LUND =0

UNIVERSITY

f ' EDAO45F: Program Analysis

LECTURE 9: DYNAMIC ANALYSIS 2

Christoph Reichenbach

In the last lecture...

» Dynamic analysis examines behaviour of program during one
run
» Can analyse:
» Qutput
» Correctness
» Safety
» Security
» Performance
> Wallclock execution time
» Software performance counters
» Hardware performance counters

2/58

Automatic Performance Measurement

» Profiler:

» Interrupts program during execution
» Examines call stack

» Simulator:

» Simulates CPU/Memory in software
» Tries to replicate inner workings of machine
» Often also an Emulator (= replicate observable functionality)

» Operating System:
» Counts important system events (network accesses etc.)
» CPU:

» Hardware performance counters count interesting events

3/58

Profiler

» Measures: which functions are we spending
our time in?
» Approach:

» Build stack maps

» Execute program, interrupt regularly
» During interrupt:
» Examine stack

» Infer functions from stack contents

Execution Stack

return (alt-1)

$fp (alt-1)

return (alt-2)

$£p (alt-2)

| Can be inaccurate: misses short function calls

4/58

Simulator

memory.c

5

input.c |:> cpu.c |:> output.c
[\ Rest of the world 4=y

» Software simulates hardware components

> Can count events of interest (memory accesses etc.)

Modern CPUs are very complex: Simulators tend to be
inaccurate

5/58

Software Performance Counters

» Complex software may use high-level properties such as:
» How much time do we spend waiting for the harddisk?
» How often was our program suspended by the operating system
in order to let another program run?
» How much data did we receive through the network?

» Operating systems collect many of these statistics

6/58

Hardware Performance Counters (1/2)

Performance
Counter
Monitor

Arithmetic operations

7/58

Hardware Performance Counters (2/2)

Special CPU registers:
» Count performance events

» Registers must be configured to collect specific performance
events
» Number of CPU cycles
» Number of instructions executed
» Number of memory accesses

» #performance event types > #performance registers

May be inaccurate: not originally built for software
developers

8/58

Summary

» Performance analysis may require detailed dynamic data
» Profiler: Probes stack contents at certain intervals
» Simulator:
» Simulates hardware in software, measures
» Tends to be inaccurate
» Performance Counters:
» Software:
» Operating System counts events of interest
» Hardware:
> Special registers can be configured to measure CPU-level events

9/58

Generality of Performance
Measurements?

Measured performance properties are valid for. ..

» Selected CPU
» Selected operating system
» Compiler version and configuration
» Operating system configuration:
» OS setup
(e.g., dynamic scheduler)
» Processes running in parallel

» A particular input/output setup

» Behaviour of attached devices

» Time of day, temperature, air pressure, ...
» CPU configuration (CPU frequency etc.)

| Is that all?

10/58

Unexpected Effects

» User toddm measures run time 0.6s
» User amer measures run time 0.8s
» Both measurements are stable

» Reason for discrepancy:

» Before program start, Linux copies shell environment onto stack
» Shell environment contains user name
» Program is loaded into different memory addresses
= Memory caches can speed up memory access in one case
but not the other

Changing your user name can speed up code

11/58

Unexpected Effects!

1600000 —

1400000 —

1200000 —

cycles(00)

1000000 —

800000 —

600000 —

1000 —
000 —
3000 —
4000 —

bytes added to empty environment

12/58

Linking Order

Is there a difference between re-ordering modules in RAM?
gcc a.o b.o -o program
gcc b.o a.o -o program

(Variant 1)
(Variant 2)

1.10
[}
9 @
% 1.05 a
>
(&)
g o PP <+
CN) 1.00 kS ==
%)
29
53 / + default
© 0.95 x alphabetical
T T T T T T T 1T T T 1
& 3 ¢ § s £E 5 E & % E 8
s 8d B5ETG
[on (0]
S o

(Mytkowicz, Diwan, Hauswirth, Sweeney, ASPLOS'09)

13/58

Adaptive Systems

» Measurement: 11 runs

Runtime (s)

15

1.0

0.5

Iteration

Warm-up effect

14 /58

Warm-Up Effects

» Performance varies during initial runs
» Eventually reaches steady state

» Reason: Adaptive Systems
» Hardware:
> Cache: Speed up some memory accesses
> Branch Prediction: Speed up some jumps
> Translation Lookaside Buffer
» Software:
» Operating System / Page Table
> Operating System / Scheduler
> Just-in-Time compiler
» What sbould we measure?

