LUND 0 .

f ' EDAP15: Program Analysis

DATAFLOW ANALYSIS 2
INTRAPROCEDURAL ANALYSIS

Christoph Reichenbach

Data Flow Analysis on CFGs

> join,: Join Function
» transy: Transfer Function
> iny: knowledge at entrance of b

iny, = join, (outy,, ... outy,)
» out,: knowledge at exit of b

outy,, = trans, (inp,)

» Forward Analysis shown here
» Bakward Analysis: flip edge direction

2/37

Join and Transfer Functions

» [: Abstract Domain

> Ordered by (C) C L x L
Tel forall x: xC T Top element
L el forall x: 1L Cx Bottom element (optional)

»trans, : L — L x C y
» monotonic 4
cjoimg i Lx .. oxL— L el Eotrans(y)
» pointwise monotonic x C vy
3
Jjoing(z1, ... zk, Xy ..y zy) E joing(zy, ..., Zk, Y,

3/37

Partially Ordered Set

Lattices L are based on a partially ordered set (L,C):
» Set: L describes possible information
»(C)C Lx L:
> Intuition for a T b (for program analysis):
> b has at least as much information as a

> (C) is a partial order:

al a Reflexivity
aCband bC a = a= b Antisymmetry
aCband bC ¢ = aL ¢ Transitivity

» Example:
» L = {unknown, true, false, true-or-false}
» unknown C true C true-or-false
» unknown C false C true-or-false

5/37

Least Upper Bound

Combining potentially contradictory information:
» Join operator: (L) : L X L — L
» Pointwise monotonic:

aCalband bT allb
» Least element with this property:
aCdand bCd — albLC d

» ‘Least’ ensures that this is the most precise model

6/37

Greatest Lower bound

Converse operation:
» Meet operator: (M) : L. X L — L
» Pointwise monotonic:

allbC aand allbC b
» Greatest element with this property:
dCaanddC b — dLC alb

7/37

Lattices

L= (L,C,r,L)

» L: Underlying set

» (C) C L x L: Partial Order

» (W) : L x L — L: Join (computes |.u.b.)
» (M) : L x L — L: Meet (computes g.I.b.)
» Unique Join/Meet always exists

» We can show that (L), (1) have:

Commutativity: allb = bUa
Associativity: all(bUc) = (aUb)Uc

(Analogous for M)

8/37

Complete Lattices

A lattice L = (£,C,M,U) is complete iff:
» For any £’ C L there exist:

» T =L (least upper bound for arbitrary set)
» 1 =[] L' (greatest lower bound for arbitrary set)

» Usually trivial in practice (from a CS perspective)

» Obvious if L is finite
» Counter-example: “Lattice of all finite subsets of N”

9/37

Complete Lattices: Visually

alln= T
allb= ¢
a b n
ANV4
allb= d

alln= 1

10/37

Example: Binary Lattice

true

false

» T = true

» | = false

» LI = logical “or”
» [= logical “and”

11/37

Example: Booleans

» If B = {true, false}:

T
/ \ » Lattice sometimes called IB%I
> Interpretation for data flow e.g.:

true false » T = true-or-false

\ / » | = unknown
» all b: either aor b
1

» all b: both aand b

| Other interpretations possible

12/37

Example: Flat Lattice on Integers

> Sometimes written Z |

>T:®
1 =7

/_2 1 N _Ja iff a=0b
al_lb—{ T otherwise

\\\//

a iff a=b
>aﬂb:{ 1 otherwise

Analogous for other X| from set X

13/37

Example: Type Hierarchy Lattices

java.lang.Object= T

Number Comparat:rlé\‘\

Byte String ~

» LI constructs most precise supertype
» [constructs intersection types:

java.lang.Comparable M java.io.Serializable
» Java notation:

java.lang.Comparable & java.io.Serializable 14/37

Example: Powersets

T
/ ‘ \ > Take any set S = {a, b, c}
» L ="P(S)

