
EDAP15: Program Analysis
INTRODUCTION

Christoph Reichenbach

Welcome!

I EDAP15: Program Analysis
I Instructor: Christoph Reichenbach

christoph.reichenbach@cs.lth.se
I Teaching Assistant: Noric Couderc

noric.couderc@cs.lth.se
I Course Homepage:

http://cs.lth.se/EDAP15

2 / 48

http://cs.lth.se/EDAP15

Course Format

I Completely Online
I Lectures

I Lectures are recorded, available later
I Later lectures may be flipped, will announce
I Questions:

I Ask in Zoom text chat
I Online forum

I Online Quizzes
I Group Exercises
I Oral Exam

3 / 48

Topics

I Concepts and techniques for understanding programs
I Analysing program structure
I Analysing program behaviour

I Language focus: Teal, a teaching language
I Concepts generalise to other mainstream languages:

I Imperative
I Object-Oriented

4 / 48

Goals

I Understand:
I What is program analysis (not) good for?
I What are strenghts and limitations of given analyses?
I How do analyses influence on each other?
I How do programming language features influence analyses?
I What are some of the most important analyses?

I Be able to:
I Implement typical program analyses
I Critically assess typical program analyses

5 / 48

Resources

I Course website (http://cs.lth.se/EDAP15)
I Links to everything listed here
I List of expected skills
I Slides
I Announcements

I Textbooks
I Moodle

I Quizzes
I Videos
I Forum

I Course git (GitLab)
I Homework assignments

6 / 48

http://cs.lth.se/EDAP15

Textbooks

Static Program AnalysisStatic Program Analysis
Møller & Schwartzbach
I Optional
I PDF online from authors

Principles of Program AnalysisPrinciples of Program Analysis
Nielson, Nielson & Hankin

I Optional
I 3 copies in the library
I Theory-driven

7 / 48

How to Pass
I 2020-11-04 18:00: Form Groups of 2

I Must be completed this Wednesday, 18:00
I Contact Noric if you can’t find a partner

I Homework projects:
I Who: Groups
I What: Implement program analyses in Teal

I HW1/HW6 are standalone
I HW2–4 build on each other

I Start: Homework up every Friday
I Grading:

I Submit solutions in course git
I Explain solution to TA

I Deadline:
I HW1–5: Thursday 20:00, 13 days after homework is up
I HW6: 2021-01-12, 20:00

I Final Exam starting 2021-01-15
I Admission: Passed all homework projects
I Format: oral exam

8 / 48

Uses of Program Analysis

Static Analysis

Dynamic Analysis

x Program

IDE

Program
Understanding I Highlighting

I Search
I Refactoring

Compiler

Optimisation

Language
Runtime

Testing Profiling

Automatic
Repair

Adaptive
Optimisation

Static
CheckerBug-checking,

verification

9 / 48

Categories of Program Analyses

Static Analysis

Dynamic Analysis

I Examines structure
I Sees entire program

(mostly. . .)

I Interactive Theorem
Provers

I (Most) Type Checkers
I Static Checkers
(FindBugs,
SonarQube, . . .)

I Compiler Optimisers

I Examines behaviour
I Sees interactions

program ↔ world

I Debuggers I Unit Tests
I Benchmarks
I Profilers

Manual / Interactive AutomaticManual / Interactive Automatic

Our Focus
10 / 48

Summary
I Program analyses used in Software Tools:

I IDEs
I Compilers
I Bug Checkers
I Run-time systems
. . .

I Main Categories:
I Static Analysis:
Examine program structure

I Dynamic Analysis:
Examine program run-time behaviour

I Automatic Analysis:
“Black Box”: Minimal user interaction

I Manual / Interactive Analysis:
User in the loop

I Advanced manual analyses exploit automatic analysis
11 / 48

Examples of Program Analysis

Questions:
I ‘Is the program well-formed?’

gcc -c program.c
javac Program.java

At least for C, C++, Java; not so easy for JavaScript!
I ‘Does my factorial function produce the right input in the
range 0–5?’

