

Data Flow Analysis on CFGs

- ▶ join_h: Join Function
- ▶ trans_b: Transfer Function
- ▶ in_b : knowledge at entrance of b

$$\mathsf{in}_{b_1} = \mathit{join}_{b_1}(\mathsf{out}_{b_2}, \dots, \mathsf{out}_{b_k})$$

▶ **out**_b: knowledge at exit of b

$$\mathsf{out}_{b_1} = \mathit{trans}_{b_1}(\mathsf{in}_{b_1})$$

- Forward Analysis shown here
- ▶ Bakward Analysis: flip edge direction

Join and Transfer Functions

- ► L: Abstract Domain
 - ▶ Ordered by $(\sqsubseteq) \subseteq L \times L$

$$\top \in L$$
 for all $x : x \sqsubseteq \top$ Top element $\bot \in L$ for all $x : \bot \sqsubseteq x$ Bottom element (optional)

- trans_b : $L \rightarrow L$
 - ► monotonic
- ▶ $join_b: L \times ... \times L \rightarrow L$
 - pointwise monotonic

 $trans_b(x) \sqsubseteq trans_b(y)$

Partially Ordered Set

Lattices L are based on a partially ordered set $\langle \mathcal{L}, \sqsubseteq \rangle$:

- ▶ Set: L describes possible information
- \blacktriangleright (\sqsubseteq) $\subseteq \mathcal{L} \times \mathcal{L}$:
- ▶ Intuition for $a \sqsubseteq b$ (for program analysis):
 - ▶ b has at least as much information as a
- ▶ (\sqsubseteq) is a partial order.

$$a \sqsubseteq a$$
 Reflexivity
 $a \sqsubseteq b$ and $b \sqsubseteq a \Longrightarrow a = b$ Antisymmetry
 $a \sqsubseteq b$ and $b \sqsubseteq c \Longrightarrow a \sqsubseteq c$ Transitivity

- Example:
 - $ightharpoonup \mathcal{L} = \{unknown, true, false, true-or-false\}$
 - ▶ unknown ⊑ true ⊑ true-or-false
 - ightharpoonup unknown \sqsubseteq false \sqsubseteq true-or-false

Least Upper Bound

Combining potentially contradictory information:

- ▶ Join operator: (\sqcup) : $\mathcal{L} \times \mathcal{L} \to \mathcal{L}$
- ▶ Pointwise monotonic:

$$a \sqsubseteq a \sqcup b$$
 and $b \sqsubseteq a \sqcup b$

► *Least* element with this property:

$$a \sqsubseteq d$$
 and $b \sqsubseteq d \implies a \sqcup b \sqsubseteq d$

▶ 'Least' ensures that this is the most precise model

Greatest Lower bound

Converse operation:

▶ Meet operator: (\sqcap) : $\mathcal{L} \times \mathcal{L} \to \mathcal{L}$

▶ Pointwise monotonic:

$$a \sqcap b \sqsubseteq a \text{ and } a \sqcap b \sqsubseteq b$$

Greatest element with this property:

$$d \sqsubseteq a \text{ and } d \sqsubseteq b \implies d \sqsubseteq a \sqcap b$$

Lattices

$$L = \langle \mathcal{L}, \sqsubseteq, \sqcap, \sqcup \rangle$$

- ▶ £: Underlying set
- ▶ $(\sqsubseteq) \subseteq \mathcal{L} \times \mathcal{L}$: Partial Order
- ▶ (\sqcup) : $\mathcal{L} \times \mathcal{L} \to \mathcal{L}$: Join (computes l.u.b.)
- ▶ (\sqcap) : $\mathcal{L} \times \mathcal{L} \to \mathcal{L}$: Meet (computes g.l.b.)
- ▶ Unique Join/Meet always exists
- ▶ We can show that (\sqcup) , (\sqcap) have:

```
Commutativity: a \sqcup b = b \sqcup a
Associativity: a \sqcup (b \sqcup c) = (a \sqcup b) \sqcup c
```

(Analogous for \sqcap)