{a, b} {a,c} {b,c}

XX

{a} {b} {cy -
> (|_|

NP

Example: Lattices and Non-Lattices

{a,b,c} PQ
PO /N
/{a’b}\ /{b’c}\ P><Q
, {3 \{b}/{} R s
Lattice Latqiice Not AZLattice

Right-hand side is missing e.g. a unique R S

16/37

Example: Natural numbers with 0, w

oO—Hr—N—W--------§&

T =w
»1 =0
» all b= maximum of a and b
»allb = minimum of a2 and b

17/37

Product Lattices

» Assume (complete) lattices:
> Ly = (L1,C1,M1, Uz, Ty, Ly)
> Ly = (L£2,52,M2,Lp, T2, L2)
»Llet Ly X Ly = (L1 X Lo, 5,1, U, T, L) where:
»(a,b) C(d,b)iffaCy a and b, b
»(a, by {(a', b’y =(ary a', by b’
><a, yu(a', by =(aly a, bl b')
T = <T1, Tz)
1= <L1,J_2>

>

Point-wise products of (complete) lattices are again
(complete) lattices

18/37

Summary

» Complete lattices are formal basis for many program analyses
» Complete lattice L = (£, C, 1,1, T, 1)

» L: Carrier set

> (C): Partial order

> (M): Join operation: find least upper lower bound

> (U): Meet operation: find greatest lower bound

(not usually necessary)
» T: Top-most element of complete lattice
» 1 : Bottom-most element of complete lattice

» Product Lattices: [; x L, forms a lattice if L; and L, are
lattices

19/37

Monotone Frameworks

Monotone Framework Lattice
Abstract Domain L= (L,C,m,L)
Joiny(x1, ..., xn) x1U...Uxp,

x My (Not needed)
‘Unknown’ start value il
‘Could be anything’ end value T

» Monotone Frameworks (Killdall '77):

» Lattice L of finite height
(= satisfies Ascending Chain Condition)
» Monotone trans
> ‘compatible’ with semantics

—> Data flow analysis with Soundness and Termination

» Don't need 17, so technically we only need a Semilattice.

20/37

Formalising our Naive Algorithm

outy
outy
out,
outs

» Lattices outg : Lo, ..

transp(L)
trans; (outg L outy)
transy(
transz(out;)

., outs : L3

» Can build lattice for entire program:
> Lo”_3 = Lo X L1 X L2 X L3
> Lo.3=(lo, L1, 12, 13)
» Monotone transfer function:

transy..3({vo, vi, v2, v3)) =
transy Vo) ,
trans;

(

(

(Vo LJ Vz),
trans2(v1),

(

transz(vi)

21/37

Reaching a Solution

> In general:
» Program P:

> “Program Lattice” Lp
> | p: initial analysis state
> transp: Compute one step of naive analysis

» Repeat transp until solution fp :

fp, = transp(Lp)
» n is the minimum number of steps until we have a solution
» fp, is Fixpoint of transp:
fp, = transp(fp,)

» Fixpoint exists iff Lp satisfies Ascending Chain Condition

Cousot & Cousot (1979), based on Kleene (1952), based on Knaster & Tarski (1933)

22/37

Fixpoints

» Repeat transp until we reach a fixpoint
» Can start from any point a
» Multiple fixpoints possible
» Each is a sound solution
(for compatible transfer functions)

» Form a lattice
(Knaster-Tarski, 1933)

» Least Fixpoint: Highest Precision

23/37

Value Range Analysis

‘Find value range (interval of possible values) for x'

Python > ML—J|—|tIp|e possible sound solutions:
>
x -1 > [-99,99]
wh:‘Lle - [1,10]
if ... - [1,7]
x =4

» All of these values are fixpoints
x=7 > [1,7] is least fixpoint

24/37

Summary

» Monotone Frameworks:
» Combine:

» Monotone transfer functions trans
> Finite-Height Lattices

Joing(va, ... vk) =vi U v

» Guarantee:
» Termination
> Soundness
» With Monotone Frameworks, iterating trans, and join,
produces Fixpoint (or Fixed Point)
» Works from any starting point, possibly different fixpoint
> Fixpoints form Fixpoint Lattice
> Least Fixpoint (Bottom element) is most precise solution