Java
@Test // Unit Test
public void testFactorial() {

int[] expected = new int[] { 1, 1, 2, 6, 24, 120 };
for (int i = 0; i < expected.length; i++) {

assertEquals(expected[i], factorial(i));
} }

12 / 48

Let’s Analyse a Program!

I MISRA-C standard specifies:
“The library functions . . . , gets, . . . shall not be used.”

I Given some program.c:
user@host$ grep ’gets’ program.c # string search

gets(input_buffer);
/* The code below gets the system configuration */
int failed_gets_counter = 0;

user@host$

At least 2 of 3 resuls were wrong: “False Positives”

13 / 48

A First Challenge, Continued
user@host$ grep ’gets(’ program.c

gets(input_buffer);
user@host$

I More precise: no false positives!
I Will this catch all calls to gets?

C: program2.c
#include <stdio.h>
void f(char* target_buffer) {

char *(*dummy)(char*) = gets;
dummy(target_buffer);

}

String search not smart enough: “False Negative”

14 / 48

A First Challenge, Continued Again

C: program2.c
#include <stdio.h>
void f(char* target_buffer) {

char *(*dummy)(char*) = gets;
dummy(target_buffer);

}

user@host$ cc -c program.c -o program.o
user@host$ nm program.o

check symbol table in compiled program
0000000000000000 T f

U gets ←− Aha!
U _GLOBAL_OFFSET_TABLE_

user@host$

Using a more powerful analysis yielded better results
15 / 48

A First Challenge, Solved?

C: program3.c
#include<stdio.h>
#include<dlfcn.h>
int f(char* target_buffer) {

void* handle = dlopen("/lib/x86_64-linux-gnu/libc.so.6",
RTLD_LAZY);

void* sym = dlsym(handle, "gets");
void(*p)(char*) = sym;
p(target_buffer);
return 0;

}

I Dynamic library loading: gets will not show up in symbol
table

Fancier program =⇒ harder analysis
16 / 48

Analysis vs. Property-of-Interest

I Distinguish:
I Property of interest: P

I All lines that reference gets
I Does the program type-check?
I Where does the program spend most execution time?

I Analysis A that should find P
I Want for all programs ϕ:

P(ϕ) = A(ϕ)

I Key questions:
I What data does P depend on?
I How can A compute P from that data?
I How can A access that data?

I Can A access all relevant data?
17 / 48

And How Good Is It?

I As we saw, program analyses may be incorrect
I We often describe them with Information Retrieval
terminology:

A(ϕ) not A(ϕ)
P(ϕ) True Positive False Negative
not P(ϕ) False Positive True Negative

I #Reports = #True Positives + #False Positives
I Precision = #True Positives

#Reports
“What fraction of our reports was in P?”

I Recall = #True Positives
#True Positives+#False Negatives

“What fraction of P did we find?”
I #False Negatives is usually impossible to determine in
program analysis

18 / 48

Summary

I Purpose of program analysis A:
I Compute Property-of-interest P

I Program Analysis is nontrivial
I Programs can hide information that A wants
I Analysis A can misunderstand parts of the program

19 / 48

Soundness and Completeness

Can we always build a A with A(ϕ) = P(ϕ)?
I Connection to Mathematical Logic:

I Assume P is boolean
I A is sound (with respect to P) iff:

A(ϕ) =⇒ P(ϕ) (Perfect Precision)

I A is complete (with respect to P) iff:

P(ϕ) =⇒ A(ϕ) (Perfect Recall)

I A(ϕ) = P(ϕ) iff A is both sound & complete

What if P(ϕ) checks whether ϕ terminates?

20 / 48

The Bottom Line

“Everything interesting about the behaviour
of programs is undecidable.”

— H.G. Rice [1953], paraphrased by Anders Møller

We must choose:
I Soundness
I Completeness
I Decidability
. . . pick any two.

21 / 48

Soundness and Completeness: Caveat

P

Acomplete Asound

P

I Beware: “sound” and “complete” be confusing:
I Example: P(ϕ) is “ϕ has a bug”
I If you now want to check P, the negation of P:

I P(ϕ) is “ϕ does not have a bug”
I Acomplete (= run Acomplete and invert output) is sound wrt P

I Asound is complete wrt P

Sound and Complete have converse meanings for P and P!