Complete Lattices

A lattice $L = \langle \mathcal{L}, \sqsubseteq, \sqcap, \sqcup \rangle$ is *complete* iff:

- ▶ For any $\mathcal{L}' \subseteq \mathcal{L}$ there exist:
 - ▶ $\top = \coprod \mathcal{L}'$ (least upper bound for arbitrary set)
 - $lackbox \bot = \prod \mathcal{L}'$ (greatest lower bound for arbitrary set)
- Usually trivial in practice (from a CS perspective)
 - ▶ Obvious if *L* is finite
 - ► Counter-example: "Lattice of all finite subsets of N"

Complete Lattices: Visually

Example: Binary Lattice

Example: Booleans

- ▶ If $\mathbb{B} = \{true, false\}$:
 - ightharpoonup Lattice sometimes called $\mathbb{B}_{\perp}^{\top}$
- ▶ Interpretation for data flow e.g.:
 - ightharpoonup \top = true-or-false
 - ▶ ⊥ = unknown
 - ▶ $a \sqcup b$: either a or b
 - ▶ $a \sqcap b$: both a and b

Other interpretations possible

Example: Flat Lattice on Integers

- lacktriangle Sometimes written $\mathbb{Z}_{\perp}^{\top}$
- ightharpoonup $\top = \emptyset$
- $ightharpoonup \perp = \mathbb{Z}$
- ▶ $a \sqcup b = \begin{cases} a & \text{iff} & a = b \\ \top & \text{otherwise} \end{cases}$
- ▶ $a \sqcap b = \begin{cases} a & \text{iff} \quad a = b \\ \bot & \text{otherwise} \end{cases}$

Analogous for other X_{\perp}^{\top} from set X

Example: Type Hierarchy Lattices

- ▶ ☐ constructs most precise supertype
- ▶ ☐ constructs *intersection types*:

java.lang.Comparable □ java.io.Serializable

Java notation:

java.lang.Comparable & java.io.Serializable

14 / 37

Example: Powersets

Example: Lattices and Non-Lattices

Right-hand side is missing e.g. a unique $R \sqcup S$

Example: Natural numbers with 0, ω

Product Lattices

- Assume (complete) lattices:
 - $ightharpoonup L_1 = \langle \mathcal{L}_1, \sqsubseteq_1, \sqcap_1, \sqcup_1, \top_1, \perp_1 \rangle$
 - $\blacktriangleright L_2 = \langle \mathcal{L}_2, \sqsubseteq_2, \sqcap_2, \sqcup_2, \top_2, \perp_2 \rangle$
- ▶ Let $L_1 \times L_2 = \langle \mathcal{L}_1 \times \mathcal{L}_2, \sqsubseteq, \sqcap, \sqcup, \top, \bot \rangle$ where:
 - $ightharpoonup \langle a,b\rangle \sqsubseteq \langle a',b'\rangle$ iff $a\sqsubseteq_1 a'$ and $b\sqsubseteq_2 b'$

 - $ightharpoonup \top = \langle \top_1, \top_2 \rangle$
 - $\blacktriangleright \perp = \langle \perp_1, \perp_2 \rangle$

Point-wise products of (complete) lattices are again (complete) lattices

Summary

- Complete lattices are formal basis for many program analyses
- ▶ Complete lattice $L = \langle \mathcal{L}, \sqsubseteq, \sqcap, \sqcup, \top, \bot \rangle$
 - ▶ £: Carrier set
 - ▶ (□): Partial order
 - ▶ (□): Join operation: find least upper lower bound
 - ▶ (□): Meet operation: find greatest lower bound (not usually necessary)
 - ► T: Top-most element of complete lattice
 - ▶ ⊥: Bottom-most element of complete lattice
- ▶ **Product Lattices**: $L_1 \times L_2$ forms a lattice if L_1 and L_2 are lattices

Monotone Frameworks

Monotone Framework	Lattice
Abstract Domain	$L = \langle \mathcal{L}, \sqsubseteq, \sqcap, \sqcup angle$
$join_b(x_1,\ldots,x_n)$	$x_1 \sqcup \ldots \sqcup x_n$
	$x \sqcap y$ (Not needed)
'Unknown' start value	\perp
'Could be anything' end value	Т

- ▶ Monotone Frameworks (Killdall '77):
 - ► Lattice *L* of *finite height* (= satisfies Ascending Chain Condition)
 - ► Monotone trans_b
 - 'compatible' with semantics
- ⇒ Data flow analysis with Soundness and Termination
- ▶ Don't need \sqcap , so technically we only need a *Semilattice*.

