
EDA045F: Program Analysis
LECTURE 8: DYNAMIC ANALYSIS 1

Christoph Reichenbach



In the last lecture. . .

I More Points-to Analysis
I Memory Errors

2 / 44



Challenges to Static Analysis

I Static analysis is far from solved
I Very active research area
I Even with current state-of-the-art, some fundamental
limitations apply

I Bounds of computability are only one of them. . .

3 / 44



Reflection
Java
Class<?> cl = Class.forName(string);
Object obj = cl.getConstructor().newInstance();
System.out.println(obj.toString());

I Instantiates object by string name
I Similar features to call method by name
I Challenge:

I obj may have any type ⇒ imprecision
I Sound call graph construction very conservative

I Approaches
I Dataflow: what strings flow into string?

I Common: use of string prefixes
I Class.forName: class only from some point in package hierarchy
I Method calls by reflection: only methods with prefix (e.g.,

("test" + . . . ))
I Dynamic analysis and other approaches that we will cover later

4 / 44



Dynamic Loading
C
handle = dlopen("module.so", RTLD_LAZY);
op = (int (*)(int)) dlsym(handle, "my_fn");

I Dynamic library and class loading:
I Add new code to program that was not visible at analysis time

I Challenge:
I Can’t analyse what we can’t see

I Approaches:
I Conservative approximation

I Tricky: External code may modify all that it can reach
I Disallow dynamic loading
I With dynamic support and annotations:
I Allow only loading of signed/trusted code

I signature must guarantee properties we care about
I Proof-carrying code

I Code comes with proof that we can check at run-time
5 / 44



Native Code
Java
class A {

public native Object op(Object arg);
}

I High-level language invokes code written in low-level
language
I Usually C or C++
I May use nontrivial interface to talk to high-level language

I Challenge:
I High-level language analyses don’t understand low-level
language

I Approaches:
I Conservative approximation

I Tricky: External code may modify anything
I Manually model known native operations (e.g., Doop)
I Multi-language analysis (e.g., Graal)

6 / 44



eval and dynamic code generation

Python
eval(raw_input())

I Execute a string as if it were part of the program
I Challenge:

I Cannot predict contents of string in general
I Approaches:

I Disallow eval
I Not part of C, C++, Java
I Common in dynamic languages

I Conservative approximation
I Tricky: code may modify anything

I Dynamically re-run static analysis
I Special-case handling (cf. reflection)

7 / 44



Summary

I Static program analysis faces significant challenges:
I Decidability requires lack of precision or soundness for most of
the interesting analyses

I Reflection allows calling methods / creating objects given by
arbitrary string

I Dynamic module loading allows running code that the
analysis couldn’t inspect ahead of time

I Native code allows running code written in a different
language

I Dynamic code generation and eval allow building arbitrary
programs and executing them

I No universal solution
I Can try to ‘outlaw’ or restrict problematic features, depending
on goal of analysis

I Can combine with dynamic analyses

8 / 44



More Difficulties for Static Analysis

I Does a certain piece of code actually get executed?
I How long does it take to execute this piece of code?
I How important is this piece of code in practice?
I How well does this code collaborate with hardware devices?

I Harddisks?
I Networking devices?
I Caches that speed up memory access?
I Branch predictors that speed up conditional jumps?
I The ALU(s) that perform arithmetic in the CPU?
I The TLB that helps look up memory?
. . .

Impossible to predict for all practical situations

9 / 44



Static vs. Dynamic Program Analyses
Static Analysis Dynamic Analysis

Principle Analyse program
structure

Analyse program execution

Input
Independent Depends on input

Hardware/OS
Independent Depends on hardware and OS

Perspective
Sees everything Sees that which actually happens

Soundness
Possible Must try all possible inputs

Precision
Possible Always, for free

11 / 44



Summary

I Static analyses have known limitations
I Static analysis cannot reliably predict dynamic properties:

I How often does something happen?
I How long does something take?

I This limits:
I Optimisation: which optimisations are worthwhile?
I Bug search: which potential bugs are ‘real’?