» (Soundness only if trans, are compatible)

25/37

An Algorithm for Fixpoints

» So far: naive algorithm for computing fixpoint
» Produces a fixpoint
» Keeps iterating all transy, / join, functions, even if nothing
changed

» Optimise processing with worklist
» Set-like datastructure:
> add element (if not already present)
> contains test: is element present?
> pop element: remove and return one element
» Tracks what'’s left to be done
= “MFP" (Minimal Fixed Point) Algorithm
(Does not always produce least fixpoint!)

26/37

MFP Example:

@

return [x, y, z]

trans,
b inputs X y ‘ z
bo 0 0 01
by {bo,bz,bg,} x+1|y|z
by {b1} X 7|z
bs {b1} x vy
b4 {b07b27b3} X y 4
jOinbf(<VX1v %% V21>7 <VX27 Vyas V22>) =

(Vi U Vi, iy U vy vy U vy)

Worklist

bo — b1

bg — by

by — by

b1 — b3

by — by

by — b1

b3 — by

bz — b1

28/37

MFP Example:

transp
b inputs X ‘ y ‘ z
bg 0 0 01
by | {bo,bo,b3} | x+1 |y |z
by {b1} X 7|z
bs {b1} x vy
by | {bo, b2, b3} | x ylz

jOinbf(<VX1v %% V21>7 <VX27 Vyas V22>) =
(Vg U Vags iy U vy vz U V)

Worklist
[bg — b
by — by
by — b2
b1 — b3
by — by
b, — by
b3 — by

b3 — b
b,
?return [x, y, z]

28/37

MFP Example:

transy,
b inputs X ‘ y ‘ z
bo 0 0 0|1
by | {bo, b2, b3} [x+1 |y |~z
by {b1} X 7|z
({0},{0},{1}) bs {b1} X vy
X y z by | {bo, ba, b3} | x y |z

jOinbf(<VX13 %% V21>7 <VX27 Vyas V22>) =
(Vg U Vags iy U vy vz U V)

Worklist
For edge b, — b;: by — b
by — by
b1 — by
b1 — b3
by — by
b, — by
b3 — by

b, b3 — b
4
Qreturn [x, y, z]

28/37

MFP Example:

transy,
b inputs X ‘ y ‘ z
2 bo 0 0 0]1
= o= 1l by {bo,bz,bg,} x+1|y|z
by {b1} X 7|z
(RO {1}] b (b} vy
X KK by | {bo, b2, b3} | x y |z
L7 J0i, (Vg Vs V), (Vi Vi, Vi) =
- <VX1 U Vg, Wy U vy, vy U V12>
Worklist
For edge b, — b;: by — b1l
> |Is out, IZ in;? 2(1) : Z;
b1 — b3
by — by
b, — by
Eva
b, b3 — by
return [x, y, z]

28/37

MFP Example:

return [x y, zJ

transy,
b inputs X ‘ y ‘ z
= bo 0 0 01
z o= 1 b {bo,bz,bg,} x+1|y|z
by {b1} X 7|z
({0}, {0}, {1})) b By [|v|y
Xy 7 by | (o.baba} [« | vz
(LU {0},{0}, {1})) Joirm, (v i, Vi) (Vi v, i) =
(Vg U Vags iy U vy vz U V)
Worklist
For edge b, — b;: by — b
> |Is out, IZ in;? 2(1) : Z‘;
> Yes: by — b3
> in; :=in; Llout, by — by
by — b
b3 — by
@ b3 — b
4

28/37

MFP Example:

(

transy
b inputs X ‘ y ‘ z
bg 0 0 011
by | {bo,bo,b3} | x+1 |y |z
by {b1} X 7|z
bs {b1} vy
by | {bo, ba, b3} | x vy |z

jOinbi(<VX13 %% V21>7 <VX27 Vyas V22>) =
(Vg U Vags iy U vy vz U V)

@

return [x,

y, zJ

For edge b, — b;:

> |Is out, IZ in;?

