EDA045F: Program Analysis
LECTURE 5: POINTER ANALYSIS 1

Christoph Reichenbach


## In the last lecture...

- Procedure Summaries
- IFDS algorithm
- IDE algorithm
- Path Sensitivity


## Our Memory Modelling Until Now

- Our analyses so far have considered:
- Static Variables
- Local (stack-dynamic) Variables
- (Stack-dynamic) parameters


## Example Program

## Example <br> a $=\operatorname{new}() ; \quad / / \Leftarrow$ <br> a. $x=$ null; $/ / \Leftarrow$ <br> b = a; <br> $/ / \Leftarrow$ <br> b.x $=$ new () ; $/ / \Leftarrow$ <br> a. $x . y=1 ; \quad / / \Leftarrow$ <br> c = new () ; $/ / \Leftarrow$ <br> c. $x=\operatorname{new}() ; / / \Leftarrow$ <br> c. $x . x=a ; \quad / / \Leftarrow$ <br> c = a.x; $\quad / / \Leftarrow$ <br> // A



## Concrete Heap Graph

" $v$ points to $\ell$ "


- Heap graph connects memory locations
- Represents all heap-allocated objects and their points-to relationships
- Edges labelled with field names
- Some objects not reachable from variables



## Aliasing

## Aliases at // A:

- a and b represent the same object
$\Rightarrow \mathrm{a}$ and b are aliased

$$
\mathrm{a} \stackrel{\text { alias }}{=} \mathrm{b}
$$

$$
\begin{aligned}
& \mathrm{a}=\mathrm{new}() ; \\
& \mathrm{a} \cdot \mathrm{x}=\mathrm{null} ; \\
& \mathrm{b}=\mathrm{a} ; \\
& \mathrm{b} \cdot \mathrm{x}=\mathrm{new}() ; \\
& \mathrm{a} \cdot \mathrm{x} \cdot \mathrm{y}=1 ; \\
& \mathrm{c}=\text { new }() ; \\
& \mathrm{c} \cdot \mathrm{x}=\operatorname{new}() ; \\
& \mathrm{c} \cdot \mathrm{x} \cdot \mathrm{x}=\mathrm{a} ; \\
& \mathrm{c}=\mathrm{a} \cdot \mathrm{x} ; \\
& / / \mathrm{A}
\end{aligned}
$$



## Pointer Analysis



- Points-To Analysis:
- Analyse heap usage
- Which variables may/must point to which heap locations?

$$
a \rightarrow \ell_{0}
$$

- Alias Analysis:
- Analyse address sharing
- Which pair/set of variables may/must point to the same address?

$$
a \stackrel{\text { alias }}{=} b
$$

## Summary: Pointer Analysis

- Class of analyses to model dynamic heap allocation
- Points-To Analysis: computes mapping
- From variables
- To pointees (other variables)
- More general than Alias Analysis
- Alias Analysis: computes
- Sharing information between variables
- Implicitly produced by points-to analysis

$$
a \stackrel{\text { alias }}{=} b \Longleftrightarrow a \rightarrow \ell \leftarrow b
$$

## Dataflow with Alias Information



## Dataflow with Alias Information



## Dataflow + Aliases

- Aliasing affects shared fields:

$$
\mathrm{a} \xlongequal{\text { alias }} \mathrm{b} \quad \Longrightarrow \quad \mathrm{a} \cdot \mathrm{x} \xlongequal{\text { alias }} \mathrm{b} \cdot x \text { for all } x
$$

- Exploiting aliasing knowledge:
- Multiply updates for each alias:

$$
\left[\begin{array}{lll}
\mathbf{a} \cdot x & \mapsto & \mathbf{a} \cdot x \cup\{4\} \\
\mathbf{b} \cdot x & \mapsto & \mathbf{a} \cdot x \cup\{4\} \\
\mathbf{d} \cdot x & \mapsto & \mathbf{a} \cdot x \cup\{4\}
\end{array}\right]
$$

- Multiply reads for each alias

$$
\left[\begin{array}{lll}
\mathbf{a} \cdot x & \mapsto & \mathbf{a} \cdot x \cup \mathbf{b} \cdot x \cup \mathbf{c} \cdot x \cup\{4\}
\end{array}\right]
$$

- Replace aliased paths by single representative
- Most efficient


## Compute Aliases during Dataflow?

- Previoulsy: Dataflow analysis as analysis client of Alias analysis:
- Can use Dataflow Analysis to compute pointer analyses
- Caveat:
y.field = z
- Transfer function updates $y$.field by $z$
- Must extract both $y, z$ from in $_{b}$ to compute update
- Non-distributive in practice


