LUND =0

UNIVERSITY

f ' EDAP15: Program Analysis

INTRODUCTION

Christoph Reichenbach

Welcome!

» EDAP15: Program Analysis

» Instructor: Christoph Reichenbach
christoph.reichenbach@cs.1lth.se

» Teaching Assistant: Noric Couderc
noric.couderc@cs.lth.se

» Course Homepage:
http://cs.1lth.se/EDAP15

2/48

http://cs.lth.se/EDAP15

Course Format

» Completely Online
> Lectures

» Lectures are recorded, available later

» Later lectures may be flipped, will announce
» Questions:

> Ask in Zoom text chat
> Online forum

> Online Quizzes
» Group Exercises
» Oral Exam

3/48

Topics

» Concepts and techniques for understanding programs
» Analysing program structure
» Analysing program behaviour

» Language focus: Teal, a teaching language
» Concepts generalise to other mainstream languages:

> Imperative
> Object-Oriented

4/48

Goals

» Understand:
> What is program analysis (not) good for?
» What are strenghts and limitations of given analyses?
» How do analyses influence on each other?
» How do programming language features influence analyses?
» What are some of the most important analyses?
» Be able to:

» Implement typical program analyses
» Critically assess typical program analyses

5/48

Resources

» Course website (http://cs.1th.se/EDAP15)
» Links to everything listed here
» List of expected skills
» Slides
» Announcements
» Textbooks
» Moodle

» Quizzes
» Videos
» Forum

» Course git (GitLab)

» Homework assignments

6/48

http://cs.lth.se/EDAP15

Textbooks

Static Program Analysis

Principles of Program Analysis

Mgller & Schwartzbach
» Optional
» PDF online from authors

Nielson, Nielson & Hankin

Principles
of Program
+_Analysis

» Optional
» 3 copies in the library
» Theory-driven

7/48

How to Pass

»2020-11-04 18:00: Form Groups of 2
» Must be completed this Wednesday, 18:00
» Contact Noric if you can't find a partner
» Homework projects:
» Who: Groups
» What: Implement program analyses in Teal
» HW1/HWG6 are standalone
» HW2-4 build on each other
» Start: Homework up every Friday
» Grading:
> Submit solutions in course git
» Explain solution to TA
» Deadline:
» HW1-5: Thursday 20:00, 13 days after homework is up
» HW6: 2021-01-12, 20:00
» Final Exam starting 2021-01-15
» Admission: Passed all homework projects
» Format: oral exam

8/48

Uses of Program Analysis

y

Static

Checker Static Analysis

Bug-checking, Optimisation

verification

i Program Program Compiler

Automatic | Adaptive

A Understanding » Highlighting
» Search
) ‘ WEEN SRS es e W es[8le 75
AT T Repair Optimisation
IDE @anguage i’
Runtime

» Refactoring
Testing Profiling
(Testing][Profiling

Il

Dynamic Analysis

Categories of Program Analyses

(" N T\
Manual / Interactive

Static Analysis

> Examines structure

> Sees entire program
(mostly. . .)

Automatic

Interactive Theorem
Provers

Dynamic Analysis

> Examines behaviour

> Sees interactions
program < world

> (Most) Type Checkers

» Static Checkers
(FindBugs,
SonarQube, ...)

» Compiler Optimisers

Debuggers

> Unit Tests
» Benchmarks
> Profilers

Our Focus P

10/48

Summary

» Program analyses used in Software Tools:
> IDEs
» Compilers
» Bug Checkers
» Run-time systems

» Main Categories:
» Static Analysis:
Examine program structure
» Dynamic Analysis:
Examine program run-time behaviour
» Automatic Analysis:
“Black Box": Minimal user interaction

> Manual / Interactive Analysis:
User in the loop

» Advanced manual analyses exploit automatic analysis

11/48

Examples of Program Analysis

Questions:

> ‘Is the program well-formed?’
gcc —c program.c
javac Program. java
At least for C, C++, Java; not so easy for JavaScript!

» ‘Does my factorial function produce the right input in the
range 0-57'

Java
@Test // Unit Test
public void testFactorial() {
int[] expected = new int[] { 1, 1, 2, 6, 24, 120 };
for (int i = 0; i < expected.length; i++) {
assertEquals(expected[i], factorial(i));

3

12/48

Let’s Analyse a Program!

» MISRA-C standard specifies:
“The library functions ..., gets, ...shall not be used.”