> Yes:

> in,- =
> Add all outgoing edges
from b, to worklist
(if not already there)

in; L out,

Worklist
[bg — b
by — by
by — by
b1 — b3
by — by
b, — by
b3 — by
b3 — by

28/37

MFP Example:

(

return [x, y, z]

N v
?

transy
b inputs X y ‘ z
bo 0 0 01
by {bo,bz,bg,} x+1|y|z
by {b1} X 7|z
bs {b1} x vy
by {b07 by, b3} X Yy | Z
jOinbi(<VX17 %% V21>7 <VX27 Vyas V22>) =
(Vi U Vi, iy U vy vy U vy)
Worklist
For edge b, — b;: bo—rt7
b,
> |Is out, IZ in;? 2(1) : b;
> Yes: by — b3
> in; :=in; Llout, by — by
> Add all outgoing edges by = by
from b, to worklist by — by
b3 — b1

(if not already there)

28/37

MFP Example:

transy,
b inputs X |y |
bo 0 0 0

b {bo,bz,bg,} x+1

x

(

NI [N|N|H|IN

< I IN|<

{0}, {

by {b1}
0},{1}) b b
y zj 3 {b1}

b4 {b07b27b3} X

jOinbi(<VX17 %% V21>7 <VX27 Vyas V22>) =
(Vg U Vags iy U vy vz U V)

Worklist
For edge b, — b;:
b
> |Is out, IZ in;? 2(1) : b;
> Yes: by — b3
> in; :=in; Ll out, by — by
> Add all outgoing edges by = by
from b, to worklist by — by
b, (if not already there) bs = by
return [x, y, z]

28/37

MFP Example:

transy,
b inputs X ‘ y ‘ z
bg 0 0 011
by | {bo,bo,b3} | x+1 |y |z
by {b1} X 7|z
(b3 {b1} vy
by | {bo, ba, b3} | x vy |z

jOinbi(<VX13 %% V21>7 <VX27 Vyas V22>) =
(Vg U Vags iy U vy vz U V)

1. {0 " Worklist
(1134 C? } For edge b, — b;:
. bO — b4
> |Is out, IZ in;? by — b
Lu <{1} {0} 1)) | ves
> in; :=in; Ll out, by — by
> Add all outgoing edges by = by
[] / from b, to worklist by = by
b, (if not already there) bs = by
return [x, y, z]

28/37

MFP Example:

transy,
b inputs X |y |
bo 0 0 0

L o by | {o, ba, b3} | X +1
by {b1} X

Yy
(03,00} (1)) R (Y R E
y

by | {bo, bo, b3} |
@ {0} {0}, {1})

(

NI [N|N|H|IN

jOinbi(<VX17 %% V21>7 <VX27 Vyas V22>) =
(Vg U Vags iy U vy vz U V)

({1 0 1}) Worklist
{ } { } { } For edge b, — b;:

> |Is out, IZ in;? 2(1) : z‘;

<{1} CREDR b

> in; :=in; Llout, by — by

> Add all outgoing edges by = by

(} / from b, to worklist by = by

b, (if not already there) bs = by

return [x, y, z]

28/37

MFP Example:

transp
b inputs X ‘ y ‘ z
by 0 0 01
by {bo,bz,bg,} x+1|y|z
by {b1} X 7|z
({0}, {0}, {1})] b | () | |v|y
X y z by | {bo, ba, b3} | x y |z

jOinbi(<VX17 %% V21>7 <VX27 Vyas V22>) =
(Vg U Vags iy U vy vz U V)

Worklist

For edge b, — b;:
b
> |Is out, IZ in;? 2(1) : b;

> Yes:
> in; :=in; Ll out, by — by
> Add all outgoing edges by = by
from b, to worklist by = by
b, (if not already there) bs = by
return [x, y, z]

28/37

MFP Example:

(

L/

{0}, {0})

@

return [x,

,

Z

transy
b inputs X y ‘ z
bo 0 0 01
by {bo,bz,bg,} x+1|y|z
by {b1} X 7|z
b3 {b1} X vy |y
b4 {b07b27b3} X y z
jOinbi(<VX13 %% V21>7 <VX27 Vyas V22>) =

(Vi U Vi, iy U vy vy U vy)

For edge b, — b;:

> |Is out, IZ in;?