## Summary

- Analysis client: user of analysis, often another analysis
- E.g., Type analysis is client of name analysis
- Alias analysis helps make dataflow analysis more precise
- Fields inherit aliasing:

$$
\mathrm{a} \xlongequal{\text { alias }} \mathrm{b} \quad \Longrightarrow \quad \mathrm{a} \cdot \mathrm{x} \xlongequal[=]{\text { alias }} \mathrm{b} \cdot x \text { for all } x
$$

- So if a.x $\xlongequal{\text { alias }} b \cdot y$, then:
- a.x.z $\xlongequal{\text { alias }} b . y . z$
- a.x.z.z alias b.y.z.z
- a.x.z.z.z $\xlongequal{\text { alias }}$ b.y.z.z.z etc.
- Dataflow analysis can compute pointer analyses
- Requires non-distributive framework for realistic languages


## Concrete Heap Graphs (1/2)

Capturing the heap as a graph:

$$
G_{\mathrm{CHG}}=\langle\text { MemLoc, } \rightarrow, \stackrel{\bar{\rightarrow}\rangle}{ }\rangle
$$

- $G_{\text {CHG }}$ describes the actual heap contents
- MemLoc represents addressable memory locations
- Named variables (a)
- Unnamed variables ( $\bigcirc$ )
- Heap size typically 'unbounded for all practical purposes'
- $(\rightarrow)$ : Points-to relation from named variables

$$
\mathrm{a} \rightarrow \ell_{0}
$$

- $(\stackrel{-}{\rightarrow})$ : Points-to relation from objects/arrays



## Concrete Heap Graphs (2/2)

- Direct points-to references:

$$
(\rightarrow): \operatorname{Var} \rightarrow \text { MemLoc }
$$

- Language difference:
- Java: Var is set of global / local variables and pameters
- Disjoint from MemLoc
- C/C++: Var = MemLoc
- Address-of operator (\&) allows translating variable into MemLoc
- Points-to references via fields:

$$
(\stackrel{-}{\rightarrow}): \text { MemLoc } \times \text { Field } \rightarrow \text { MemLoc }
$$

- Field labels Field:
- E.g., $x$ in 'a. x' (Java) / 'a->x' (C/C++)
- Array indices for 'a[10]' (i.e., $\mathbb{N} \subseteq$ Field)


## Example

## Example

```
proc makeList(len) {
    tail = new() //\Leftarrow
    tail.next = null //\Leftarrow
    body = tail }//
    while len > 0 {
        t = body
        //\Leftarrow
        body = new() //\Leftarrow
        body.next = t //\Leftarrow
        len = len - 1
    }
    list = new() //\Leftarrow
    list.head = body //\Leftarrow
    list.tail = tail //\Leftarrow
    return list
}
```



## Managing Heap Graphs

- Size of Concrete Heap Graphs is unbounded
- Need summarisation technique to model heap
- Store-less heap models:
- Do away with heap locations
- Model heap exclusively via access paths
list.head.next.next
- Store-based heap models:
- Keep heap locations explicit
- Introduce Summary nodes that can describe multiple CHG nodes


## Store-less Model

- Access path-based equivalences:

- Must: list.tail $\xlongequal{\text { alias }}$ tail
- Must: list. head $\xlongequal{\text { alias }}$ body
- Must: body.next $\xlongequal{\text { alias }} \mathrm{t}$
- May: body.next $\star \xlongequal{\text { alias }}$ tail
- Use regular expressions to denote repetition
- body.next $\star \xlongequal{\text { alias }}$ tail means:

| body <br> body.next | $\stackrel{\text { alias }}{ }$ tail |
| :--- | :--- |
| body.next.next | $\stackrel{\text { alias }}{\text { alias }}$ tail |
| tail |  |

- For May or Must information


## Store-based Model

- Concrete Heap Graph (CHG): graph of the program's reality

$$
G_{\mathrm{CHG}}=\langle\text { MemLoc, } \rightarrow, \stackrel{\bar{\rightarrow}}{\rightarrow}\rangle
$$