I Can use dynamic analysis to examine run-time behaviour

12 / 44



Gathering Dynamic Data

I Instrumentation
I Performance Counters
I Emulation

13 / 44



Gathering Dynamic Data: Java

Foo.java Foo.class

Dynamic
Classloader

JVM
Runtime

Compiler

FooInstr.classFooInstr.java

JVM
Runtime
Instrumented

Debug
Inter-
face

I Source-level instrumentation
I Binary-level instrumentation
I Load-time instrumentation
(Performed by classloader)

I Runtime System instrumentation
I Debug APIs

14 / 44



Comparison of Approaches
I Source-level instrumentation:
+ Flexible
– Must handle syntactic issues, name capture, . . .
– Only applicable if we have all source code

I Binary-level instrumentation:
+ Flexible
– Must handle binary encoding issues
– Only applicable if we know what binary code is used

I Load-time instrumentation:
+ Flexible
+ Can handle even unknown code
– Requires run-time support, may clash with custom loaders

I Runtime system instrumentation:
+ Flexible
+ Can see everything (gc, JIT, . . . )
– Labour-intensive and error-prone
– Becomes obsolete quickly as runtime evolves

I Debug APIs:
+ Typically easy to use and efficient
– Limited capabilities 15 / 44



Instrumentation Tools

C/C++ (Linux) Java
Source-Level C preprocessor ExtendJ
Binary Level pin, llvm soot, asm, bcel, AspectJ
Load-time ? Classloader, AspectJ

Debug APIs strace JVMTI
I Low-level data gathering:

I Command line: perf
I Time: clock_gettime() / System.nanoTime()
I Process statistics: getrusage()
I Hardware performance counters: PAPI

16 / 44



Practical Challenges in Instrumentation

I Measuring:
I Need access to relevant data (e.g., Java: source code can’t
access JIT)

I Representing (optional):
I Store data in memory until it can be emitted (optional)
I May use memory, execution time, perturb measurements

I Emitting:
I Write measurements out for further processing
I May use memory, execution time, perturb measurements

17 / 44



Summary

I Different instrumentation strategies:
I Instrument source code or binaries
I Instrument statically or dynamically
I Instrument input program or runtime system

I Challenges when handling analysis:
I In-memory representation of measurements (for
compression or speed)

I Emitting measurements

18 / 44



Instrumentation with AspectJ

I AspectJ is Java tool for Aspect-Oriented Programming
I Premise: separate program into different ‘aspects’
I ‘weave’ aspects together
⇒ for analysis, weaving = instrumentation
I AspectJ permits:

I Binary instrumentation
I Load-time instrumentation (if supported by the target
application)

19 / 44



AspectJ View of the World

Pr
og

ra
m

ex
ec
ut
io
n

main(String[]) is called

f() is called

f() finishes

f() is called

f() finishes

main(String[]) finishes

Join Points Pointcut

call f()

20 / 44



Pointcuts and Join Points

I Join Point: ‘point of interest’ during program execution
I Properties of program execution
I Method / constructor called
I Method / constructor returns
I Exception raised

I Pointcut: ‘Set of join points that we are interested in’
I Static description that captures set of dynamic events
I Call / return to/from method/constructor of particular name /
in particular class

I Exception of a given name is raised
I Parameters have a particular type
I Currently executing in a particular class
I Within another pointcut
. . .

21 / 44



Pointcut Examples
I call(void se.lth.MyClass.method(int, float)):
Method is called

I call(* se.lth.MyClass.method(int, float)):
Method is called (any return type)

I call(private * se.lth.MyClass.*()):
Any private method with no arguments is called

I call(void se.lth.MyClass.new(..)):
Any of the class constructors is called (overloaded)

I execution(void se.lth.MyClass.method(int, float)):
Method starts

I handler(InvalidArgumentException):
Exception handler invoked

I this(java.lang.String):
‘this’ object is of a given type

I target(se.lth.MyClass):
Method invocation target is of the given type

22 / 44



Defining Pointcuts

I To work with pointcuts, we must name them
I Can introduce parameters that we can reason about later

pointcut testEquality(Point p):
target(Point) &&
args(p) &&
call(boolean equals(Object));

23 / 44



Advice

I Advice is code added to a pointcut
I Before
I After
I Around (may call join point multiple times or skip pointcut)

I Any regular Java code permitted
I Can access information about join point:

I thisJoinPoint: Join point actual parameters, method call
target

I thisJoinPointStaticPart: Program location

24 / 44



AspectJ Example
import java.util.*;

public aspect Instr {

pointcut anycall(java.lang.Object obj) :
(call(* *(..)) && this(obj));

static boolean trace = true;

before(Object obj) : anycall(obj) {
if (trace) {

trace = false;
System.out.println("Calling from " + obj);
trace = true;

}
}

}

Make sure to avoid accidental infinite recursion!
25 / 44



Summary

I AspectJ allows instrumenting Java code by:
I Static re-writing
I Load-time re-writing

I Allows executing code in the context of join points
I Join points are abstractly described through pointcuts
I Pointcuts are given advice, which is Java code

I Advice is executed whenever join point matches pointcut
I Can be before / after / around join points

26 / 44



General Data Collection

I Events: When we measure
I Characteristics: What we measure
I Measurements: Individual observations
I Samples: Collections of measurements

27 / 44



Events

I Subroutine call
I Subroutine return
I Memory access (read or write or either)
I System call
I Page fault
. . .

