LUND =0

UNIVERSITY

f ' EDAO45F: Program Analysis

LECTURE 7: POINTER ANALYSIS 2

Christoph Reichenbach

In the last lecture...

» Datalog
» Soufflé
» Doop

2/28

Corrections and Announcements

» Steensgard & Andersson (correct after all!)
» Aggregation vs. Stratification

> No need to stratify aggregation (Soufflé doesn't)
» Can introduce nontermination

» Final Exam
» 11 January, 13:00-18:00, here in E:2116

3/28

Points-to-Analysis Sensitivities

» Points-to analysis is nondistributive
» No easy route to precise interprocedural analysis
» No known effective procedure summary representation
» We still want non-distributive analyses to be precise
» Example: out-of-bounds checking in method-of-interest copy ()

needs size of array (assumption: we need array allocation site)
» Approach: repeat analysis on same code for multiple contexts
> no bounds violation in copy at Cy
> bounds violation in copy at C; < Aj
> bounds violation in copy at C» <= C»

array0 = { } /7 Ao class Copier {

array3 = { 0, 1, 2} // A Copier(int[] s) {

c0 = new Copier(array3) // A this.src = s

cl = new Copier(array0) // Aj }

c0.copy(array3) // Co copy(int[] dest) {
cl.copy(array3) // C; dest[0] = this.src[O0]
c0.copy(array0) // C, } 2

4/28

k-call-site Sensitivity

» Call-site sensitivity (Doop terminology; traditionally called
context-sensitivity) analyses method once per call site

» Can determine that C is safe, C; is unsafe
> Analyses getO twice: Two different contexts Cy and C;

» Simple call-site sensitivity cannot distinguish C, and C3

» Will only analyse get0 once, for context Cy4

» 2-call-site sensitivity: extend context to caller’s caller

» Contexts: (Co,Cy4) and (C3,Ca)

> Need 3-call-site sensitivity etc. for deeper calls

array0 = {}
geto({ 0, 1 }) // Co

v

v
v
A%
A%

getO(array0)
f{o0, 11
f (array0)

=g{0, 11

// Cy
// Cy
// C3
// Cs

int getO(int[] array) {
return array[0] }
int f(int[] array) {

return getO(array) // C4 }

int g(int[] array) {
return f(array) // Cs }

5/28

Object Sensitivity

» Object-sensitivity uses as context the method receiver objects

» Usually represented by allocation sites:
objO = new 0bj() // Ao
objl = new 0bj(O // A
0bj0.m(0) // Co
objo.m(1) // C;
objl.m(2) // C»

» Method-of-interest m() is analysed twice: for Ay and A;
» Call sites Cy and C; use same context
» k-Object sensitivity is slighly more complex:
» Variant 1: Plain k-Object Sensitivity
(common definition in literature and used in Soot)

» Variant 2: Full k-Object Sensitivity
(original definition and used in Doop)

Plain Object Sensitivity

» 1-object sensitivity cannot distinguish the different
invocations Cy, C», C3 to a.invoke() at Cy

» Plain 2-object sentitivity:
» Adds the receiver object of the method that invoked the

method-of-interest to the context
> Contexts: (A3, Ag) and (A4, Ag)
» Treats C1 and C, the same
» Distinguishes them from Cs3

ol
02
c3
cd
c3.
c3.
ch.

new Owner() // A
new Owner() // A,
new Caller() // As
new Caller() // A4
call(ol.a) // Cy
call(o2.a) // Co
call(ol.a) // C3

class Owner {
Owner () {
this.a = new AQ) // Ao

}

}

class Caller {
call(A a) {

}

}

a.invoke() // Co

7/28

Full Object Sensitivity

» Full 2-object sentitivity:

» Adds the receiver object of the method that allocated each

object

» Distinguishes objects allocated at the same site if the objects
that executed the allocation differ

» Contexts: (A1, Ag) and (A2, Ap)

» Treats C1 and C3 the same

» Distinguishes them from C»

ol
02
c3
cd
c3.
c3.
ch.

new Owner() // A
new Owner() // A,
new Caller() // As
new Caller() // A4
call(ol.a) // Cy
call(o2.a) // Co
call(ol.a) // C3

class Owner {
Owner () {
this.a = new AQ) // Ag

}

}

class Caller {
call(A a) {

}

}

a.invoke() // Co

8/28

Type-Sensitivity

class Main {
main() {
k1 = new KQ
k2 = new K()
k1.make ()
new B()

a =
b =
k1.a.invoke()
k2.a.invoke()

a.invoke()
b.a.invoke()

/] As
/! As
// Co
/! As

// C1
// Ca
// C3
// Ca

> Full 2-object sensitivity:

Cli </44,¢41>
Co: <¢45,¢41>
C3Z <¢44,J42>
C4Z <¢46,¢43>
» 1-type sensty.+1-object sensty.:
Cy: (Main, .Ao>
Co: (Main, Ap)
Cs: (Main, Ap)
Cs: (Main, Ap)

class A {
invoke() {
// method of interest
3}

class K {
KO {
this.a = new AQ) // Ay
}
A make() {
return new A() // A
3}

class B {
BO {
this.a = new AQ) // A3
} o}

Type sensitivity:
> Based on full type sensitivity
> Merge call sites in same class definition

> Represent by class (less precise)
9/28

Heap Analysis Precision

class Matrix {

] [
Contexts for

} analysing mult?
]

class Scene {

mult(...) { Scene() {
this.house = new VisibleObj(...) // As
this.tree = new VisibleObj(...) // As
class Camera { b
Camera() { drawAll(Camera c) {
this.v = new Matrix() // A, this.house.draw(c) // C»
} T this.tree.draw(c) // C3
}
main() { . .
scenel = new Scene() // Ag da?s.VlSIb]:eObJ t
VisibleObj () {
scene2 = new Scene() // A; . .
B this.pos = new Matrix() // As
camera = new Camera() // A thi 1 _ MatrizxO // A
scenel.drawAll (camera) // Cp } 18.cotour = new Hatrix 6

scene2.drawAll(camera) // Ci

}

draw(Camera c) {

p = this.pos.mult(c.v) // C4
1-CS callsite sensitive // draw!
2-CS 2-callsite sensitive 3
1-0S object sensitive
2-P-0S plain object-sensitive (with call-site allocator)
2-F-0S full object-sensitive (with alloc-site allocator)
1-TS+1-0OS object sensitive with type sensitivity for alloc-site allocator

10/28

Heap Analysis Precision

[
class Matrix { Contexts Tor class Scene {
mult(...) {...}=) Scene() {
} analysmg mult? this.house = new VisibleObj(...) // A3

this.tree = new VisibleObj(...) // As

class Camera { +
Camera() { drawAll(Camera c) {
this.v = new Matrix() // A, this.house.draw(c) // C»
} T this.tree.draw(c) // C3
}
main() { . .
scenel = new Scene() // Ap C13§S.ziséz]feob‘] ¢
scene2 = new Scene() // A; isib-e J(z t .
camera = new Camera() // Ao th}s.pos = new Matrlx(). // As
scenel.drawAll (camera) // Co this.colour = new Matrix() // Asg
scene2.drawAll(camera) // Ci ¥
) draw(Camera c) {
p = this.pos.mult(c.v) // C4
1-CS Cs // draw!
2-CS (C2,Ca), (C3,Ca) Py
1-0S As
2-P-0S (Ao, As), (A1, As)
2-F-0S (As, As), (As, As)

1-TS+1-0OS (Scene, As)

10/28

Summary

> Analysis sensitivities allow us to analyse methods more precisely
> Multiple analyses of same method in different contexts
» Context provides additional information (args, globals, heap)
» With procedure summaries (cf. IFDS / IDE): no repeat analysis

necessary, but only for distributive frameworks

> Call site sensitivity (traditionally called context sensitivity) uses call
sites as context

> Object sensitivity uses abstract receiver objects of method calls
(typically identified by call site) as context (requires pointer analysis)

> k-call site sensitivity for k > 1 uses call sites, parent call sites,
grandparent call sites etc. as context

> Plain k-object sensitivity for k > 1 uses abstract receiver objects of
the ancestor method call(s) that led to method-of-interest as context

> Full k-object sensitivity uses abstract receiver objects of the ancestor
method call(s) that led to allocation of receiver object as context

> Type sensitivity abstracts over full k-object sensitivity by merging call
sites from

> These approaches can be layered and combined

> Worst case analysis cost exponential over k -

Flow-Sensitive Points-To Analysis

» Points-to analysis in practice: flow-insensitive
(Steensgard, Andersen)

» Flow-sensitive analysis possible on small modules

a = new() a—()
t
’a.next = null‘ a_)one_x) null
t
b = ;ﬂ a—>Qﬂ> null
b —A
t
b = b.next a—)()ﬂ) null
b —— A

b = b.next fault

12/28

Strong and Weak Updates

next
b=a a —(M—> null
__A

b

next
b = b.next a—>@—x> null

p— A

» Flow-sensitive program analysis enables strong updates:
» Remove information that is overwritten by update
b # n after update
» Weak updates still needed when ambiguous:

RO

» Consider c.g = null

> Cannot be strong update (unclear which fact to delete)
» Flow-insensitive points-to analyses only use weak updates

13/28

Abstraction and Focus

o)
1]

mklist ()

p-f

P >@>E—>@> -

-~

A}

N
p- {>'\I_7,‘- - = null

SL‘
P—l> -[>'n‘----[>null
A

Abstraction

Focus

}Two possible

concretisations

1428

Abstraction and Focus

p = mklist()
P —>0)—>0)—>0)>
£ Abstraction
<
P->nr--null
a=rp.f ot
PR RN f Focus
/ B v f‘\ﬁ\
A P A
>y - > n - - - [
P —>(g) . i f[>_(\-f--i>qzu
a# . ;0
:-