- Abstract Heap Graph (AHG): approximation of the program's reality

$$
\begin{aligned}
& G_{\mathrm{AHG}}=\langle\mathcal{P}(\text { MemLoc }) \rightarrow, \rightarrow\rangle \\
(\rightarrow): & \mathcal{P}(\text { Var }) \rightarrow \mathcal{P}(\text { MemLoc }) \\
(\rightarrow): & \mathcal{P}(\text { MemLoc }) \times \mathcal{P}(\text { Field }) \rightarrow \mathcal{P}(\text { MemLoc })
\end{aligned}
$$

- Key idea: AHG is finite graph that summarises CHG
- Soundness via:

$$
\begin{array}{lllllll}
v & \rightarrow & \ell & \text { implies } & \{v\} \cup V^{\prime} & \rightarrow & \{\ell\} \cup L^{\prime} \\
\ell_{0} & \xrightarrow[f]{\rightarrow} & \ell_{1} & \text { implies } & \left\{\ell_{0}\right\} \cup V_{0}^{\prime} & \underset{\{f\} \cup F^{\prime}}{ } & \left\{\ell_{1}\right\} \cup L_{1}^{\prime}
\end{array}
$$

- Technique: Summary nodes


## Summary Nodes and Edges

## Notation:

- Abstract node $N \subseteq$ MemLoc:
- $|N|=1$ : precise:
- $|N|>1$ : summary: $\because$
- Consider edge $V \rightarrow L$ :
- $|V|=1$ : precise:
$V \longrightarrow L$
- $|V|>1$ : summary:

$$
V \cdots L
$$

- Analogous for $(\stackrel{f}{\rightarrow})$



## Summaries from Allocation Sites

## Example




## Summaries from Allocation Sites

## Example

proc makeList(len) \{
[0] tail $=$ new ()
[1] tail.next $=$ null
[2] body = tail
[3] while len > 0 \{
[4] $\quad t=$ body
[5] body $=$ new ()
[6] body.next $=$ t
[7] len $=$ len - 1
[8] \}
[9] list $=$ new()
[10] list.head = body
[11] list.tail $=$ tail
[12] return list
\}

## Summaries via k-Limiting

- k-Limiting: bound size
- Examples: Limiting. . .
- Access path length

$$
\text { Example }(\mathrm{k}=3) \text { : }
$$

list.head.next

$$
\text { list.head.next.next } \quad \Rightarrow \quad \text { list.head.next } \star
$$

$$
\text { list.head.next.next.next } \Rightarrow \text { list.head.next* }
$$

$$
\text { list.head.next.next.val } \Rightarrow \text { list.head.(val|next) } \star
$$

- \# of $(\rightarrow)$ hops after named variable
- \# of nodes transitively reachable via ( $\rightarrow$ ) after named variable
- \# of nodes in a loop / function body


## Variable-Based Summaries



- Summarise MemLoc when not referenced by variables
- For May analyses: summarise nodes potentially pointed to by same set of variables


## Other Summary Techniques

- General idea: Map $\mathcal{P}$ (MemLoc) to finite (manageable!) set
- Can combine different techniques for increased precision
- Other techniques: distinguish heap nodes by:
- How many edges point to the node?
- Is the node in a cycle?
- What is the type of the node? (ArrayList, StringTokenizer, File, ...)


## Design Considerations

- First goal remains: make output finite
- Useful for analysis clients
- Efficient to compute / represent
- When considering flow-sensitive models:
- Different program locations will have different AHGs
- Exploit sharing across program locations


## Summary of Heap Summaries

- Heap size is unbounded, must summarise
- Store-less Models:
- Use access paths to describe memory locations
- Common in alias analysis
- Store-based Models:
- Use Abstract Heap Graph for summarisation
- Common for finding memory bugs
- Summarisation techniques:
- Allocation-Site Based: summarise nodes allocated at same program point
- $k$-Limiting: Set bound on some property $P$ : no more than $k$ Ps allowed
- Variable-Based: summarise data not pointed to by variables or pointed to by the same variables (May analysis)
- Many combinations / extensions conceivable


## Pointer Operations in C and Java

Referencing
Create location:

$$
\begin{aligned}
& \text { my_t *p = \&var; } \\
& p=\operatorname{malloc}(8)
\end{aligned}
$$

## Java

$\mathrm{A} \mathrm{a}=$ new A()

Dereferencing
Access location:

## C

- read -
int $\mathrm{x}=$ *ptr;
x = ptr2->fld;
- write -
*ptr = x;
ptr2->fld = $x$;

$$
\begin{aligned}
& \text { Java } \\
& \quad \text { - read - } \\
& \text { int x }=\text { a.f; } \\
& \text { - write - } \\
& \text { a.f }=x ;
\end{aligned}
$$