> Yes:

> in,- =
> Add all outgoing edges
from b, to worklist
(if not already there)

in; L out,

Worklist

bg — by
b1—>b2

by — by
b, — by
b3—)b4
bs — by

28/37

MFP Example:

transy,
b inputs X ‘ y ‘ z
bg 0 0 011
by | {bo,bo,b3} | x+1 |y |z
by {b1} X 7|z
(bs {b1} x vy
by | {bo, ba, b3} | x vy |z

jOinbi(<VX13 %% V21>7 <VX27 Vyas V22>) =
(Vg U Vags iy U vy vz U V)

Worklist

For edge b, — b;:
b
> |Is out, IZ in;? 2(1) : b;

> > Yes:
> in; :=in; Ll out, by — by
> Add all outgoing edges by = by
from b, to worklist by — ba
b, (if not already there) bs — b
return [x, y, z]

28/37

MFP Example:

transy

b inputs X ‘ y ‘ z

bo 0 0 01

by {bo,bz,bg,} x+1|y|z

by {b1} X 7|z

(bs {b1} x vy

b4 {b07 b27 b3} X y z

jOinbi(<VX17 %% V21>7 <VX27 Vyas V22>) =
(Vi U Vi, iy U vy vy U vy)
0 1 Worklist
{ } { } For edge b, — b;:
. bO — b4
> |Is out, IZ in;?
‘I by — b
{1} {O} {1} > Yes: ' i
> Add all outgoing edges 1
{1} {0} {0} from b, to worklist by — ba
b, (if not already there) bs — b
return [x, y, z]

28/37

MFP Example:

transy,
b inputs X ‘ y ‘ z
bo 0 0 0|1
: by | {bo, b2, b3} | x+1 |y |z
: by {b1} X 7]z
({0}, {0}, {1})] b | {b) vy
X y z by | {bo, ba, b3} | x y |z

\
({0,1},{0},{1})

jOinbi(<VX17 %% V21>7 <VX27 Vyas V22>) =
(Vg U Vags iy U vy vz U V)

Worklist

For edge b, — b;:
b
> |Is out, IZ in;? 2(1) : b;

> Yes:

> in; :=in; Ll out, by — by
> Add all outgoing edges by = by
from b, to worklist bs — 4
(if not already there) (a0

b,
return [x, y, z]

MFP Example:

transy
b inputs X ‘ y ‘ z
bo 0 0 01
: by | {bo.ba.ba} | x+1] v |-
by {b1} X 7|z
({0}, {0}, {1})) b By [|v|y
X Yy \Z by | {bo, b2, b3} | x vz
({0,1}, {0}, {1})] Joirm, (v i, Vi) (Vi v, i) =
(Vi U Vi, iy U vy vy U vy)
Worklist
For edge b, — b;:
> |Is out, IZ in;? 2(1) : Z:
> Yes:
> in; :=in; Ll out, ll;zz : Z“
> Add all outgoi d 1
<{1}7 {0}’ {0}> froma outgoing edges by — by
b, (if n Re-add previously by s by
return [x, Y, z] removed edge

28/37

The MFP Algorithm

Procedure MFP(Ll, U, T, CFG, trans_, is-backward):

begin
if is-backward then reverse edges(CFG);
worklist := edges(CFG); -- edges that we need to look at
foreach n € nodes(CFG) do
inln] := 1; -- state of the analysis
done
while not empty(worklist) do
(n,n")y := pop(worklist); -- Edge n— n’

