
EDA045F: Program Analysis
LECTURE 9: DYNAMIC ANALYSIS 2

Christoph Reichenbach

In the last lecture. . .

I Dynamic analysis examines behaviour of program during one
run

I Can analyse:
I Output
I Correctness
I Safety
I Security
I Performance

I Wallclock execution time
I Software performance counters
I Hardware performance counters

2 / 58

Automatic Performance Measurement

I Profiler:
I Interrupts program during execution
I Examines call stack

I Simulator:
I Simulates CPU/Memory in software
I Tries to replicate inner workings of machine
I Often also an Emulator (= replicate observable functionality)

I Operating System:
I Counts important system events (network accesses etc.)

I CPU:
I Hardware performance counters count interesting events

3 / 58

Profiler

I Measures: which functions are we spending
our time in?

I Approach:
I Build stack maps
I Execute program, interrupt regularly
I During interrupt:

I Examine stack
I Infer functions from stack contents

Execution Stack
return (alt-1)

$fp (alt-1)
. . .
. . .

return (alt-2)
$fp (alt-2)

. . .

Can be inaccurate: misses short function calls

4 / 58

Simulator

RAM

Input
devices CPU Output

devices

Rest of the world

memory.c

input.c cpu.c output.c

Rest of the world

I Software simulates hardware components
I Can count events of interest (memory accesses etc.)

Modern CPUs are very complex: Simulators tend to be
inaccurate

5 / 58

Software Performance Counters

I Complex software may use high-level properties such as:
I How much time do we spend waiting for the harddisk?
I How often was our program suspended by the operating system
in order to let another program run?

I How much data did we receive through the network?
I Operating systems collect many of these statistics

6 / 58

Hardware Performance Counters (1/2)

PSp Reg

A
LU

A
LU DSp Reg

IF ID EX MEM WB

L1-Instr L1-Data

L2-Cache

RAM
Performance
Counter
Monitor

Cache miss

Cach
e mi

ss

Cache miss

Bran
ch predi

ction

Arithmetic operations

7 / 58

Hardware Performance Counters (2/2)

Special CPU registers:
I Count performance events
I Registers must be configured to collect specific performance
events
I Number of CPU cycles
I Number of instructions executed
I Number of memory accesses
. . .

I #performance event types > #performance registers

May be inaccurate: not originally built for software
developers

8 / 58

Summary

I Performance analysis may require detailed dynamic data
I Profiler: Probes stack contents at certain intervals
I Simulator:

I Simulates hardware in software, measures
I Tends to be inaccurate

I Performance Counters:
I Software:

I Operating System counts events of interest
I Hardware:

I Special registers can be configured to measure CPU-level events

9 / 58

Generality of Performance
Measurements?

Measured performance properties are valid for. . .
I Selected CPU
I Selected operating system
I Compiler version and configuration
I Operating system configuration:

I OS setup
(e.g., dynamic scheduler)

I Processes running in parallel
. . .

I A particular input/output setup
I Behaviour of attached devices
I Time of day, temperature, air pressure, . . .

I CPU configuration (CPU frequency etc.)
. . .

Is that all? 10 / 58

Unexpected Effects

I User toddm measures run time 0.6s
I User amer measures run time 0.8s
I Both measurements are stable
I Reason for discrepancy:

I Before program start, Linux copies shell environment onto stack
I Shell environment contains user name
I Program is loaded into different memory addresses
⇒ Memory caches can speed up memory access in one case
but not the other

Changing your user name can speed up code

11 / 58

Unexpected Effects1

12 / 58

Linking Order
Is there a difference between re-ordering modules in RAM?
gcc a.o b.o -o program (Variant 1)
gcc b.o a.o -o program (Variant 2)

(Mytkowicz, Diwan, Hauswirth, Sweeney, ASPLOS’09)
13 / 58

Adaptive Systems

I Measurement: 11 runs

●

●

●

●

●
●

●●

●

●

●

● ● ●

1 2 3 4 5 6 7 8 9 10 11

0.
5

1.
0

1.
5

Durchlaufnummer

La
uf

ze
it

Ru
nt
im

e
(s
)

Iteration

Warm-up effect

14 / 58

Warm-Up Effects
I Performance varies during initial runs
I Eventually reaches steady state
I Reason: Adaptive Systems

I Hardware:
I Cache: Speed up some memory accesses
I Branch Prediction: Speed up some jumps
I Translation Lookaside Buffer

I Software:
I Operating System / Page Table
I Operating System / Scheduler
I Just-in-Time compiler

I What sbould we measure?
I Latency: measure first run
Reset system before every run

I Throughput: later runs
Discard initial n measurements

15 / 58

Ignored Parameters

I Performance affected by subtle effects
I System developers must “think like researchers” to spot
potential influences

Beware of generalising measurement results!