28 / 44



Characteristics

I Value: What is the type / numeric value / . . . ?
I Counts: How often does this event happen?
I Wallclock times: How long does one event take to finish,
end-to-end?
Derived properties:
I Frequencies: How often does this happen

I Per run
I Per time interval
I Per occurrence of another event

I Relative execution times: How long does this take
I As fraction of the total run-time
I As fraction of some surrounding event

29 / 44



Perturbation

Example challenge: can we use total counts to decide whether
to optimise some function f?
I On each method entry: get current time
I On each method exit: get current time again, update
aggregate

I Reading timer takes: ∼ 80 cycles
I Short f calls may be much faster than 160 cycles
I Also: measurement needs CPU registers
⇒ may require registers
⇒ may slow down code further

Measurements perturb our results, slow down
execution

30 / 44



Sampling

Alternative to full counts: Sampling
I Periodically interrupt program and measure
I Problem: how to pick the right period?

1 System events (e.g., GC trigger or safepoint)
System events may bias results

2 Timer events: periodic intervals
I May also bias results for periodic applications
I Randomised intervals can avoid bias
I Short intervals: perturbation, slowdown
I Long intervals: imprecision

31 / 44



Samples and Measurements

Samples are collections of measurements
I Bigger samples:

I Typically give more precise answers
I May take longer to collect

I Challenge: representative sampling

0 0.5 1 1.5 2
0

0.5
1

1.5

Carefully choose what and how to sample

32 / 44



Summary

I We measure Characteristics of Events
I Sample: set of Measurements (of characteristics of events)
I Measurements often cause perturbation:

I Measuring disturbs characteristics
I Not relevant for all measurements
I Measuring time: more relevant the smaller our time intervals
get

I Can measure by:
I Counting: observe every event

I Gets all events
I Maximum measurement perturbation

I Sampling: periodically measure
I Misses some events
I Reduces perturbation

33 / 44



Presenting Measurements

P1 P2
Mean µ 1,001 0,999
Standard Deviation σ 0,273 0,275

Assuming normal distribution:

0 0.5 1 1.5 2

0.5

1

1.5

34 / 44



Standard Deviation, Assuming Normal
Distribution

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0.5

1
µ± σ

Deviation Chance of actual µ being in interval
σ 68,27%

1,96σ 95,00%
2σ 95,45%

2,58σ 99,00%
3σ 99,73%

35 / 44



How Well Does Normal Distribution
Fit?

Representation with error bars (95% confidence interval):

0 0,5 1 1,5

P1

P2

Mean + Std.Dev. are misleading if measurements don’t
observe normal distribution!

36 / 44



Box Plots

1st Q 4th QMedian

I Split data into 4 Quartiles:
I Upper Quartile (1st Q): Largest 25% of measurements
I Lower Quartile (4th Q): Smallest 25% of measurements
I Median: measured value, middle of sorted list of measurements

I Box: Between 1st/4th quartile boundaries
Box width = inter-quartile range (IQR)

I 1st Q whisker shows largest measured value ≤ 1,5× IQR
(from box)

I 4th Q whister analogously
I Remaining outliers are marked

37 / 44



Box plot: example

●

●

0.
0

0.
5

1.
0

1.
5

2.
0

38 / 44



Violin Plots

0.
0

0.
5

1.
0

1.
5

2.
0

1 2

●
●

39 / 44



Summary

I We don’t usually know our statistical distribution
I There exist statistical methods to work precisely with
confidence intervals, given certain assumptions about the
distribution (not covered here)

I Visualising without statistical analysis:
I Box Plot

I Splits data into quartiles
I Highlights points of interest
I No assumption about distribution

I Violin Plot
I Includes Box Plot data
I Tries to approximate probability distribution function visually
I Can help to identify actual distribution

40 / 44



Homework #4

1 Use AspectJ for profiling
2 Use perf to analyse hardware performance counters
3 Use Soot to build a dynamic callgraph and compare it to
Soot’s static call graph

41 / 44



Review

I Basic dynamic program analysis
I Instrumentation
I Sampling

42 / 44



To be continued. . .

I More Dynamic Program Analysis

43 / 44