» Latency: measure first run
Reset system before every run

» Throughput: later runs
Discard initial n measurements

15/58

Ignored Parameters

» Performance affected by subtle effects

» System developers must “think like researchers” to spot
potential influences

Beware of generalising measurement results!

16 /58

Summary

» Modern computers are complex

» Caches make memory access times hard to predict
» Multi-tasking may cause sudden interruptions

» This makes measurements difficult:
» Must carefully consider what assumptions we are making
» Must measure repeatedly to gather distribution
» Must check for warm-up effects
» Must try to understand causes for performance changes
» Measurements are often not normally distributed

» Mean + Standard Deviation may not describe samples well
» If in doubt, use box plots or violin plots

17/58

Dynamic Program Analysis Utility

Dynamic Program Analysis can serve:
» Understanding

» Etfhiciency

» Safety

» Security

18/58

Program Understanding

Approaches:

» Performance analysis (gprof, papi, perf, ...)
> Interactive debugging (gdb, jdb, ...)
» Tracing

Compute sequence of actions (trace) of interest

» Methods

» Parameters

> IL/assembly instructions
> Lines of code

» Dynamic slicing
Reduce program to parts that were actually executed

» Remove dead code
» Enables further optimisations (e.g., inlining)

19/58

Tracing vs. Dynamic Slicing

Source program Trace Dynamic Slice
(0)int f(int x) { 6 (0)int f(int x) {
(1) return x + 1; 7 (1) return x + 1;
() ey %

(3)int g(int x) { 1[=2]

(4) return x - 1; 8

(5)} 0[x=2]

(6) void main() { 1[=3] (6)void main() {
(7) int x = £(1); 9 (7) int x = £(1);
(8) int y = £(2); B (8) int y = £(2);
(9) if (x < 0) { C

(A) puts("fail");

(B) ¥ else {

(©) printf ("%d",x+y); (Q) printf ("%d",x+y);
(D) ¥

(B)} (B)}

| Tracing /slicing algorithms vary in output 20/58

Efficiency

» Dynamic Optimisation

» Utilise run-time knowledge to optimise
» Speculative Optimisation

» Type or value seems to be constant?

> Speculate: it is constant

> Optimise accordingly
» Add guard: is assumption correct?
» Deoptimise when guard fails
» Common example: method inlining

» Challenge: Dynamic analysis introduces overhead
» Focus efforts on hot methods (frequently running)

21/58

Safety

» Dynamic type checking
» OQut-of-bounds checks
alil
» Narrowing conversions
Object obj = ...;
String str = (String) obj;
» Assertions
» Preconditions
Checked before subroutine call
» Postconditions
Checked at end of subroutine call

» [nvariants

Checked between subroutine calls in same module / object

22/58

Security

» Which part of program are not trustworthy?

» Externally loaded code?
» Externally obtained data?
» Runtime environment?

» Untrusted code:
» Confine ((chroot), sandboxing)
» Untrusted data:

» Sanitise, track
» Beware: can escalate to untrusted code

23/58

Sandboxing: Confining Untrusted Code

Untrusted Program

Sandbox

Restricted Restricted
HD RAM

Restricted permissions

v
OS Kernel (may be emulated by VM)

24 /58

Summary

» Dynamic analysis contributes techniques to all typical clients
of program analysis

» Understanding:

> Interactive debugging
» Tracing and Dynamic Slicing

» Efficiency:
» Dynamic and speculative optimisation
» Safety:

» Dynamic type checking
» Dynamic assertion checking

» Security:
» Sandboxing, i.e., executing in restricted execution environment
» Dynamic Taint analysis

25 /58

Python

username =

q = sql.query("SELECT * from Users

Tainted Values (1/2)

request.GET[’user’]

+ username + "’")

user_data = g.run

HI THIS 15

WERE HAVING SOME
(COMPUTER TROUBLE.