Aliasing
Copy pointer:

```
C
my_t *pa;
pa = pb;
```


## Java <br> A $\mathrm{a}=\mathrm{b}$;

## Pointer Operations

- Three principal pointer operations:
- Referencing:
- $v:=$ address-of(...)
- Create location $\ell$
- Introduce $v \rightarrow \ell$
- Dereferencing:
- $x:=v . f$
- Access existing location $\ell$
- Aliasing:
- Pointer/reference variables $v_{1}, v_{2}$
- $v_{2}:=v_{1}$
- $v_{1} \rightarrow \ell \Longleftrightarrow v_{2} \rightarrow \ell$


## Summary

- Points-to anaysis: approximate ' $v$ points to location $\ell$ '

$$
v \rightarrow \ell
$$

- Analysis must consider:
- Referencing: taking location
- Dereferencing: accessing object at location
- Aliasing: copying location
- Locations $\ell$ may model different parts of memory:
- Static variables: uniquely defined
- Stack-dynamic variables: zero or more copies (recursion!)
- Heap-dynamic variables:zero or more copies without variable names attached


## Steensgaard's Points-To Analysis ${ }^{1}$

- Fast: $O(n \alpha(n, n))$ over variables in program
- Developed to deal with large code bases at AT\&T
- Sacrifices Precision
- Equality-based
- Intuition:

Whenever two variables could point to the same memory location, treat them as globally equal

## Steensgard: Pointer Operations

- Recall C pointer semantics:
- \&a: Address of a
- *a: Object pointed to by a
-Converse operators: $*(\& a)=a$
Steensgard's analysis considers four cases:

|  | $\mathbf{C}$ | Java |
| :--- | :--- | :--- |
| Referencing | $\mathrm{a}=\& \mathrm{~b}$ | $\mathrm{a}=$ new A() |
| Aliasing | $\mathrm{a}=\mathrm{b}$ | $\mathrm{a}=\mathrm{b}$ |
| Dereferencing read | $\mathrm{a}=* \mathrm{~b}$ | $\mathrm{a}=\mathrm{b} . \mathrm{f}$ |
| Dereferencing write | $* \mathrm{a}=\mathrm{b}$ | $\mathrm{a} . \mathrm{f}=\mathrm{b}$ |

## Constraint Collection

- 'Points-to-set': $\operatorname{pts}(v)$ approximates $\{\ell \mid v \rightarrow \ell\}$
- Corresponds to $\{\ell \mid v \rightarrow \ell\}$
- For each statement in program:
- If Referencing ( $\mathrm{a}=\& \mathrm{~b}$ ):

$$
\ell_{\mathrm{b}} \in p t s(\mathrm{a})
$$

- If Aliasing ( $\mathrm{a}=\mathrm{b}$ ):

$$
p t s(\mathrm{a})=p t s(\mathrm{~b})
$$

- If Dereferencing read $(\mathrm{a}=* \mathrm{~b})$ :

$$
\text { for each } \ell \in p t s(\mathrm{~b}) \Longrightarrow p t s(\mathrm{a})=p t s(\ell)
$$

- If Dereferencing write ( $* \mathrm{a}=\mathrm{b}$ ):

$$
\text { for each } \ell \in p t s(\mathrm{a}) \Longrightarrow p t s(\mathrm{~b})=p t s(\ell)
$$

## Example

$$
\begin{array}{ll}
\mathrm{x}=\& \mathrm{y} & \ell \mathrm{y} \in p t s(\mathrm{x}) \\
\mathrm{x}=\mathrm{y} & p t s(\mathrm{x})=p t s(\mathrm{y}) \\
\mathrm{x}=* \mathrm{y} & \text { for each } \ell \in \operatorname{pts}(\mathrm{y}) \\
& \Longrightarrow p t s(\mathrm{x})=p t s(\ell) \\
* \mathrm{x}=\mathrm{y} & \text { for each } \ell \in \operatorname{pts}(\mathrm{x}) \\
& \Longrightarrow p t s(\mathrm{y})=p t s(\ell)
\end{array}
$$

