LUND =0

UNIVERSITY

f ' EDAO45F: Program Analysis

LECTURE 12: TYPES 3

Christoph Reichenbach




In the last lecture...

» Basics of Type Checking
» Damas-Hindley-Milner-style Type Inference
» Operational Semantics on the Heap

2/38



Polymorphism

» Parametric

pair :: a -> (a, a)
pair x = (x, x)

» Overloading ('ad-hoc’)

int x =1 + 2;

float y = 1.0f + 2.0%;
» Subtype

Animal* a;

if (...) a = new Cat();

else a = new Dog();

3/38



Program Analysis with Types

» All three types of polymorphism have led to program analyses
» Static analysis of polymorphic types helps with:

» Increasing safety in previously non-statically typed languages
» Refining imprecise type systems
> Analysing other flow-insensitive properties (e.g., effects)

4/38



Typing Dynamic Code: Challenges

» Challenge: infinite types (1 -7 — 7 — ...)

Python

def f(x):
print x
return f

» Challenge: union types (string — string U int)

Python

varnames = set()
counter = [0]

def freshname(n):
if n in varnames:
counter[0] += 1
return counter[0]
varnames.add (n)
return n

5/38



Type Equality

C

typedef struct { int x; int y; } coordinate;

coordinate c;
struct { int x; int y; } c2;
c = c2; // Should this typecheck?

» Depends on language:
» Nominal type equality:
No, each type has a different name
> (e.g., C, C++, ...)

» Structural type equality:
Yes, the types are identical

> (e.g., Modula-3, Python, SML, ...)

6/38



Nominal Type Equality

C
typedef struct { int x; } t;
t a;
t b;
a=b; // OK

typedef struct { int x; } t;
T @

a = c; // Type error

» Checks for agreement of type names
» Here, ‘'name’ is not ‘t’, but an internal type name

» ‘t' is the name attribute bound to both internal names
7/38



Structural Type Equality

Modula-3

TYPE T1A = RECORD TYPE T1B = RECORD
a : INTEGER a : INTEGER

END; END;

TYPE T2A = RECORD TYPE T2B = RECORD
x : INTEGER; x : INTEGER
y : Ti1A y : TiB

END; END;

»T1A =T1B

» T2A = T2B (note recursive match!)
» Rules for structural type equality may vary in detail

8/38



Summary

» Three forms of polymorphism:
» Parametric
» Subtype
> Overloading (‘ad-hoc’)
> Nominal type equality considers two types equal iff they are
identical or otherwise defined as aliases (e.g., typedef in C).

» Structural type equality considers two types equal iff their
structure (recursively) matches.

9/38



Parametric Polymorphism

» Types may contain type parameters:

dup D a—aXa
getOpt : Maybe[a] x o — «

» We want to instantiate repeatedly with different types:

pairtriple = ( dup(1), — as INT — INT x INT
dup("foo"), — as STRING — STRING X STRING
dup(true) ) — as BooL — BooL x BooL

» Requires type schema or ‘polytype’
» Otherwise type mismatch on inferrered type:

«a = INT = STRING = BooL
» Common notation to make polymorphism explicit:
dup : Va.ao — a X «

» Type system must instantiate type schema with fresh type
variables 10/38



Principal Typing

ATL

proc id(x):
return x

> In the presence of polymorphism, many correct types can be
inferred

»E.g.:
» id : BooL — BooL
» id : NuLL — NULL

» We want the principal type, which is the most general type:
f:Va.a— «

» Principality is not supported by all type (inference) systems.

11/38



System F

Python

def picktwo(xlist, ylist, pickone):
xpick = pickone(xlist[:])
ypick = pickone(ylist[:])
assert(xpick in xlist and ypick in ylist)
return (xpick, ypick)

picktwo : Va.List[a] x List[a] x (Listja] — o) — a X «

» Not the most general type we could have!
» Why do xpair and ypair need the same type?
» ‘System F’ allows nesting universal quantifiers:

picktwo : V3.V~.List[3] x List[y] x (Va.List[a] — o) — B x ~

| This extension makes type inference undecidable | 12/38



Typing Schemes (1/3)

» Hindley-Milner-Damas-style type inference:
> Special rules to introduce/instantiate type schemas
» Happens to work very well in that particular system
» Alternative formalism (due to F. Pottier):
» Used in combination with inferring subtype bounds
» Assume each type variable is polymorphic by default
» Capture monomorphism (= non=polymorphism) through
dependencies
—> Typing Schemes

13/38



Typing Schemes (2/3)