» Given some program.c:

user@host$ grep ’gets’ program.cl # string search
gets(input_buffer);
/* The code below gets the system configuration */
int failed_gets_counter = 0;
user@host$ I

At least 2 of 3 resuls were wrong: “False Positives”

13/48

A First Challenge, Continued

user@host$ grep ’gets(’ program.c
gets (input_buffer);
user@host$
» More precise: no false positives!

» Will this catch all calls to gets?

C: program2.c

#include <stdio.h>

void f(char* target_buffer) {
char *(*dummy) (char*) = gets;
dummy (target_buffer) ;

String search not smart enough: “False Negative”

14 /48

A First Challenge, Continued Again

C: program2.c

#include <stdio.h>

void f(char* target_buffer) {
char *(*dummy) (char*) = gets;
dummy (target_buffer) ;

}

user@host$ cc -c program.c -o program.ol
user@host$ nm program.o
check symbol table in compiled program
0000000000000000 T £
U gets <— Ahal
U _GLOBAL_OFFSET_TABLE_
user@host$ I

Using a more powerful analysis yielded better results

15/48

A First Challenge, Solved?

C: program3.c

#include<stdio.h>
#include<dlfcn.h>
int f(char* target_buffer) {
void* handle = dlopen("/1lib/x86_64-1linux-gnu/libc.so.6",
RTLD_LAZY) ;
void* sym = dlsym(handle, "gets");
void(*p) (char*) = sym;
p(target_buffer);
return O;

» Dynamic library loading: gets will not show up in symbol
table

Fancier program — harder analysis

16/48

Analysis vs. Property-of-Interest

» Distinguish:
» Property of interest: P

> All lines that reference gets
> Does the program type-check?
> Where does the program spend most execution time?

» Analysis A that should find P
> Want for all programs ¢:

» Key questions:

» What data does P depend on?

» How can A compute P from that data?
» How can A access that data?

> Can A access all relevant data?

17/48

And How Good Is It?

» As we saw, program analyses may be incorrect

» We often describe them with Information Retrieval
terminology:

| Al») | not A(y)
P(y) True Positive | False Negative

not P(y) || False Positive | True Negative
» #Reports = #True Positives + #False Positives

ision — - 1rue Positives
> PreClSIOI’I — #Reports

“What fraction of our reports was in P?"

o # True Positives
> Recall = #True Positives++#False Negatives

“What fraction of P did we find?”

» #False Negatives is usually impossible to determine in
program analysis

18/48

Summary

» Purpose of program analysis A:
» Compute Property-of-interest P
» Program Analysis is nontrivial

» Programs can hide information that A wants
» Analysis A can misunderstand parts of the program

19/48

Soundness and Completeness

Can we always build a A with A(yp) = P(p)?

» Connection to Mathematical Logic:

» Assume P is boolean
» A is sound (with respect to P) iff:

A(p) = P(p) (Perfect Precision)
» A is complete (with respect to P) iff:
P(¢) = A(y) (Perfect Recall)

» A(p) = P(yp) iff A is both sound & complete

What if P(p) checks whether ¢ terminates?

20/48

The Bottom Line

“Everything interesting about the behaviour
of programs is undecidable.”
— H.G. Rice [1953], paraphrased by Anders Mgller

We must choose:
» Soundness

» Completeness
» Decidability

... pick any two.

21/48

Soundness and Completeness: Caveat

» Beware: “sound” and “complete” be confusing:
» Example: P(p) is “¢ has a bug”
> If you now want to check P, the negation of P:
> P(p) is “¢ does not have a bug” B
> Acomplete (= run Acomplete and invert output) is sound wrt P

22/48

Soundness and Completeness: Caveat

» Beware: “sound” and “complete” be confusing:
» Example: P(p) is “¢ has a bug”
» If you now want to check P, the negation of P:
» P(p) is " does not have a bug”
> Acomplete (= run Acomplete and invert output) is sound wrt P
» Asound is complete wrt P

22/48

Summary

» Given property P and analysis A:
» A is sound if it triggers only on P
P = "program has bug”: A reports only bugs
» A is complete if it always triggeres on P
P = "program has bug”: A reports all bugs
> If P is nontrivial (i.e., depend on behaviour):

Decidable

Conservat
W Complete

23/48

Building a Program Analysis

Language
Input Program h
Definition P g

Language Language
Frontend Runtime
LFact Extraction J
[Abstraction]

Specialised
Theory

—) Model |

)(Analysis Core

Analysis Result

24/48

Building a Program Analysis

Language Language
Frontend Runtime

Language

Definition

24/48

Gathering Our Tools

. Language
Principles w0

of Program
»_Analysis
1

Fjastadd PUASAR

Analysis -
Frame- Astrée "
FindBugs
works o
,’
woot

Hardware

25/48

Language Definitions

» Pure theory

» Define structure (syntax) and meaning (semantics) of
language

» Abstracts over many details

Syntax example:

)

] e
; (e)-(e)
|

|

» Property of Interest: Does a given program ¢ € e compute
a positive number?