16 / 58

Summary

I Modern computers are complex
I Caches make memory access times hard to predict
I Multi-tasking may cause sudden interruptions
. . .

I This makes measurements difficult:
I Must carefully consider what assumptions we are making
I Must measure repeatedly to gather distribution
I Must check for warm-up effects
I Must try to understand causes for performance changes

I Measurements are often not normally distributed
I Mean + Standard Deviation may not describe samples well
I If in doubt, use box plots or violin plots

17 / 58

Dynamic Program Analysis Utility

Dynamic Program Analysis can serve:
I Understanding
I Efficiency
I Safety
I Security

18 / 58

Program Understanding
Approaches:
I Performance analysis (gprof, papi, perf, . . .)
I Interactive debugging (gdb, jdb, . . .)
I Tracing
Compute sequence of actions (trace) of interest
I Methods
I Parameters
I IL/assembly instructions
I Lines of code
. . .

I Dynamic slicing
Reduce program to parts that were actually executed
I Remove dead code
I Enables further optimisations (e.g., inlining)

19 / 58

Tracing vs. Dynamic Slicing
Source program
(0)int f(int x) {
(1) return x + 1;
(2)}
(3)int g(int x) {
(4) return x - 1;
(5)}

(3)int g(int x) {
(4) return x - 1;
(5)}
(6) void main() {
(7) int x = f(1);
(8) int y = f(2);
(9) if (x < 0) {
(A) puts("fail");
(B) } else {
(C) printf("%d",x+y);
(D) }
(E)}

Trace

6
7
0[x=1]
1[⇒2]
8
0[x=2]
1[⇒3]
9
B
C

Dynamic Slice
(0)int f(int x) {
(1) return x + 1;
(2)}

(6)void main() {
(7) int x = f(1);
(8) int y = f(2);

(C) printf("%d",x+y);

(E)}

Tracing/slicing algorithms vary in output 20 / 58

Efficiency

I Dynamic Optimisation
I Utilise run-time knowledge to optimise

I Speculative Optimisation
I Type or value seems to be constant?

I Speculate: it is constant
I Optimise accordingly

I Add guard: is assumption correct?
I Deoptimise when guard fails
I Common example: method inlining

I Challenge: Dynamic analysis introduces overhead
I Focus efforts on hot methods (frequently running)

21 / 58

Safety

I Dynamic type checking
I Out-of-bounds checks

a[i]
I Narrowing conversions

Object obj = . . . ;
String str = (String) obj;

I Assertions
I Preconditions
Checked before subroutine call

I Postconditions
Checked at end of subroutine call

I Invariants
Checked between subroutine calls in same module / object

22 / 58

Security

I Which part of program are not trustworthy?
I Externally loaded code?
I Externally obtained data?
I Runtime environment?

I Untrusted code:
I Confine ((chroot), sandboxing)

I Untrusted data:
I Sanitise, track
I Beware: can escalate to untrusted code

23 / 58

Sandboxing: Confining Untrusted Code

Untrusted Program

OS Kernel (may be emulated by VM)

Restricted
HD

Restricted
RAM

Sandbox

Restricted permissions

24 / 58

Summary

I Dynamic analysis contributes techniques to all typical clients
of program analysis

I Understanding:
I Interactive debugging
I Tracing and Dynamic Slicing

I Efficiency:
I Dynamic and speculative optimisation

I Safety:
I Dynamic type checking
I Dynamic assertion checking

I Security:
I Sandboxing, i.e., executing in restricted execution environment
I Dynamic Taint analysis

25 / 58

Tainted Values (1/2)

Python
username = request.GET[’user’]
...
q = sql.query("SELECT * from Users WHERE name=’"

+ username + "’")
user_data = q.run

26 / 58

Tainted Values (2/2)

C
int parse_package(s* out, uint8* data) {

char username[9] = { 0 };
int username_len = data[0];
// spec says: length <= 8
memcpy(username, data+1, username_len);
...