\ﬁ%ﬁﬁT

YOUR SON'G SCHOOL.

OH, DEAR - DID HE
BREAK SOMETHING?

INRWAY /

S

WHERE name=’"

DID YOU REALLY
INAME YOUR SON
Robert'); DROP
TABLE Students;—— 7

~OH,YES UTTIE
[BOBBY TABLES,
WE CALL HIM.

WELL, WE'VE LOST THIS
YEAR'S STUDENT RECORDS.
T HOPE YPURE HAPPY.

AND T HOFE
“~ YOUVE LEARNED
TO SANMIZE YOUR
DATRBASE INPUTS.

26/58

Tainted Values (2/2)

Stack
C ret parse_package
int parse_package(s* out, uint8+ data) { username_len
= . I'nlaAal
char username[9] {0 }; _g.username 0
int username_len = datal[0]; OJulUL]O
// spec says: length <= 8 0

memcpy (username, data+l, username_len);

27 /58

Tainted Values (2/2)

Stack
C ret parse_package
int parse_package(s* out, uint8* data) { username_len= 6
char username[9] = { 0 }; ‘m’|’y’|’n’|’a’
int username_len = datal[O0]; ‘m’|’e’[0| O
// spec says: length <= 8 0
memcpy (username, data+l, username_len); ret memcpy
memcpy locals
}

27 /58

Tainted Values (2/2)

Stack
C ret parse_package
int parse_package(s* out, uint8* data) { [username_len=16
char username[9] = { 0 };
int username_len = datal[0];

// spec says: length <= 8
memcpy (username, data+l, username_len);

memcpy locals

27 /58

Tracing ‘Tainted’ Values

Taint Analysis:

» Track tainted values

» Remove taint if values are sanitised

» Detect if they reach sensitive sinks

» NB: Static taint analysis may also be possible

Unsafe input Leaking secrets

» Taint source: Network ops » Taint source: Plaintext passwd.
» Sanitiser: SQL string escape » Sanitiser: cryptographic hash
» Taint sink: SQL query string » Taint sink: Network ops

28/58

Dynamic Taint Analysis

query_l = "SELECT ...’"
query_r = non
username = request.GET[’user’]

query_str = query_l + username
query_str = query_str + query_r
q = sql.query(query_str)

query_1l = "SELECT ..."¢

query r = nyne

username = "..."¢

query_str="..."t

query_str="..."t
Fault!

29/58

Dynamic Taint Analysis

Strategy:

» Annotate tainted values with taint tags or shadow values
s = read_network() // string in s will be tainted
t = "foo" + "bar" // string in t will be untainted

» Extend operators to propagate taint:

EI "fOO"V[]_] — ngnv

€ et
t t t llfoo|lV+|lbarllW — llfoobarllv@w

» Check taint sinks for tainted input

» Needs instrumentation (shadow values) or explicit support by
runtime (e.g., Perl, Ruby)

30/58

Conditionals

» Should conditionals propagate taint?
» Usually such control dependencies don't propagate taint

Python

if secret_password == ’’:
network_send(’Account disabled, cannot log in’);

31/58

Attackers vs. Taint Ananlysis

Is taint analysis ‘sound enough’ to detect attempts
to expose sensitive data?

» Often-proposed technique: Taint analysis in Dalvik VM
» Can attackers subvert this analysis?

C
for (i = 0; i < 16; ++i) {
for (k = 0; k < 8; ++k) {
if (secret_password[i] & 1 << k) {
network_send("Meaninless Message");
} else {
network_send("Something Else") ;
}
o}

32/58

System Command Attack

C

char d_secret[1024];
strcpy(d_secret, "/tmp/");
strcat(d_secret, secret); // taint d_secret

int iopipes[2];
pipe(iopipes);

if (fork()) { // create child process
// connect pipes
execv("/bin/rm", d_secret); // call external ’rm’

}
char[1024] buf; // untained!
read(iopipes[0], ...); // read output from ’rm’

System call will print e.g.:

rm:

directory

cannot remove ’/tmp/mysecretstring’: No such file or

33/58

Side Channel Attacks

Many more attacks possible:

» Timing attacks:

» Two threads

» One sends signal to other, with delays

» Delay loop length dependent on secret
> File length attack:

» Write dummy file

> File length (or other metadata) encodes secret
» Graphics buffer attack:

» Write to screen
» Read back with OCR
» Or adjust widget position / font size to encode secret

34/58

Summary

» Dynamic taint analysis tracks tainted values
(from taint sources)

» Tags also referred to as shadow values
» Removes taint if values are sanitised
» Detects attempts to use tainted values in taint sinks

» Still many weaknesses in analysis:

» Control-dependence attacks
» System command attacks
» Side-channel attacks

» Can be strengthened with symbolic techniques (later
lectures!)

35/58

Dynamic Binary Analysis

» Binary Analysis: Analyse binary executables
» Applicable to any executable program
» Only requires binary code
» Unaware of source language
» Dynamic Binary Analysis
» Analyser runs concurrently with program-under-analysis
» Can adaptively instrument / analyse / intercede

36/58

Dynamic Binary Instrumentation (1/3)

Input Code

Instrumentation

Instrument

Copy-and-Annotate

37/58

Dynamic Binary Instrumentation (2/3)

Intermediate Representation Input Code
Disassemble

Instrumentation

Resynthesise ~ |——

Disassemble-and-Resynthesise

38/58

Dynamic Binary Instrumentation (3/3)

» Copy-and-Annotate (e.g., pin):
> Inserts code into binary
> Inserted code must maintain state (registers!)

» Disassemble-and-Resynthesise (e.g., valgrind, gqemu):

» Decomposes program into IR

» Instrumentation on IR-level

> Easier/faster to track shadow values in some cases
> Shadow registers
» Shadow memory
» Must model system calls for proper tracking

39/58

Application: Finding Memory Errors

» Reads from uninitialised memory in C can trigger undefined
behaviour

» Approach: Track information: which bits are uninitialised?
» Requires shadow registers, shadow values
» Almost every instruction must be instrumented

Shadow values Program

x: [T short x;
x: [T x |= 0x7;
x: [N if (x & 0x10) {

40/58

Example: Valgrind’s Memcheck

» Valgrind is Disassemble-and-Resynthesise-style Binary
Instrumentation tool

» Memcheck: tracks memory initialisation (mostly) at bit level
» Less precise for floating point registers

» Valgrind uses dynamic translation:

> Translate & instrument blocks of code at address until return /
branch

> Instrumented code jumps back into Valgrind core for lookup /
new translation

41/58

Challenges

» System calls

> System calls may affect shadow values (e.g., propagate
taintedness)
» Must be modelled for precision

» Self-modifying code
» Used e.g. in GNU libc
» Must be detected, force eviction of old code (expensive checks!)

42 /58

Valgrind
Valgrind

» Binary instrumenter
» Available platforms:
» x86/Linux (partial) and Darwin
» AMD64 /Linux and Darwin
» PPC64/Linux, PPC64LE/Linux (< Power8)
» S390X/Linux
» ARM(64)/Linux (> ARMv7)
» MIPS32/Linux, MIPS64/Linux
» Solaris
» Android
» Analyses (focus on Simulation):
» Call analysis
» Cache analysis
» Memcheck

43/58

Qemu

QEeEMU

» Binary instrumenter and translator
» Focus on emulation
» Runs kernel + user space

» Translate from one ISA to another (e.g., run ARM on
ADM64)

» Emulates system:
» Graphics, networking, sound, input devices, USB, ...

» Almost two dozen platforms supported

44 /58

Summary

» Binary instrumentation is a form of low-level dynamic
analysis
» Two main schemes:

» Copy-and-Annotate: insert new code
» Disassemble-and-Resynthesise: merge analysis subject code
with annotation code

» Shadow values supported through shadow registers and
shadow memory

4558

Slowdown in Valgrind (1/4)

» Performance comparison often against baseline:
A ‘norm’ that we compare against

» Speedup of some alternative n (against a baseline):
of times that n can execute workload while baseline
executes workload once

baseline time

speedup(n) = time for n
Conversely:
1
slowdown(n) = speedup(n)

46 /58

Slowdown in Valgrind (2/4)

Comparison
(valgrind on top):

40

354

304

of execution time with/without valgrind

—— 8=

sort-big

sort-n

gcc grep wc

350

300 -

250

200

150 1

100 1

501

python

Slowdown distribution?