First, we must understand the language semantics 26 /48

Language Definitions: Semantics

» Language Definitions also specify Semantics:
» Static Semantics:

» Connect parts of the program structure (variables, functions,
classes, ...)
» Enforce restrictions (e.g., via type checking)

» Dynamic Semantics:
> Specify program run-time behaviour

» We will (mostly) treat semantics informally in this course
» Here: assume “obvious” semantics

27 /48

Simplifying the Lanugage

» Let's make it easier to analyse the language
» We don't need parentheses for the analysis
»a-b=a+neg b

= Abstraction (we join similar problems into one)

» log is too difficult
= Restrict to sub-language (give up on some problems)
e ZEero

| one
|

| neg (e)

Simplification helps us get started, but restricting to a
sublanguage can quickly render an analysis impractical

28/48

Finding a Good Theory

» Recall: P(ip) should detect if ¢ computes positive result

» There are many theories for program analysis

» We pick Abstract Interpretation (Patrick & Radhia Cousot):
» Map all values to a simpler abstract domain
» Map all operations so they respect the abstraction

» For example: classify programs into abstract domain
containing:
» DO Computes 0
» DT: Computes a positive value
» D7: Computes a negative value

» Notation: , where a is one of D°, D, D~

29/48

Semantics

o DO
o Dt
oD
oD’

a b ap

= po
f— Di
= Dt
- p’

zZero
one

(e)+(e)

neg (e)

D'®a=D"=ae D’

zero ~2 DO one ~»P DT
if x ~P a then if x ~? a; and y ~ a5 then
neg x ~° ©a X+ y~Pa®a

30/48

Correspondence: Concrete and Abstract

A

-3 -2-10 1 2 3 - D~ DY Dt

Also:
» © “is compatible with” neg
» @ “is compatible with” +

Abstract Interpretation explores these ideas in great detail /44

Building a Better Analysis

Property of Interest: Does a given program ¢ € e compute a
positive number?

e ZEero

(e)+(e
(e)-(e)

|

;)
; neg (e)
|

({e))
log (e)

» How else could we analyse this for a given program ?
» Just run ¢ and check the result
> In general: only feasible for very restricted languages
» Infeasible as soon as we add parameters or recursion

32/48

Summary

» We can mathematically formalise syntax and semantics
» Semantics derive from syntax
» Abstract Interpretation: Theory for program analysis

» Map program semantics into abstract domain

» Map operations to compatible operations on abstract domain
» Challenge: remain precise yet decidable

» Foundation to other static analysis theories

33/48

Some Theories: Dynamic

» Testing
» Input Generation and Fuzzing
Call program with “random” inputs to see if it crashes
» Dynamic Invariant Detection
Record program behaviour, describe concisely (e.g., “always
returns zero")
» Test Generation
Automatically build test suite to capture current behaviour

» Monitoring
Capture which parts of the code execute

» Benchmarking
Measure resource usage (time, memory, bandwidth)

34/48

Some Theories: Static

» Abstract Interpretation

> Type Theory
3:INT
» Dataflow Analysis Theory
What values can my variables store?
» Hoare Logic
If x > y holds before | run x := x-1, is x > y true?
» Symbolic Execution
Use SMT solving to find properties of variables and possible
execution paths
» Model Checking
Given some formal model (e.g., a FSM), does it describe my
code?
» Statistical Analysis

35/48

Program Execution Pipeline

program.py
Source
Code

Libraries ’

Dynamic
Linker

Interpreter

Operating
System

Hardware

36/48

Program Execution Pipeline

program.c _ _)

S ‘ Libraries ’lle.SO
ource =

Code

program

Preprocessor | cpp

[::EE::::::] Static Dynamic
Linker Linker

program.o

Compiler

Loader

gcc

Operating
System

Hardware

36/48

Program Execution Pipeline

C.java

Source

Code

Libraries

Compiler

javac

Loader

’ rt.jar
pynannc ClassLoaders
Linker
Interpreter
Operating

Dynamic System
Compiler

java

36/48

Program Execution Pipeline

| Libraries ’