}

Stack

ret parse_package
username_len

0 0 0 0
0 0 0 0
0

memcpy locals
. . .

’m’ ’y’ ’n’ ’a’
’m’ ’e’

username

27 / 58

Tainted Values (2/2)

C
int parse_package(s* out, uint8* data) {

char username[9] = { 0 };
int username_len = data[0];
// spec says: length <= 8
memcpy(username, data+1, username_len);
...

}

Stack

ret parse_package
username_len= 6

0 0 0 0
0 0

0 0
0
ret memcpy

memcpy locals
. . .

’m’ ’y’ ’n’ ’a’
’m’ ’e’

27 / 58

Tainted Values (2/2)

C
int parse_package(s* out, uint8* data) {

char username[9] = { 0 };
int username_len = data[0];
// spec says: length <= 8
memcpy(username, data+1, username_len);
...

}

Stack

ret parse_package
username_len=16

0 0 0 0
0 0 0 0
0

memcpy locals
. . .

’m’ ’y’ ’n’ ’a’
’m’ ’e’

27 / 58

Tracing ‘Tainted’ Values

Taint Analysis:
I Track tainted values
I Remove taint if values are sanitised
I Detect if they reach sensitive sinks
I NB: Static taint analysis may also be possible

Unsafe input
I Taint source: Network ops
I Sanitiser: SQL string escape
I Taint sink: SQL query string

Leaking secrets
I Taint source: Plaintext passwd.
I Sanitiser: cryptographic hash
I Taint sink: Network ops

28 / 58

Dynamic Taint Analysis

query_l = "SELECT ...’" query_l = "SELECT ..."ε

query_r = "’" query_r = "’"ε

username = request.GET[’user’] username = "..."t

...
query_str = query_l + username query_str = "..."t

query_str = query_str + query_r query_str = "..."t

q = sql.query(query_str) Fault!

29 / 58

Dynamic Taint Analysis

Strategy:
I Annotate tainted values with taint tags or shadow values

s = read_network() // string in s will be tainted
t = "foo" + "bar" // string in t will be untainted

I Extend operators to propagate taint:
⊕ ε t
ε ε t
t t t

"foo"v [1] = "o"v

"foo"v+"bar"w = "foobar"v⊕w

I Check taint sinks for tainted input
I Needs instrumentation (shadow values) or explicit support by
runtime (e.g., Perl, Ruby)

30 / 58

Conditionals

I Should conditionals propagate taint?
I Usually such control dependencies don’t propagate taint

Python
if secret_password == ’’:

network_send(’Account disabled, cannot log in’);

31 / 58

Attackers vs. Taint Ananlysis
Is taint analysis ‘sound enough’ to detect attempts
to expose sensitive data?
I Often-proposed technique: Taint analysis in Dalvik VM
I Can attackers subvert this analysis?

C
for (i = 0; i < 16; ++i) {

for (k = 0; k < 8; ++k) {
if (secret_password[i] & 1 << k) {

network_send("Meaninless Message");
} else {

network_send("Something Else");
}

} }

32 / 58

System Command Attack

C
char d_secret[1024];
strcpy(d_secret, "/tmp/");
strcat(d_secret, secret); // taint d_secret

int iopipes[2];
pipe(iopipes);
...
if (fork()) { // create child process

// connect pipes
execv("/bin/rm", d_secret); // call external ’rm’

}
char[1024] buf; // untained!
read(iopipes[0], ...); // read output from ’rm’

System call will print e.g.:
rm: cannot remove ’/tmp/mysecretstring’: No such file or
directory

33 / 58

Side Channel Attacks

Many more attacks possible:
I Timing attacks:

I Two threads
I One sends signal to other, with delays
I Delay loop length dependent on secret

I File length attack:
I Write dummy file
I File length (or other metadata) encodes secret

I Graphics buffer attack:
I Write to screen
I Read back with OCR
I Or adjust widget position / font size to encode secret

34 / 58

Summary

I Dynamic taint analysis tracks tainted values
(from taint sources)

I Tags also referred to as shadow values
I Removes taint if values are sanitised
I Detects attempts to use tainted values in taint sinks
I Still many weaknesses in analysis:

I Control-dependence attacks
I System command attacks
I Side-channel attacks

I Can be strengthened with symbolic techniques (later
lectures!)