22 / 48

Soundness and Completeness: Caveat

P

Acomplete Asound

P

I Beware: “sound” and “complete” be confusing:
I Example: P(ϕ) is “ϕ has a bug”
I If you now want to check P, the negation of P:

I P(ϕ) is “ϕ does not have a bug”
I Acomplete (= run Acomplete and invert output) is sound wrt P
I Asound is complete wrt P

Sound and Complete have converse meanings for P and P!

22 / 48

Summary
I Given property P and analysis A:

I A is sound if it triggers only on P
P = “program has bug”: A reports only bugs

I A is complete if it always triggeres on P
P = “program has bug”: A reports all bugs

I If P is nontrivial (i.e., depend on behaviour):

Decidable

Sound CompletePartial

∅
Conservative Optimistic

23 / 48

Building a Program Analysis
Input Program

Language
Frontend

Language
Runtime

Fact Extraction

Language
Definition

Theory

Specialised
Theory

Model

Abstraction

Step 1:

Step 2: ???

Step 3:

Analysis Result

Analysis Core

Language
Frontend

Language
Runtime

Language
Definition

Theory

Starting Points

24 / 48

Building a Program Analysis
Input Program

Language
Frontend

Language
Runtime

Fact Extraction

Language
Definition

Theory

Specialised
Theory

Model

Abstraction

Step 1:

Step 2: ???

Step 3:

Analysis Result

Analysis Core

Language
Frontend

Language
Runtime

Language
Definition

Theory

Starting Points

24 / 48

Gathering Our Tools

The Java® Language

Specification
Java SE 8 Edition

James Gosling

Bill Joy

Guy Steele

Gilad Bracha

Alex Buckley

2015-02-13

Theories Language
Definitions Tools

Analysis
Frame-
works

Astrée

Compilers

Hardware
25 / 48

Language Definitions
I Pure theory
I Define structure (syntax) and meaning (semantics) of
language

I Abstracts over many details
Syntax example:Syntax example:

e ::= zero
| one
| 〈e〉+〈e〉
| 〈e〉-〈e〉
| neg 〈e〉
| (〈e〉)
| log 〈e〉

I Property of Interest: Does a given program ϕ ∈ e compute
a positive number?

First, we must understand the language semantics 26 / 48

Language Definitions: Semantics

I Language Definitions also specify Semantics:
I Static Semantics:

I Connect parts of the program structure (variables, functions,
classes, . . .)

I Enforce restrictions (e.g., via type checking)
I Dynamic Semantics:

I Specify program run-time behaviour
I We will (mostly) treat semantics informally in this course
I Here: assume “obvious” semantics

27 / 48

Simplifying the Lanugage
I Let’s make it easier to analyse the language
I We don’t need parentheses for the analysis
I a-b = a+neg b
⇒ Abstraction (we join similar problems into one)

I log is too difficult
⇒ Restrict to sub-language (give up on some problems)

e ::= zero
| one
| 〈e〉+〈e〉

| neg 〈e〉

Simplification helps us get started, but restricting to a
sublanguage can quickly render an analysis impractical

28 / 48

Finding a Good Theory

I Recall: P(ϕ) should detect if ϕ computes positive result
I There are many theories for program analysis
I We pick Abstract Interpretation (Patrick & Radhia Cousot):

I Map all values to a simpler abstract domain
I Map all operations so they respect the abstraction

I For example: classify programs into abstract domain
containing:
I D0: Computes 0
I D+: Computes a positive value
I D−: Computes a negative value

I Notation: ϕ ;D a , where a is one of D0, D+, D−

29 / 48

Semantics
e ::= zero

| one
| 〈e〉+〈e〉
| neg 〈e〉

	 D0 = D0

	 D+ = D−
	 D− = D+

	 D? = D?

a1 ⊕ a2 =

D+ D0 D−

D+ D+ D+ D?