Formalising our Naïve Algorithm

```
\begin{array}{lll} \textbf{out}_0 &=& \textit{trans}_0(\bot) \\ \textbf{out}_1 &=& \textit{trans}_1(\textbf{out}_0 \sqcup \textbf{out}_2) \\ \textbf{out}_2 &=& \textit{trans}_2(\textbf{out}_1) \\ \textbf{out}_3 &=& \textit{trans}_3(\textbf{out}_1) \end{array}
```

- ▶ Lattices \mathbf{out}_0 : L_0 , ..., \mathbf{out}_3 : L_3
- Can build lattice for entire program:
 - $L_{0...3} = L_0 \times L_1 \times L_2 \times L_3$
 - $L_{0...3} = \langle \bot_0, \bot_1, \bot_2, \bot_3 \rangle$
 - Monotone transfer function:

$$trans_{0...3}(\langle v_0, v_1, v_2, v_3 \rangle) = trans_0(v_0),$$
$$\langle trans_1(v_0 \sqcup v_2), \\ trans_2(v_1), \\ trans_3(v_1)$$

Reaching a Solution

- In general:
 - ▶ Program *P*:
 - ► "Program Lattice" L_P
 - $ightharpoonup \perp_P$: initial analysis state
 - ▶ trans_P: Compute one step of naïve analysis
 - ▶ Repeat trans_P until solution fp_⊥:

$$fp_{\perp} = trans_{P}^{n}(\perp_{P})$$

- ightharpoonup n is the minimum number of steps until we have a solution
- fp_{\perp} is Fixpoint of trans_P:

$$\mathit{fp}_{\perp} = \mathit{trans}_{P}(\mathit{fp}_{\perp})$$

► Fixpoint exists **iff** L_P satisfies Ascending Chain Condition

Cousot & Cousot (1979), based on Kleene (1952), based on Knaster & Tarski (1933)

Fixpoints

- ▶ Repeat *trans*_P until we reach a fixpoint
- Can start from any point a
- Multiple fixpoints possible
 - ► Each is a *sound* solution (for *compatible* transfer functions)
 - ► Form a lattice (Knaster-Tarski, 1933)
- ► Least Fixpoint: Highest Precision

Value Range Analysis

'Find value range (interval of possible values) for x'

Python

```
x = 1
while ...:
    if ...:
       x = 4
    else:
       x = 7
```

- ► Multiple possible *sound* solutions:
 - ▼
 - **▶** [-99, 99]
 - **▶** [1, 10]
 - **▶** [1, 7]
- ▶ All of these values are fixpoints
- ▶ [1,7] is least fixpoint

Summary

- Monotone Frameworks:
 - Combine:
 - Monotone transfer functions transb
 - ► Finite-Height Lattices

$$join_b(v_1,\ldots,v_k)=v_1\sqcup\ldots\sqcup v_k$$

- Guarantee:
 - ► Termination
 - Soundness
- With Monotone Frameworks, iterating trans_b and join_b produces Fixpoint (or Fixed Point)
 - ▶ Works from *any* starting point, possibly different fixpoint
 - ► Fixpoints form **Fixpoint Lattice**
 - ▶ Least Fixpoint (Bottom element) is most precise solution
- ► (Soundness only if *trans_b* are *compatible*)

An Algorithm for Fixpoints

- So far: naïve algorithm for computing fixpoint
 - ▶ Produces a fixpoint
 - ► Keeps iterating all trans_b / join_b functions, even if nothing changed
- Optimise processing with worklist
 - ► Set-like datastructure:
 - add element (if not already present)
 - **contains** test: is element present?
 - ▶ pop element: remove and return one element
 - ► Tracks what's left to be done
- ⇒ "MFP" (Minimal Fixed Point) Algorithm (Does not always produce least fixpoint!)