35 / 58

Dynamic Binary Analysis

I Binary Analysis: Analyse binary executables
I Applicable to any executable program
I Only requires binary code
I Unaware of source language

I Dynamic Binary Analysis
I Analyser runs concurrently with program-under-analysis
I Can adaptively instrument / analyse / intercede

36 / 58

Dynamic Binary Instrumentation (1/3)

Input Code

Instrumentation
Instrument

Copy-and-Annotate

37 / 58

Dynamic Binary Instrumentation (2/3)

Input CodeIntermediate Representation

Instrumentation

Resynthesise

Disassemble

Disassemble-and-Resynthesise

38 / 58

Dynamic Binary Instrumentation (3/3)

I Copy-and-Annotate (e.g., pin):
I Inserts code into binary
I Inserted code must maintain state (registers!)

I Disassemble-and-Resynthesise (e.g., valgrind, qemu):
I Decomposes program into IR
I Instrumentation on IR-level
I Easier/faster to track shadow values in some cases

I Shadow registers
I Shadow memory
I Must model system calls for proper tracking

39 / 58

Application: Finding Memory Errors

I Reads from uninitialised memory in C can trigger undefined
behaviour

I Approach: Track information: which bits are uninitialised?
I Requires shadow registers, shadow values
I Almost every instruction must be instrumented

Shadow values Program

short x;x:
x:
x:

x |= 0x7;
if (x & 0x10) {
. . .

40 / 58

Example: Valgrind’s Memcheck

I Valgrind is Disassemble-and-Resynthesise-style Binary
Instrumentation tool

I Memcheck: tracks memory initialisation (mostly) at bit level
I Less precise for floating point registers

I Valgrind uses dynamic translation:
I Translate & instrument blocks of code at address until return /
branch

I Instrumented code jumps back into Valgrind core for lookup /
new translation

41 / 58

Challenges

I System calls
I System calls may affect shadow values (e.g., propagate
taintedness)

I Must be modelled for precision
I Self-modifying code

I Used e.g. in GNU libc
I Must be detected, force eviction of old code (expensive checks!)

42 / 58

Valgrind

I Binary instrumenter
I Available platforms:

I x86/Linux (partial) and Darwin
I AMD64/Linux and Darwin
I PPC64/Linux, PPC64LE/Linux (≤ Power8)
I S390X/Linux
I ARM(64)/Linux (≥ ARMv7)
I MIPS32/Linux, MIPS64/Linux
I Solaris
I Android

I Analyses (focus on Simulation):
I Call analysis
I Cache analysis
I Memcheck
. . .

43 / 58

Qemu

I Binary instrumenter and translator
I Focus on emulation
I Runs kernel + user space
I Translate from one ISA to another (e.g., run ARM on
ADM64)

I Emulates system:
I Graphics, networking, sound, input devices, USB, . . .

I Almost two dozen platforms supported

44 / 58

Summary

I Binary instrumentation is a form of low-level dynamic
analysis

I Two main schemes:
I Copy-and-Annotate: insert new code
I Disassemble-and-Resynthesise: merge analysis subject code
with annotation code

I Shadow values supported through shadow registers and
shadow memory

45 / 58

Slowdown in Valgrind (1/4)

I Performance comparison often against baseline:
A ‘norm’ that we compare against

I Speedup of some alternative n (against a baseline):
of times that n can execute workload while baseline
executes workload once

speedup(n) = baseline time
time for n

Conversely:

slowdown(n) = 1
speedup(n)

46 / 58

Slowdown in Valgrind (2/4)
Comparison of execution time with/without valgrind
(valgrind on top):

sort-big sort-n gcc grep wc

0

5

10

15

20

25

30

35

40

python
0

50

100

150

200

250

300

350

Slowdown distribution?