Source

Coae\

Instrumentable
Stati
Lin

o Con@ﬁ

D .
We can instrument and yrﬁmlc
Compiler
analyse all of these (to -
some degree) 1= Haraware
[Static Environmentj [Runtime Environment]

36/48

Static vs. Dynamic Program Analyses

|

Static Analysis

‘ Dynamic Analysis

Principle Analyse program Analyse program execution
structure
Input
Independent Depends on input
Hardware/OS
Independent Depends on hardware and OS

Perspective

Sees everything

Sees that which actually happens

Completeness

(bug-finding) Possible Must try all possible inputs. ..
Soundness
(bug-finding) Possible Always, for free

;-,astadd Valgrind Sy@mrere<

)oot ﬂ

37/48

Summary

» Preprocessor: Transforms source code before compilation

» Static compiler: Tranlates source code into executable
(machine or intermediate) code

» Interpreter: Step-by-step execution of source or
intermediate code

> Dynamic (JIT) compiler: Translates code into
machine-executable code

» Loader: System tool that ensures that OS starts executing
another program

» Linker: System tool that connects references between
programs and libraries
» Static linker: Before running
» Dynamic linker: While running

» Machine code: Code that is executable by a machine

» Static Analysis: Analyse program without executing it

» Dynamic Analysis: Analyse program execution
38/48

Java lexing

int i;

if (2> 0) {
i = "One";

}

return i;

Lexing / Tokenisation

|

; if (2 > 0) i o=

int i = "One" ; return i

b

39/48

Java lexing & parsing

CST = parse tree |

stmt

return

v
Lexemes

Parsing in general

Translate text files into meaningful in-memory structures
» CST = Concrete Syntax Tree

» Full “parse”, cf. language BNF grammar

» Not usually materialised in memory
» AST = Abstract Syntax Tree

» Standard in-memory representation
» Avoids syntactic sugar from CST, preserves important

nonterminals as [AST nodes
» Converts useful tokens into | attributes

» The AST is the most common Intermediate
Representation (IR) of program code
» Effective for frontend analyses
» Other IRs focus e.g. on optimisations in the backend

Program analysis starts on the AST

41/48

In-Memory Representation

—E—

T2

Typical in-memory representations for this AST:

» Algebraic values (functional)
» Records (imperative)

42/48

In-Memory Representation

dstmt
e —|—{primy]
decls-list: — id i
ifstmt
cond: binexpr: >
lhs: ———{_num: 2|
rhs: —1——[_num: 0|
true: assign: =
s 7170 1 ths ———[1]
rhs: ———{_str: "One" |

L[return |——] id:i |

43 /48

Program Analysis

We run numerous code analyses on the AST:
» Name Analysis:
» Which name use binds to which declaration?
» Type Analysis:
» What are the types of all expressions?
» Static Correctness Checks:

> Are there type errors?
> Is a variable unused?
» Are we initialising all variables?

» Optimisations:
» Can we speed up the program somehow?

Advanced static correctness checks increasingly common
in compilers

44/48

Name Analysis

dstmt
e —| [ty]
decls-list: — id: i |
ifstmt
cond: binexpr: >
lhs: —f——[_num: 2]
rhs: ———[_num: 0 |
true: assign: =
flse: 10 | s]
rhs: ———{ str: "One" |
return | —t—S¢—=—1—"—"—""—

45/48

Type Analysis

— return

dstmt Type
P —|— oy
decls-list: — id: i | int

ifstmt

cond: binexpr: > | int, int — boolean (OK)
Ihs: ———[_num: 2_]||int
rhs: —4——{ _num: 0 ||| int

true: assign: = | int, int — int (OK) PE ERROR)

false: ——o Ihs: ! int
rhs: —|——[e 1] | iring

ILet's fix the program...l

46 /48

Summary

» Compiler represents programs in intermediate
representations (IRs)

» Compiler can be separated into:
» Frontend: process incoming source code, generate IR
» Middle-end: optimise IR
» Back-end: translate IR into executable code

» Parser matches concrete syntax tree (CST), generates
abstract syntax tree (AST)

» Typical analyses on AST:

» Name analysis: which variable use belongs to which definition?
» Type analysis: do variable/operator/function types agree?
Any implicit conversions needed?

47/48

Outlook

» Remember:

» Join Moodle if you have not done so yet
» Form groups by Wednesday, 18:00!

» Next Lecture (Wednesday, same channel):
» Type-Based Analysis

http://cs.1th.se/EDAP15

48 /48

http://cs.lth.se/EDAP15