		trans _b		
Ь	inputs	X	y	Z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{l} \textit{join}_{b_{j}}(\langle v_{x_{1}}, v_{y_{1}}, v_{z_{1}} \rangle, \langle v_{x_{2}}, v_{y_{2}}, v_{z_{2}} \rangle) = \\ \langle v_{x_{1}} \cup v_{x_{2}}, v_{y_{1}} \cup v_{y_{2}}, v_{z_{1}} \cup v_{z_{2}} \rangle \end{array}$$

Worklist

 $b_0 \rightarrow b_1$ $b_0 \rightarrow b_4$ $b_1 \rightarrow b_2$ $b_1 \rightarrow b_3$ $b_2 \rightarrow b_4$ $b_2 \rightarrow b_1$ $b_3 \rightarrow b_4$ $b_3 \rightarrow b_1$

		trans _b		
Ь	inputs	X	y	z
b_0	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{l} \textit{join}_{b_{j}}(\langle v_{x_{1}}, v_{y_{1}}, v_{z_{1}} \rangle, \langle v_{x_{2}}, v_{y_{2}}, v_{z_{2}} \rangle) = \\ \langle v_{x_{1}} \cup v_{x_{2}}, v_{y_{1}} \cup v_{y_{2}}, v_{z_{1}} \cup v_{z_{2}} \rangle \end{array}$$

		trans _b		
Ь	inputs	X	y	z
b_0	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	у
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{aligned} \textit{join}_{b_{j}} \big(\langle v_{x_{1}}, v_{y_{1}}, v_{z_{1}} \rangle, \langle v_{x_{2}}, v_{y_{2}}, v_{z_{2}} \rangle \big) = \\ \langle v_{x_{1}} \cup v_{x_{2}}, v_{y_{1}} \cup v_{y_{2}}, v_{z_{1}} \cup v_{z_{2}} \rangle \end{aligned}$$

Worklist $\begin{array}{c} b_0 \rightarrow b_1 \\ b_0 \rightarrow b_4 \\ b_1 \rightarrow b_2 \\ b_1 \rightarrow b_3 \\ b_2 \rightarrow b_4 \\ b_2 \rightarrow b_1 \\ b_3 \rightarrow b_4 \\ b_3 \rightarrow b_1 \end{array}$

		trans _b		
Ь	inputs	X	y	z
b_0	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{l} \textit{join}_{b_{i}}(\langle v_{x_{1}}, v_{y_{1}}, v_{z_{1}} \rangle, \langle v_{x_{2}}, v_{y_{2}}, v_{z_{2}} \rangle) = \\ \langle v_{x_{1}} \cup v_{x_{2}}, v_{y_{1}} \cup v_{y_{2}}, v_{z_{1}} \cup v_{z_{2}} \rangle \end{array}$$

Worklist $\underline{b_0 \rightarrow b_1}$ $b_0 \rightarrow b_4$ $b_1 \rightarrow b_2$ $b_1 \rightarrow b_3$ $b_2 \rightarrow b_4$ $b_2 \rightarrow b_1$ $b_3 \rightarrow b_4$ $b_3 \rightarrow b_1$

		trans _b		
Ь	inputs	X	y	z
b_0	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{aligned} \textit{join}_{b_j} \big(\langle v_{x_1}, v_{y_1}, v_{z_1} \rangle, \langle v_{x_2}, v_{y_2}, v_{z_2} \rangle \big) = \\ \langle v_{x_1} \cup v_{x_2}, v_{y_1} \cup v_{y_2}, v_{z_1} \cup v_{z_2} \rangle \end{aligned}$$

For edge $b_o \rightarrow b_i$:

- ▶ Is $\mathbf{out}_o \not\sqsubseteq \mathbf{in}_i$?
- Yes:
 - ightharpoonup in; := in; \sqcup out_o