-- OPTIONAL: cache out[n] = trans,(in[n]) here
if trans,(inl[n]) Z in[n'] then begin
in[n’] := inln’] U trans,(inln]l);
foreach n’ € successor-nodes(CFG, n’) do
push(worklist, (n’,n"”));
done
end
done
return in;
end

Worklist allows focussing effort! 29/37

Summary: MFP Algorithm

» Product Lattice allows analysing multiple variables at once
» Compute data flow analysis:

> Initialise all nodes with L
» Repeat until nothing changes any more:

> Apply transfer function
> Propagate changes along control flow graph
> Apply U

» Compute fixpoint
» Use worklist to increase efficiency
» Distinction: Forward/Backward analyses

30/37

MFP revisited

Consider Reaching Definitions again, with different lattice:

T = {507£17€27€37£4}

’ ! ~

, ~
’ ~

{EOaél} 'i‘ {63,64}

(o} {0} {6} {6} {ta)
NN
1=0

b2
Qy - 72 Y > All subsets of {{g, ..., 04}

- / » Finite height
S‘Dreturn [x,

y, z] »U=U

31/37

MFP revisited: Transfer Functions

b,
return [x,

y, z]

transp, =[x +— {l},
y = {l}
z = {6}]
transy, =[x — {{3}]
transp, =[y — {{4}]
transp, =[z — y]

MFP solution

X {60763}
y = {Elaéll}
Z {£1,€2,€4}

» Least Fixpoint!

» Do we always get LFP from MFP?

32/37

Another Example

transp, = [x+ 1,
y— 3

transy, = [x — 3,
y = 1] v 1

[[x:3,y:1,z:J_]]

transp, = [z — x + y]

> Lattice: Z]

34/37

Another Example

transp, = [x+ 1,
y— 3

transp, = [z — x + y]

> Lattice: Z]

34/37

Another Example

transp, = [x+ 1,
y— 3

transy, = [x — 3,
yHl] 7
[[x:3,y:1,z : J_]]

[x:3,y:1,z: 1]
z :=u(+ y | transy, = [z x+7]
[x:3,y:1,z:4]

> Lattice: Z]

34/37

Another Example

transp, = [x+ 1,
y— 3

transy, = [x — 3,
y—1] v =1 SN
[[x:3,y:1,z:J_]] : 13,z 1]

[x:3,y:1,z: 1]
zZ =X + y |transy, =[z—x+7]
[x:3,y:1,z:4]

> Lattice: Z]
»1U3=T=3U1

34/37

Another Example

transp, = [x+> 3, transy, = [x+— 1,
y—1] v =1 v =3 y 3]
[[x:3,y:1,z:J_]J [[x:l,y:?;,z:J_]]

[x:T,y:T,z:J_]]
P :=u(+y |transb3:[z»—>x+y]
[[x:T,y:T,z:T]J

> Lattice: Z]
»1U3=T=3U1
» No, MFP does not always compute the Least Fixpoint!

34/37

Distributive Frameworks

A Monotone Framework is:
» Lattice L = (£,C, M, L)
» L has finite height (Ascending Chain Condition)
» All trans, are monotonic

» Guarantees a Fixpoint

A Distributive Framework is:

> A Monotone Framework, where additionally:
» trans, distributes over LI:

transy(x L y) = trans,(x) U transy(y)

for all programs and all x, y, b
» Guarantees that MFP gives Least Fixpoint

35/37

Distributive Problems

» Monotonic:

transy(x Ll y) 3 transy(x) L transp(y)
» Distributive:

transy(x U y) = trans,(x) U transy(y)

» Many analyses fit distributive framework
» Known counter-example: transfer functions on Z :

> [z = x +y]
» Generally:

> depends on > 2 independent inputs
» can produce same output for different inputs

36/37

Summary

» Distributive Frameworks are Monotone Frameworks with
additional property:

transy(x L y) = trans,(x) U transy(y)

for all programs and all x, y, b
> In Distributive Frameworks, MFP produces Least Fixpoint

» Some analyses (Gen/Kill analyses, discussed later) are always
distributive

37/37