D0 D+ D0 D−
D− D? D− D−

D? ⊕ a = D? = a ⊕ D?

zero ;D D0 one ;D D+

if x ;D a then
neg x ;D 	 a

if x ;D a1 and y ;D a2 then
x + y ;D a1 ⊕ a2

30 / 48

Correspondence: Concrete and Abstract

· · · · · ·−3 −2 −1 0 1 2 3 D− D0 D+

D?

Also:
I	 “is compatible with” neg
I⊕ “is compatible with” +

Abstract Interpretation explores these ideas in great detail 31 / 48

Building a Better Analysis

Property of Interest: Does a given program ϕ ∈ e compute a
positive number?

e ::= zero
| one
| 〈e〉+〈e〉
| 〈e〉-〈e〉
| neg 〈e〉
| (〈e〉)
| log 〈e〉

I How else could we analyse this for a given program ϕ?
I Just run ϕ and check the result
I In general: only feasible for very restricted languages
I Infeasible as soon as we add parameters or recursion

32 / 48

Summary

I We can mathematically formalise syntax and semantics
I Semantics derive from syntax
I Abstract Interpretation: Theory for program analysis

I Map program semantics into abstract domain
I Map operations to compatible operations on abstract domain
I Challenge: remain precise yet decidable
I Foundation to other static analysis theories

33 / 48

Some Theories: Dynamic

I Testing
I Input Generation and Fuzzing
Call program with “random” inputs to see if it crashes
I Dynamic Invariant Detection
Record program behaviour, describe concisely (e.g., “always
returns zero”)

I Test Generation
Automatically build test suite to capture current behaviour

I Monitoring
Capture which parts of the code execute

I Benchmarking
Measure resource usage (time, memory, bandwidth)

34 / 48

Some Theories: Static

I Abstract Interpretation
I Type Theory
3 : Int

I Dataflow Analysis Theory
What values can my variables store?

I Hoare Logic
If x > y holds before I run x := x-1, is x ≥ y true?

I Symbolic Execution
Use SMT solving to find properties of variables and possible
execution paths

I Model Checking
Given some formal model (e.g., a FSM), does it describe my
code?

I Statistical Analysis

35 / 48

Program Execution Pipeline

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Static
Linker

Binary

Libraries

Lo
ad
er

Interpreter

Dynamic
Linker

Dynamic
Compiler

java

Operating
System

Hardware

program.py

python

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders
Instrumentable

We can instrument and
analyse all of these (to
some degree)

36 / 48

Program Execution Pipeline

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Static
Linker

Binary

Libraries

Lo
ad
er

Interpreter

Dynamic
Linker

Dynamic
Compiler

java

Operating
System

Hardware

program.py

python

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders
Instrumentable

We can instrument and
analyse all of these (to
some degree)

36 / 48

Program Execution Pipeline

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Binary

Libraries

Lo
ad
er

Interpreter

Dynamic
Linker

Dynamic
Compiler

java

Operating
System

Hardware

program.py

python

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders

Instrumentable

We can instrument and
analyse all of these (to
some degree)

36 / 48

Program Execution Pipeline

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Static
Linker

Binary

Libraries

Lo
ad
er

Interpreter

Dynamic
Linker

Dynamic
Compiler

java

Operating
System

Hardware

program.py

python

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders

Instrumentable

We can instrument and
analyse all of these (to
some degree)

36 / 48

Static vs. Dynamic Program Analyses
Static Analysis Dynamic Analysis

Principle Analyse program
structure

Analyse program execution

Input
Independent Depends on input

Hardware/OS
Independent Depends on hardware and OS

Perspective
Sees everything Sees that which actually happens

Completeness
(bug-finding) Possible Must try all possible inputs. . .
Soundness
(bug-finding) Possible Always, for free

37 / 48

Summary
I Preprocessor: Transforms source code before compilation
I Static compiler: Tranlates source code into executable
(machine or intermediate) code

I Interpreter: Step-by-step execution of source or
intermediate code

I Dynamic (JIT) compiler: Translates code into
machine-executable code

I Loader: System tool that ensures that OS starts executing
another program

I Linker: System tool that connects references between
programs and libraries
I Static linker: Before running
I Dynamic linker: While running