Worklist

 $b_0 \rightarrow b_1$ $b_0 \rightarrow b_4$ $b_1 \rightarrow b_2$ $b_1 \rightarrow b_2$

 $b_1 \rightarrow b_3$ $b_2 \rightarrow b_4$

 $b_2 \rightarrow b_1$ $b_2 \rightarrow b_4$

 $b_3 \rightarrow b_4$ $b_3 \rightarrow b_1$

		trans _b		
Ь	inputs	X	y	z
b_0	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{aligned} \textit{join}_{b_i}(\langle v_{x_1}, v_{y_1}, v_{z_1} \rangle, \langle v_{x_2}, v_{y_2}, v_{z_2} \rangle) = \\ \langle v_{x_1} \cup v_{x_2}, v_{y_1} \cup v_{y_2}, v_{z_1} \cup v_{z_2} \rangle \end{aligned}$$

For edge $b_o \rightarrow b_i$:

- ▶ Is $\operatorname{out}_{o} \not \sqsubseteq \operatorname{in}_{i}$?
- Yes:
 - $ightharpoonup in_i := in_i \sqcup out_o$
 - Add all outgoing edges from b_o to worklist (if not already there)

Worklist

 $b_0 \rightarrow b_1$ $b_0 \rightarrow b_4$ $b_1 \rightarrow b_2$ $b_1 \rightarrow b_3$ $b_2 \rightarrow b_4$ $b_2 \rightarrow b_1$

 $b_3 \rightarrow b_4$

 $b_3 \rightarrow b_1$

		trans _b		
Ь	inputs	X	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{c} \textit{join}_{b_{j}}(\langle v_{x_{1}}, v_{y_{1}}, v_{z_{1}} \rangle, \langle v_{x_{2}}, v_{y_{2}}, v_{z_{2}} \rangle) = \\ \langle v_{x_{1}} \cup v_{x_{2}}, v_{y_{1}} \cup v_{y_{2}}, v_{z_{1}} \cup v_{z_{2}} \rangle \end{array}$$

For edge $b_o \rightarrow b_i$:

- ▶ Is out_o $\not\sqsubseteq$ in_i?
- Yes:
 - ightharpoonup in; := in; \sqcup out_o
 - ► Add all outgoing edges from b_o to worklist (if not already there)

Worklist

- $b_0 \rightarrow b_1$ $b_0 \rightarrow b_4$ $b_1 \rightarrow b_2$
- $b_1 \rightarrow b_3$
- $b_2 \rightarrow b_4$ $b_2 \rightarrow b_1$
- $b_3 \rightarrow b_4$
- $b_3 \rightarrow b_1$

		trans _b		
Ь	inputs	X	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{l} \textit{join}_{b_i}(\langle v_{x_1}, v_{y_1}, v_{z_1} \rangle, \langle v_{x_2}, v_{y_2}, v_{z_2} \rangle) = \\ \qquad \qquad \langle v_{x_1} \cup v_{x_2}, v_{y_1} \cup v_{y_2}, v_{z_1} \cup v_{z_2} \rangle \end{array}$$

For edge $b_o \rightarrow b_i$:

- ▶ Is out_o $\not\sqsubseteq$ in_i?
- Yes:
 - ightharpoonup in; := in; \sqcup out_o
 - ► Add all outgoing edges from b_o to worklist (if not already there)

Worklist

 $b_0 \rightarrow b_4$ $b_2 \rightarrow b_4$ $b_2 \rightarrow b_1$

		trans _b		
Ь	inputs	X	y	z
b_0	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_{1}\}$	X	У	у
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$join_{b_{i}}(\langle v_{x_{1}}, v_{y_{1}}, v_{z_{1}} \rangle, \langle v_{x_{2}}, v_{y_{2}}, v_{z_{2}} \rangle) = \\ \langle v_{x_{1}} \cup v_{x_{2}}, v_{y_{1}} \cup v_{y_{2}}, v_{z_{1}} \cup v_{z_{2}} \rangle$$

For edge $b_o o b_i$:

- ▶ Is $\operatorname{out}_o \not\sqsubseteq \operatorname{in}_i$?
- Yes:
 - $ightharpoonup in_i := in_i \sqcup out_o$
 - Add all outgoing edges from b_o to worklist (if not already there)

Worklist

 $b_0
ightarrow b_4 \ b_1
ightarrow b_2 \ \hline b_1
ightarrow b_3 \ b_2
ightarrow b_4 \ b_2
ightarrow b_1 \ b_3
ightarrow b_4$

 $b_3 \rightarrow b_1$

		trans _b		
Ь	inputs	X	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{l} \textit{join}_{b_{i}}(\langle v_{x_{1}}, v_{y_{1}}, v_{z_{1}} \rangle, \langle v_{x_{2}}, v_{y_{2}}, v_{z_{2}} \rangle) = \\ \langle v_{x_{1}} \cup v_{x_{2}}, v_{y_{1}} \cup v_{y_{2}}, v_{z_{1}} \cup v_{z_{2}} \rangle \end{array}$$

For edge $b_o o b_i$:

- ▶ Is $\operatorname{out}_o \not\sqsubseteq \operatorname{in}_i$?
- Yes:
 - $ightharpoonup in_i := in_i \sqcup out_o$
 - Add all outgoing edges from b_o to worklist (if not already there)

Worklist

 $b_0 \rightarrow b_4$ $b_1 \rightarrow b_2$ $b_1 \rightarrow b_3$ $b_2 \rightarrow b_4$ $b_2 \rightarrow b_1$ $b_3 \rightarrow b_4$

 $b_3 \rightarrow b_1$

		trans _b		
Ь	inputs	X	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$join_{b_{i}}(\langle v_{x_{1}}, v_{y_{1}}, v_{z_{1}} \rangle, \langle v_{x_{2}}, v_{y_{2}}, v_{z_{2}} \rangle) = \\ \langle v_{x_{1}} \cup v_{x_{2}}, v_{y_{1}} \cup v_{y_{2}}, v_{z_{1}} \cup v_{z_{2}} \rangle$$

For edge $b_o o b_i$:

- ▶ Is $\mathbf{out}_o \not\sqsubseteq \mathbf{in}_i$?
- Yes:
 - $ightharpoonup in_i := in_i \sqcup out_o$
 - Add all outgoing edges from b_o to worklist (if not already there)

Worklist

$$b_0 \rightarrow b_4$$

 $b_1 \rightarrow b_2$

$$b_2 \rightarrow b_4$$
 $b_2 \rightarrow b_1$
 $b_3 \rightarrow b_4$
 $b_3 \rightarrow b_1$

		trans _b		
Ь	inputs	X	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x+1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$join_{b_{i}}(\langle v_{x_{1}}, v_{y_{1}}, v_{z_{1}} \rangle, \langle v_{x_{2}}, v_{y_{2}}, v_{z_{2}} \rangle) = \\ \langle v_{x_{1}} \cup v_{x_{2}}, v_{y_{1}} \cup v_{y_{2}}, v_{z_{1}} \cup v_{z_{2}} \rangle$$

For edge $b_o o b_i$:

- ▶ Is $\mathbf{out}_o \not\sqsubseteq \mathbf{in}_i$?
- Yes:
 - $ightharpoonup in_i := in_i \sqcup out_o$
 - Add all outgoing edges from b_o to worklist (if not already there)

Worklist

 $b_0 \rightarrow b_4$ $b_1 \rightarrow b_2$

 $b_2 \rightarrow b_4$ $b_2 \rightarrow b_1$ $b_3 \rightarrow b_4$ $b_3 \rightarrow b_1$

		trans _b		
Ь	inputs	X	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{l} \textit{join}_{b_i}(\langle v_{x_1}, v_{y_1}, v_{z_1} \rangle, \langle v_{x_2}, v_{y_2}, v_{z_2} \rangle) = \\ \qquad \qquad \langle v_{x_1} \cup v_{x_2}, v_{y_1} \cup v_{y_2}, v_{z_1} \cup v_{z_2} \rangle \end{array}$$

For edge $b_o o b_i$:

- ▶ Is $\mathbf{out}_o \not\sqsubseteq \mathbf{in}_i$?
- Yes:
 - $ightharpoonup in_i := in_i \sqcup out_o$
 - Add all outgoing edges from b_o to worklist (if not already there)

Worklist

$$b_0 \rightarrow b_4$$

 $b_1 \rightarrow b_2$

$$b_2 \rightarrow b_4$$
 $b_2 \rightarrow b_1$
 $b_3 \rightarrow b_4$
 $b_3 \rightarrow b_1$

		trans _b		
Ь	inputs	X	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{c} \textit{join}_{b_i}(\langle v_{x_1}, v_{y_1}, v_{z_1} \rangle, \langle v_{x_2}, v_{y_2}, v_{z_2} \rangle) = \\ \langle v_{x_1} \cup v_{x_2}, v_{y_1} \cup v_{y_2}, v_{z_1} \cup v_{z_2} \rangle \end{array}$$

For edge $b_o \rightarrow b_i$:

- ▶ Is $\mathbf{out}_o \not\sqsubseteq \mathbf{in}_i$?
- Yes:
 - $ightharpoonup in_i := in_i \sqcup out_o$
 - Add all outgoing edges from b_o to worklist (if not already there)

Worklist

$$\begin{array}{c} b_0 \rightarrow b_4 \\ b_1 \rightarrow b_2 \end{array}$$

$$b_2 \rightarrow b_4$$
 $b_2 \rightarrow b_1$
 $b_3 \rightarrow b_4$
 $b_3 \rightarrow b_1$

		trans _b		
Ь	inputs	X	y	z
b_0	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
b_2	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$join_{b_{i}}(\langle v_{x_{1}}, v_{y_{1}}, v_{z_{1}} \rangle, \langle v_{x_{2}}, v_{y_{2}}, v_{z_{2}} \rangle) = \\ \langle v_{x_{1}} \cup v_{x_{2}}, v_{y_{1}} \cup v_{y_{2}}, v_{z_{1}} \cup v_{z_{2}} \rangle$$

For edge $b_o \rightarrow b_i$:

- Yes:
 - ightharpoonup in; := in; \sqcup out_o
 - ► Add all outgoing edges from b_o to worklist (if not already there)

Worklist

$$b_0 \rightarrow b_4$$

 $b_1 \rightarrow b_2$

$$b_2 \rightarrow b_4$$

 $b_2 \rightarrow b_1$
 $b_3 \rightarrow b_4$

		trans _b		
Ь	inputs	X	y	z
b_0	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
b_2	$\{b_1\}$	X	7	Z
b_3	$\{b_1\}$	X	У	у
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{l} \textit{join}_{b_{j}}(\langle v_{x_{1}}, v_{y_{1}}, v_{z_{1}} \rangle, \langle v_{x_{2}}, v_{y_{2}}, v_{z_{2}} \rangle) = \\ \qquad \qquad \langle v_{x_{1}} \cup v_{x_{2}}, v_{y_{1}} \cup v_{y_{2}}, v_{z_{1}} \cup v_{z_{2}} \rangle \end{array}$$

For edge $b_o \rightarrow b_i$:

- ▶ Is out_o ot in_i?
- Yes:
 - $ightharpoonup in_i := in_i \sqcup out_o$
 - Add all outgoing edges from be to worklist (if no Re-add previously

removed edge

Worklist

 $b_0 \rightarrow b_4$ $b_1 \rightarrow b_2$

 $b_2 \rightarrow b_4$ $b_2 \rightarrow b_1$

 $b_3 \rightarrow b_1$ $b_3 \rightarrow b_4$

 $\rightarrow b_1 \rightarrow b_3$

The MFP Algorithm

```
Procedure MFP(\bot, \Box, \subseteq, CFG, trans_-, is-backward):
begin
  if is-backward then reverse edges(CFG);
  worklist := edges(CFG); -- edges that we need to look at
  foreach n \in nodes(CFG) do
    in[n] := \bot; -- state of the analysis
  done
  while not empty(worklist) do
    \langle n, n' \rangle := pop(worklist); -- Edge <math>n \to n'
         -- OPTIONAL: cache out [n] = trans_n(in[n]) here
    if trans_n(in[n]) \not\sqsubseteq in[n'] then begin
       in[n'] := in[n'] \sqcup trans_n(in[n]);
       foreach n'' \in successor-nodes(CFG, n') do
         push(worklist, \langle n', n'' \rangle);
       done
    end
  done
  return in;
end
```