1428

Shape Analysis

» Shape analysis describes more abstract properties of heap
nodes
» Examples:
> may-be-null(n): n may be null
> may-share(ny, ny): ny > n < ny is possible (for some n)
> must-share(ny, n2): ny > n < ny is certain (for some n)
> reachable(n,m): n >* m
> disjoint(ny, np): n1 and ny point to disjoint structures:
When reachable(ni, m) for some m, then —reachable(ny, m),
and if reachable(ny, m), then —reachable(ny, m).
> list(n, f): Node n is part of a singly linked list along field f:

£ N f
n > n' implies that n’ $n (for any n')

15/28

Keeping the Graph in Shape

mklist ()

o)
]

f Abstraction

a=p.f

: F : r 7 /
list(, f): €+ ¢ implies that ¢/ /> ¢ (for any ')
If we know list(n), we also know list(ng), list(n1)

list(n) allows us to elide impossible edges

16/28

Summary

» Flow-sensitive points-to analysis is possible

» Weak updates add new points-to relationship options

» Strong updates add but also remove points-to relationship
options
» More precise than weak updates
» Only possible if updated pointer is unambiguous

» Abstraction operations introduce summary nodes or merge
existing summary nodes with other nodes

> Focus operations turn summary nodes/edges into
non-summary nodes/edges
» Must usually consider multiple options to remain sound

» Shape analysis analyses graphs for higher-level properties
such as graph-disjointness, tree-structuredness,
list-structuredness etc.
» Can improve precision of Focus operations

17/28

Utility of points-to analysis

» Pointer analysis invaluable for building call graphs
» Also useful for:

» Optimisation (aliasing information)

» Finding memory errors

18/28

Manual Memory Management

free(p);

» Manually memory-managed languages require manual
deallocation of memory

» Main languages in use, with their deallocators:

» C: free()
> C++: delete, delete[], (free() for compatibility)

» Source of memory errors: using mismatching deallocator

19/28

Deallocation Errors

C++
Ax obj = new A(...);
delete obj;

obj->f(42); // use after deallocation
delete obj; // double deallocation

» double free or double deallocation:
request deallocation of pointer that has already been
deallocated

» use after deallocation or use after free:
Access pointer that has already been deallocated

20/28

Stale Pointer Errors

C

int* p = malloc(...);
free(p);
*p = 23; // write to dangling pointer

int* f(int v) {
int k = v * v;
return &k;

}
p = £(0); // stale stack pointer

» Dangling pointers are pointers to deallocated memory regions
» Deallocation may happen:

> explicitly on the heap (free, ...)

> implicitly on the stack (return)

21/28

Uninitialised Memory errors

C++

int f(int v) {
int random;
return v + random;

3

» In C/C++: Contents of variable random undefined

» Analogous with malloc / realloc: Memory contents not
guaranteed to be zeroed

22/28

Out-Of-Bounds Errors

C
int f(int v) {
int a = 0;
int k[4] = { 0, 0, 0, O };
int b = 0;
k[v] = 1;
}

> If v=-1 or v=4:
» May overwrite a or b
» Other values may overwrite return address
» Buffer overrun: common security vulnerability

23/28

Pointer Type Errors

C
class A {...};

std::string s = "foo";
void* sp = &s;

Ax a = static_cast<A*>(sp);
a->method () ;

» ‘Type conversion’ in C/C++ often not typesafe
» Can re-interpret memory contents as type

> May be sensible (loading memory image from disk)
» May be nonsensical (cf. example)

24/28

Memory Leak

C Java
int f(int fd) { class A {
void* v = malloc(1024); private static A g = null;
int len = read(fd, v, 1024); private A n;
return v[(len < 1)? 0 : len-1]; public AQ) {
} this.n = g;
g = this;
o}

» Memory goes through stages:
Allocated, initialised

Utilised

Not utilised

Deallocated

» Memory leak: stage 3 ‘too long’
25/28

Summary

Memory management: Unsafe manual | Safe manual | Automatic
Null pointer dereference fault fault fault
Deallocation error corruption fault —
Stale pointer error corruption fault —
Uninitialised memory error corruption fault fault
Out-of-bounds error corruption fault fault
Pointer type error corruption fault fault

» Memory corruption:

» Hard-to-find errors (may not manifest, manifest much later)

> Sometimes exploitable for (remote) attacks

» Memory leak: only partly mitigated by automatic memory

management

26/28

Review

» k-call-site-sensitive (points-to) analysis

» Plain and full k-object-sensitive (points-to) analysis
» Type-sensitive (points-to) analysis

» Shape analysis (briefly)

» Memory errors in C/C++

27/28

To be continued. ..

» Dynamic Program Analysis
» Program Instrumentation

28/28

