiplying / ... (multiple
variables)

» Encode in IFDS?
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Labelling Graph Edges

x 1= 2; 0 x—2 * y
gimyxT | 4 [y =7
0 X y
| [x»—>2]¢ l
+ 2 0 x v
X = ;
y :=§*y+1; i [x—=y+2] l[)“—>3><}’+1]
0 b's y
i [XH7Xy+2]l l[yl—>21><y+1]
{t :=x; 0 b d y
X :=y; i [yHMHy]
y :=t; } 0 x y
[x =21 xy+1] [y—=7xy+2]

» Extending IFDS to support information processing
» Carrying over key techniques:
» Track dependencies
» Generate procedure summaries on the fly 33/39



Representation

[y = cy1 xy+dyi] [y = ¢y2 X va+dy o]

{ [x = o1 X x4+ dy 1] } . { [x = o X v+ dy 9] }

[X —> (CX’Q X Cx,l) X vy + (dX72 + ¢y X Xm)]
[y = (¢y2x ¢y1) X vi+(dy2+ ¢y x dy)]

» ¢;, d;: constants
> v;: program variables
» (Maps of) linear functions are closed under composition
» Must support L to merge, map to T on mismatch
{ [X = Cx1 X v+ dx,l] } L { [X = Cx1 X Vi +dX11] }

[y = Cy1 X V3 =+ dy71] [y = Cyo2 X V2 + dy,2]

{ [x — 1 X x + di 1] }
[y = 1]
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Micro-Functions and Lattices

» Extend lattices to such ‘Micro-Functions':

VANRVAN
AVERNVA
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Micro-Functions, Efficient
Representation

» Micro-Functions must support:

Encoding O(1) space
Computation f(x)  O(1) time
Equality testing f =1f" O(1) time
Composition fof" O(1) time
Meet fuf  O(1) time

» Micro-functions are efficiently representable if they satisfy
space / time constraints

» Required for the algorithm'’s time bounds
» Other examples:

» IFDS problems
» Value bounds analysis
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The IDE Algorithm (1/1)

> Interprocedural Distributive Environments algorithm
» Extends IFDS to ‘labelled’ edges as described above
» Assumes distributive framework over micro-functions
» Algorithmic changes:
» First phase analogous to IFDS
» Second phase applies computed functions to read out results
» Maintain/update mapping from path edges to
micro-functions f:

PATHEDGE = { (b, vo) —% (b1, v1),...}

» ‘Missing edges’ equivalent to x — L
> Initialise:

PATHEDGE = {(bg, vo) =5 (b, v1),...}

> Always exactly one f per {(by, vo) = (b1, 1)} € PATHEDCE
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The IDE Algorithm (2/2)

Procedure propagate(n; — np): —— IFDS version
begin
if N1 — n, € PATHEDGE then
return
PATHEDGE := PATHEDGE U {n; — ny}
WORKLIST := WORKLIST U {n; — ny}
end

4

Procedure propagate;pe(m EA np): —— IDE version
begin
let ny L/> ny € PATHEDGE
fupd 1= f L
if fipa = f’ then
return

! fu
PATHEDGE := (PATHEDGE \ {m N mB)U{m % m}

WORKLIST := WORKLIST U {n; — ny}
end
38/39



Summary

» IDE strictly generalises IFDS

» Utilises Micro-Functions to ensure efficient summaries:
» Intra-procedural summaries via PATHEDGE
» Inter-procedural procedure summaries via SUMMARYINST

» Runtime is O(LED?) if micro-functions are efficiently
representable
» L: Lattice height
> IFDS: 1
> IDE: length of longest descending chain
» E: Number of control-flow edges
» D: Number of variables

» IFDS supported by many popular dataflow frameworks
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