Summary: MFP Algorithm

- ▶ **Product Lattice** allows analysing multiple variables at once
- Compute data flow analysis:
 - ightharpoonup Initialise all nodes with ot
 - ▶ Repeat until nothing changes any more:
 - ► Apply transfer function
 - ▶ Propagate changes along control flow graph
 - ► Apply ⊔
- Compute fixpoint
- ▶ Use worklist to increase efficiency
- Distinction: Forward/Backward analyses

MFP revisited

Consider **Reaching Definitions** again, with different lattice:

- ▶ All subsets of $\{\ell_0, \ldots, \ell_4\}$
- Finite height
- $ightharpoonup \sqcup = \cup$

MFP revisited: Transfer Functions

$$trans_{b_0} = [x \mapsto \{\ell_0\}, y \mapsto \{\ell_1\}, z \mapsto \{\ell_2\}]$$
 $trans_{b_1} = [x \mapsto \{\ell_3\}]$
 $trans_{b_2} = [y \mapsto \{\ell_4\}]$
 $trans_{b_3} = [z \mapsto y]$

MFP solution

$$\begin{array}{ccc} x & \mapsto & \{\ell_0, \ell_3\} \\ y & \mapsto & \{\ell_1, \ell_4\} \\ z & \mapsto & \{\ell_1, \ell_2, \ell_4\} \end{array}$$

- Least Fixpoint!
- ▶ Do we always get LFP from MFP?

▶ Lattice: \mathbb{Z}_{+}^{\top}

▶ Lattice: \mathbb{Z}_{+}^{\top}

▶ Lattice: \mathbb{Z}_{+}^{\top}

- ▶ Lattice: $\mathbb{Z}_{\perp}^{\top}$
 - ▶ $1 \sqcup 3 = \top = 3 \sqcup 1$

- ▶ Lattice: $\mathbb{Z}_{\perp}^{\top}$
 - $ightharpoonup 1 \sqcup 3 = \top = 3 \sqcup 1$
- ▶ No, MFP does not always compute the Least Fixpoint!

Distributive Frameworks

A Monotone Framework is:

- ▶ Lattice $L = \langle \mathcal{L}, \sqsubseteq, \sqcap, \sqcup \rangle$
- ► L has finite height (Ascending Chain Condition)
- ▶ All trans_b are monotonic
- Guarantees a Fixpoint

A Distributive Framework is:

- A Monotone Framework, where additionally:
- ▶ trans_b distributes over \(\square\$:

$$trans_b(x \sqcup y) = trans_b(x) \sqcup trans_b(y)$$

for all programs and all x, y, b

Guarantees that MFP gives Least Fixpoint

Distributive Problems

Monotonic:

$$trans_b(x \sqcup y) \supseteq trans_b(x) \sqcup trans_b(y)$$

Distributive:

$$trans_b(x \sqcup y) = trans_b(x) \sqcup trans_b(y)$$

- ▶ Many analyses fit distributive framework
- ▶ Known *counter-example*: transfer functions on $\mathbb{Z}_{\perp}^{\top}$:
 - $\triangleright [z \mapsto x + y]$
 - Generally:
 - ▶ depends on ≥ 2 independent inputs
 - ▶ can produce same output for different inputs

Summary

▶ **Distributive Frameworks** are *Monotone Frameworks* with additional property:

$$trans_b(x \sqcup y) = trans_b(x) \sqcup trans_b(y)$$

for all programs and all x, y, b

- ▶ In Distributive Frameworks, MFP produces Least Fixpoint
- Some analyses (Gen/Kill analyses, discussed later) are always distributive