47/58

Slowdown in Valgrind (3/4)

» 2 samples per program:
» 11 baseline runs
» 11 valgrind runs

» All statistically independent

—> Can compare each against
each other
»11 x 11 =121
measurements

501

404

301

204

—e—

—e—

sort-big

sort-n

gcc

grep

wc

python

48/58

Slowdown in Valgrind (4/4)

Median slowdown:

sort-big 22.19

sort-n 29.26
gce 3.15
grep 1.44
wc 49.38

python 55.74

What's the average slowdown over everything?

49 /58

Summarising benchmark suites:
normalisation

» Normalise runtimes against baseline
» Example: SPECint (CPU benchmark): VAX 11/780
» Speedup ist a form of normalisation

Program Runtime Speedup System

P 500 1 baseline
P> 40 1 baseline
= 100 5 A
P5 2 20 A
P 80 6 B
P> 20 2 B

» Speedups are proportions:

System A /5 x 20 =10

» Geometric mean: System B /6 x 2~ 3,46...

50/58

The geometric mean

> t(Px, M): Runtime of program Py on system M

%: speedup of program Pj on system M

over baseline

Geometric mean:

| t(P1,baseline) v t(Pp,baseline)
He = t(Pl7A) o t(anA)

Geometric standard deviation:

\/ (n CLBD) (g2 ..t (n(LDy g2
op =€

n

51/58

Advantages of the Geometric Mean

n/t(Py baseline) — t(Pp,baseline)
t(P1,A) t(Pn,A)
n/ t(Py baseline) — t(Pp baseline)
t(P1,B) t(Pn,B)
t(Py,baseline) w y H(Pn;baseline)
_ t(P1.A) t(Pn,A)
— 1] t(Py baseline) t(Pn,baseline)

t(P1.B) " t(Pn,B)

_ C/t(Pl,B) % x HPn.B)

t(PlvA) t(anA)

When directly comparing the geometric means of
systems A and B, the baseline is irrelevant

52/58

Measuring Performance

Does compiler A produce faster code than compiler B?
Does machine A run code faster than machine B?

» Application

» Benchmark suite

» Synthetic benchmark suite (unrealistic)
» Small programs (unrealistic)

» (Micro)kernels (unrealistic)

» MIPS/FLOPS (operations "‘per second"'— but what
operations? How representative?)

53/58

Benchmark Suites

» Standardised collections of software with different ‘typical’
loads
» Advantages:
» Standardisation simplifies comparability
» Differentiated pieces of software avoid over-specialisation /
unrealistic optimisations / lack of realism
» Disadvantages:
» Workloads for software may not be representative of actual
application use
» Software and programming practices evolve, benchmark static
suites may become obsolete
» Exapmles:
» SPEC (CPUs, focus on C)
» TPC (Databases)
» DaCapo, XCorpus (Java applications)

54 /58

Benchmark Suites (Example)

Consist of several programs, e.g., DaCapo:

avrora Multiprocessor simulation
batik Draws SVG images
eclipse Eclipse IDE performance test
fop Translates XSL-FO file into PDF or PS file
h2 Banking transaction simulator
pmd Static checker for Java
sunflow Ray tracer (computes images)
tomcat Web server
xalan Translates XML to HTML
» +5 more

| Assumption: All programs ‘equally important’

55 /58

Summary

> |deal measurement: Runtime of the intended program in all
possible configurations
> If not practical:
» Prepresentative benchmark suites
» Measure minimal changes between configuration
= Analyse effect of individual changes

» Summarise benchmark suite results: geometric mean:
\n/ (PLA) o t(PnA)

t(P1,baseline) T t(Pn,baseline)

56 /58

Review

» Performance Counters

» Challenges in Dynamic Performance Analysis
» Taint Analysis

» Binary Instrumentation

» Benchmark Suites

57 /58

To be continued. ..

» Type Analysis
» Operational Semantics

58 /58