I Machine code: Code that is executable by a machine
I Static Analysis: Analyse program without executing it
I Dynamic Analysis: Analyse program execution

38 / 48

Java lexing
i n t i ;
i f (2 > 0) {

i = "One" ;
}
return i ;

int i ; if (2 > 0) i = "One" ; return i ;

Lexing / Tokenisation

39 / 48

Java lexing & parsing

int i ; if (2 > 0) i = "One" ; return i ;

int ; if (>) = ; return ;id num num id str id

Lexemes

Tokens

stmt

dstmt

type

prim-ty
decls

decl

id

stmt

ifstmt

stmt

assign

aop
expr

strid

expr

binexpr

binop
expr

num

expr

num

stmt

return

expr

id

stmt

block

CST = parse tree
AST
attr block

ifstmt

returndstmt

prim-ty
decls

id

binexpr

num num

assign

strid

return

id

int i 2 > 0 i = "One" i

40 / 48

Parsing in general
Translate text files into meaningful in-memory structures
I CST = Concrete Syntax Tree

I Full “parse”, cf. language BNF grammar
I Not usually materialised in memory

I AST = Abstract Syntax Tree
I Standard in-memory representation
I Avoids syntactic sugar from CST, preserves important
nonterminals as AST nodes

I Converts useful tokens into attributes
I The AST is the most common Intermediate
Representation (IR) of program code
I Effective for frontend analyses
I Other IRs focus e.g. on optimisations in the backend

Program analysis starts on the AST
41 / 48

In-Memory Representation

int i 2 > 0 i = "One" i

prim-ty id

decls

dstmt

binexpr

num num strid

assign

id

return

ifstmt

block

Typical in-memory representations for this AST:
I Algebraic values (functional)
I Records (imperative)

42 / 48

In-Memory Representation

dstmt
type:

decls-list:
prim-ty: int

id : i

ifstmt
cond:

true:
false:

binexpr: >
lhs:
rhs:

num: 2
num: 0

assign: =
lhs:
rhs:

id: i
str: "One"

return id : i

43 / 48

Program Analysis
We run numerous code analyses on the AST:
I Name Analysis:

I Which name use binds to which declaration?
I Type Analysis:

I What are the types of all expressions?
I Static Correctness Checks:

I Are there type errors?
I Is a variable unused?
I Are we initialising all variables?
. . .

I Optimisations:
I Can we speed up the program somehow?

Advanced static correctness checks increasingly common
in compilers

44 / 48

Name Analysis

dstmt
type:

decls-list:
prim-ty: int

id : i

ifstmt
cond:

true:
false:

binexpr: >
lhs:
rhs:

num: 2
num: 0

assign: =
lhs:
rhs:

id: iid: i
str: "One"

return id : iid : i

45 / 48

Type Analysis

dstmt
type:

decls-list:
prim-ty: int

id : i

ifstmt
cond:

true:
false:

binexpr: >
lhs:
rhs:

num: 2
num: 0

assign: =
lhs:
rhs: str: "One"str: "One"int: 1

return

int

Type

int
int

int, int → boolean (OK)

int
String

int, String → ? (TYPE ERROR)

int

int, int → int (OK)

Let’s fix the program...

46 / 48

Summary

I Compiler represents programs in intermediate
representations (IRs)

I Compiler can be separated into:
I Frontend: process incoming source code, generate IR
I Middle-end: optimise IR
I Back-end: translate IR into executable code

I Parser matches concrete syntax tree (CST), generates
abstract syntax tree (AST)

I Typical analyses on AST:
I Name analysis: which variable use belongs to which definition?
I Type analysis: do variable/operator/function types agree?
Any implicit conversions needed?
. . .

47 / 48

Outlook

I Remember:
I Join Moodle if you have not done so yet
I Form groups by Wednesday, 18:00!

I Next Lecture (Wednesday, same channel):
I Type-Based Analysis

http://cs.lth.se/EDAP15

48 / 48

http://cs.lth.se/EDAP15