Haskell

myfun (f) = let g (y, z) = (£(y), z)
in X

» g in X is not fully polymorphic: depends on f
» Capture (monomorphic) dependencies in [monotype context|:

y C |y oo

£(y) o lyrafra— B

z o [z oo

E, 20 : [y:raf:a—=pz:9]0xy
g C fra—=Blaxy—=Gxy

» Monotype context is A :id — T

» Each [A]7 assumes all type variables are ‘globally unique’
= must rename variables when merging typing schemes

» Type of g depends on £, which determines « and f

14 /38



Typing Schemes (3/3)

» General: Typing scheme is tuple [A]7
e: [A]r
f:[f:a]la 1:[]INT 1:[]INT f:[f: oo
= f(1):[f:INT = a]Ja 1+ f(x):[x:a,f:a— INT]INT (+)
if ... then f(1) else 1+ f(x) : [x : INT,f : INT — INT]INT

» When merging monotype context, must unify types of equal
variables:
Aq(f) = a— INT
Ny(f) = INT — «
unify(Aq, Ay)(f) = INT — INT

» Monotypes contexts are monomorphic, so unification affects
all variables:

unify([f : INT — o], [x : o, f : o« = INT]) = [x : INT, f ;.. ]
15/38



Polymorphic Typing Schemes (1/2)

Haskell
let id (x) = x
in (id 1, id False)

» With our current inference scheme, we get:

id 1 : [id: INT — INT]INT
id False : [id: BooL — BooL]BooL

» We can't unify the two monotype contexts!
> Need seperate mechanism to make id polymorphic

16/38



Polymorphic Typing Schemes (2/2)

» Polytype context 1 complements the monotype contexts A
» Syntactically distinguish between polymorphic variables X and
monomorphic variables y
Nix) = (Al
MNikx:[A]lr

(polyvar) (monovar)

Mk x:[x: oo

i+ e . [Al]’i‘l I'I,S? . [A1]7'1 I € ! [A2]T2
Miklet X =e; in e : [Az]m

(let)

17/38



Complexity
SML

fun q x =
let fun f x =
let fun g x =
let fun h x = (x,x)
in (h x, h x) end
in (g x, g x) end
in (f x, £ x) end

g:a— (((axa)x(axa))x((axa)x(axa)))x
(((a x a) x (ax @) x ((a x a) x (axa)))

» Recursively nesting doubles size of type every time
» Due to use of let, we cannot ‘compress’ the type internally

» ML Type inference is DEXPTIME-complete

> ...even though ‘most of the time’ it seems linear in practice
18/38



Summary

» Principal types are the most general types that can be
inferred for a given program, subsume all other inferrable
types

> Poltypes/Type Schemas are types with type variables that
can be instantiated with different concrete types substituted
for the type variables

> Monotypes/Monomorphic Types are non-polytypes

» Typing Schemes [A]7 present an alternative mechanism for
describing typing rules

» Monotype Context A capture monomorphic type
dependencies of a typing schema

» Complexity of Hindley-Milner style type inference is
exponential

» System F/Polymorphic second-order Lambda calculus
is more powerful but does not support type inference

19/38



Subtyping

Cat <: Mammal <: Animal
Square <: Polygon <: Shape
[1 TO 8] <: [0 TO 10] <: int

» A <: B ‘A is subtype of B’
» Partial order
» LI: Least common supertype or union type
> M: Intersection type (e.g., & in Java)
» Values can be members of many types:
» [1 TO 8] is the subrange type of numbers in {1,...,8}

»4: [1 TO 8]

»4: [0 TO 10]

»4:int

20/38



Subtyping vs. Parametric Polymorphism

» Consider subrange types:
[0 TO 10] <: int
» Does that mean:

array[[0 TO 10]] <: arrayl[int]
» No: can't store arbitrary int in array[[0 TO 10]]
» How about:

array[[0 TO 10]] :> array[int]

» No: reading isn't guaranteed to give us a [0 TO 10]

What if we only read or only write?

21/38



Read-Only Subtyping

Java

public class ReadBox<T> {
// private: not visible outside of class
private T value;
public ReadBox(T t) {
this.value = t;

}
T get() { return this.value; }

» Only visible ReadBox<T> feature is T get ()
» Objects of ReadBox<T> are read-only

ReadBox<[0 TO 10]> <: ReadBox<int>

22/38



Write-Only Subtyping

Java
public class WriteBox<T> {
// private: not visible outside of class
private T value;
public WriteBox(T t) {
this.value = t;

}
void put(T v) { this.value = v; }

» Only visible WriteBox<T> feature is void put(T)
» Objects of WriteBox<T> are write-only