47 / 58

Slowdown in Valgrind (3/4)

I 2 samples per program:
I 11 baseline runs
I 11 valgrind runs

I All statistically independent
⇒ Can compare each against

each other
I 11× 11 = 121
measurements sort-big sort-n gcc grep wc python

0

10

20

30

40

50

48 / 58

Slowdown in Valgrind (4/4)

Median slowdown:

sort-big 22.19
sort-n 29.26
gcc 3.15
grep 1.44
wc 49.38
python 55.74

What’s the average slowdown over everything?

49 / 58

Summarising benchmark suites:
normalisation

I Normalise runtimes against baseline
I Example: SPECint (CPU benchmark): VAX 11/780
I Speedup ist a form of normalisation
Program Runtime Speedup System
P1 500 1 baseline
P2 40 1 baseline
P1 100 5 A
P2 2 20 A
P1 80 6 B
P2 20 2 B

I Speedups are proportions:
I Geometric mean: System A

√
5× 20 = 10

System B
√
6× 2 ≈ 3,46 . . .

50 / 58

The geometric mean

I t(Pk ,M): Runtime of program Pk on system M
I

t(Pk ,baseline)
t(Pk ,M) : speedup of program Pk on system M

over baseline
Geometric mean:

µg = n

√
t(P1,baseline)

t(P1,A) × . . .× t(Pn,baseline)
t(Pn,A)

Geometric standard deviation:

σg = e

√
(ln(t(Pk ,baseline)

t(P1,M))−ln(µg))2+...+(ln(t(Pk ,baseline)
t(Pn,M))−ln(µg))2

n

51 / 58

Advantages of the Geometric Mean

n
√

t(P1,baseline)
t(P1,A) ×...× t(Pn,baseline)

t(Pn,A)
n
√

t(P1,baseline)
t(P1,B) ×...× t(Pn,baseline)

t(Pn,B)

= n

√√√√√√
t(P1,baseline)

t(P1,A) ×...× t(Pn,baseline)
t(Pn,A)

t(P1,baseline)
t(P1,B) ×...× t(Pn,baseline)

t(Pn,B)

= n
√
t(P1,B)
t(P1,A) × . . .×

t(Pn,B)
t(Pn,A)

When directly comparing the geometric means of
systems A and B, the baseline is irrelevant

52 / 58

Measuring Performance

1 Does compiler A produce faster code than compiler B?
2 Does machine A run code faster than machine B?

I Application
I Benchmark suite
I Synthetic benchmark suite (unrealistic)
I Small programs (unrealistic)
I (Micro)kernels (unrealistic)
I MIPS/FLOPS (operations "‘per second"’– but what
operations? How representative?)

53 / 58

Benchmark Suites
I Standardised collections of software with different ‘typical’
loads

I Advantages:
I Standardisation simplifies comparability
I Differentiated pieces of software avoid over-specialisation /
unrealistic optimisations / lack of realism

I Disadvantages:
I Workloads for software may not be representative of actual
application use

I Software and programming practices evolve, benchmark static
suites may become obsolete

I Exapmles:
I SPEC (CPUs, focus on C)
I TPC (Databases)
I DaCapo, XCorpus (Java applications)

54 / 58

Benchmark Suites (Example)
Consist of several programs, e.g., DaCapo:

avrora Multiprocessor simulation
batik Draws SVG images

eclipse Eclipse IDE performance test
fop Translates XSL-FO file into PDF or PS file
h2 Banking transaction simulator

pmd Static checker for Java
sunflow Ray tracer (computes images)
tomcat Web server
xalan Translates XML to HTML

I +5 more

Assumption: All programs ‘equally important’

55 / 58

Summary

I Ideal measurement: Runtime of the intended program in all
possible configurations

I If not practical:
I Prepresentative benchmark suites
I Measure minimal changes between configuration
⇒ Analyse effect of individual changes

I Summarise benchmark suite results: geometric mean:
n

√
t(P1,A)

t(P1,baseline) × . . .×
t(Pn,A)

t(Pn,baseline)

56 / 58

Review

I Performance Counters
I Challenges in Dynamic Performance Analysis
I Taint Analysis
I Binary Instrumentation
I Benchmark Suites

57 / 58

To be continued. . .

I Type Analysis
I Operational Semantics

58 / 58