WriteBox<[0 TO 10]> :> WriteBox<int>

23/38



Variance

Let A <: B, and C[a] polymorphic

> Interaction between subtype polymorphism and parametric
polymorphism is nontrivial

» Sometimes C[A] <: C[B], sometimes C[B] <: C[A],
sometimes neither
» Depends on how « is used in C

» Some classes permit variance in type parameters:
if C[A] <: C[B]: « is covariant
if C[A] :> C[B]: « is contravariant
if C[A] = C[B]: « is bivariant
if none of the above, « is invariant

24/38



The Arrow Rule

=)

k---T1---4
k-T2 -

T1 > Ty 01 <.09
function
T —> 01 <. T — 09
-0p -

ko

— output

» 71 is contravariant
» We can widen 15 in subtypes
» 01 IS covariant

» We can narrow o5 in subtypes
25/38



Variance in Scala

Scala

class B extends A {}
class C extends B {}

class ReadBox[+T] (v : T) { def get :

T 3
class WriteBox[-T] { def put(v : T) = {}

v
}

def r(rb : ReadBox[B]) {
val b : B = rb.get;

}

r (new ReadBox[C] (new C()));

def w(wb : WriteBox[B]) {
wb.put(new B(O));

}

w(new WriteBox[A]);

Definition-Site Variance

26/38



Variance in Java

Java

class B extends A { ...}
class C extends B { ...}

public static void r(ReadBox<? extends B> rb) {
Bb=rb.get();
}

r (new ReadBox<C>());

public static void w(WriteBox<? super B> wb) {
wb.put (new B());
}

w(new WriteBox<A>());

| Use-Site Variance

27/38



Use-Site Variance

Java
class C<T> {
T get(Q;
void set(T v);
boolean isSet();

» Use-Site Variance removes
methods that ‘don’t fit’

}
Java Java Java
C<? extends T> =~ class { C<? super T> =~ class { C<?> =~ class {
T getO; T-getO+ FgetO+
ettt void set(T v); redme— e
boolean isSet(); boolean isSet(); boolean isSet();
} } }

28/38



Summary

> Interaction between subtyping and parametric polymorphism
is nontrivial
» Variance governs whether subtype relationships carry over
into type parameters or invert etc.
» Let A <: B, and C[o]:
> if C[A] <: C[B]: «a is covariant
»if C[A] :> C[B]: «is contravariant
»if C[A] = C[B]: «is bivariant
» if none of the above, « is invariant
» Two implementations of variance:
> Definition-Site Variance (C#, Scala, OCaml):
> Each type has fixed variances by definition
> Use-Site Variance (Java):
» Same type can be used with different variances

29/38



Type and Effects

‘Which side effects does this function have?’
» Type systems can answer this question! (conservatively)
» Kinds of effects:

> Input

» OQutput

» Memory access

» Consider the following language (where effect, is a generic
‘effect’):

Ax.(e)

(e) (e)

true | false

if (e) then (e) else (e)
effect,

30/38



Example

if f(effects) then effectp else effectc

» Expected (conservative) effects: {A, B, C}
> ... plus any side effects of calling function f

31/38



Effect Inference

x:[x:ala;

true : [[Boor; ()

effect, : [JINT; {7}

e1: [A]Boor;m ex: [A]lmm ez [AlT;ms
if e; then ey else e3 : [A]7; 71 U Ums

32/38



Effects and Functions

f = A x . if x then effect, else effectg

» Function bodies can have side effects
» Functions themselves only ‘release’ those effects when applied

{AB}

f : BooL A—’? INT

e:[A,x:7]rm
x.e: [Alr B0

(abstract)

e : [Alm A rim & [A]7y; 73

/
e e : [Alm;m Ump Ums (apply)

33/38



Effect Polymorphism

let apply g x =g x

» Polymorphism can extend to effects
» Straightforward extension to existing treatment of let:

apply : [[(o & 8) = a 5

34/38



Effect Masking

Java
int f(int[] data) {
int[] ¢ = new int[data.length];
arraycopy(c, data);
sort(c);
return c[0];

» Some side effects are purely local
» Effect masking strips effect types A "2 B of local effects 7
» Need mechanism to determine that 7, is not externally visible

» Escape Analysis needed for allocated memory

35/38



Summary

» Effect inference extends type inference to capture
information about operations with side effects

» Effects in function bodies are retained until function is
invoked

» Effect masking allows hiding effects that would not be
externally visible (e.g., local use of allocated variables)

36/38



Review

» Nominal vs. structural type equality
» Polymorphism

» Parametric

> (Overloading)

» Subtype

» Variance
» Effect Inference

37/38



To be continued. ..

» Subtype type inference
» Homework

38/38