## - Actual:



## - Steensgaard:



## Example

$$
\begin{array}{ll}
\mathrm{x}=\& \mathrm{y} & \ell \mathrm{y} \in \operatorname{pts}(\mathrm{x}) \\
\mathrm{x}=\mathrm{y} & p t s(\mathrm{x})=p t s(\mathrm{y}) \\
\mathrm{x}=* \mathrm{y} & \text { for each } \ell \in \operatorname{pts}(\mathrm{y}) \\
& \Longrightarrow p t s(\mathrm{x})=p t s(\ell) \\
* \mathrm{x}=\mathrm{y} & \text { for each } \ell \in \operatorname{pts}(\mathrm{x}) \\
& \Longrightarrow p t s(\mathrm{y})=p t s(\ell)
\end{array}
$$

## - Actual:



- Steensgaard:



## Example

$$
\begin{array}{ll}
\mathrm{x}=\& \mathrm{y} & \ell \mathrm{y} \in \operatorname{pts}(\mathrm{x}) \\
\mathrm{x}=\mathrm{y} & p t s(\mathrm{x})=p t s(\mathrm{y}) \\
\mathrm{x}=* \mathrm{y} & \text { for each } \ell \in \operatorname{pts}(\mathrm{y}) \\
& \Longrightarrow p t s(\mathrm{x})=p t s(\ell) \\
* \mathrm{x}=\mathrm{y} & \text { for each } \ell \in \operatorname{pts}(\mathrm{x}) \\
& \Longrightarrow p t s(\mathrm{y})=p t s(\ell)
\end{array}
$$

## - Actual:



## - Steensgaard:



## Example

$$
\begin{array}{ll}
\mathrm{x}=\& \mathrm{y} & \ell \mathrm{y} \in p t s(\mathrm{x}) \\
\mathrm{x}=\mathrm{y} & p t s(\mathrm{x})=p t s(\mathrm{y}) \\
\mathrm{x}=* \mathrm{y} & \text { for each } \ell \in \operatorname{pts}(\mathrm{y}) \\
& \Longrightarrow p t s(\mathrm{x})=p t s(\ell) \\
* \mathrm{x}=\mathrm{y} & \text { for each } \ell \in \operatorname{pts}(\mathrm{x}) \\
& \Longrightarrow p t s(\mathrm{y})=p t s(\ell)
\end{array}
$$

- Actual:

- Steensgaard:


When merging: ‘collapse’ children (merge recursively)

## Example

$$
\begin{array}{ll}
\mathrm{x}=\& \mathrm{y} & \ell \mathrm{y} \in p t s(\mathrm{x}) \\
\mathrm{x}=\mathrm{y} & p t s(\mathrm{x})=p t s(\mathrm{y}) \\
\mathrm{x}=* \mathrm{y} & \text { for each } \ell \in \operatorname{pts}(\mathrm{y}) \\
& \Longrightarrow p t s(\mathrm{x})=p t s(\ell) \\
* \mathrm{x}=\mathrm{y} & \text { for each } \ell \in \operatorname{pts}(\mathrm{x}) \\
& \Longrightarrow p t s(\mathrm{y})=p t s(\ell)
\end{array}
$$

- Actual:

- Steensgaard:


When merging: 'collapse’ children (merge recursively)

## Constraint Representation \& Solving

- $\hat{v} \in \mathcal{P}$ (MemLoc): set of possible locations of variable $v$
- Represent with Union-Find data structure (efficient union)
- Collapse child nodes when merging
- Implementing Referencing ( $\mathrm{a}=\& \mathrm{~b}$ )
- pts( $\widehat{a}$ ). union( $\widehat{b})$
- Implementing Aliasing ( $\mathrm{a}=\mathrm{b}$ )
- pts( $\widehat{a})$.union(pts( $(\widehat{b}))$
- Implementing Dereferencing $(* \mathrm{a}=\mathrm{b})$
- pts(pts( $\widehat{a}))$.union(pts( $(\widehat{b}))$

Result is immediate: no further analysis needed

## Summary

- Points-to sets pts(v) serve as abstraction over addresses that $v$ can point to
- Steensgaard's points-to analysis:
- Insensitive to flow, context, fields, ...
- Steensgaard's analysis in practice:
- Highly efficient
- Imprecise


## Andersen's Points-To Analysis ${ }^{2}$

- Asymptotic performance is $O\left(n^{3}\right)$
- More precise than Steensgaard's analysis
- Subset-based (a.k.a. inclusion-based)
- Popular as basis for current points-to analyses


## Collecting Constraints

- Collect constraints, resolve as needed
- For each statement in program, we record:
- If Referencing ( $\mathrm{a}=\& \mathrm{~b}$ ):

$$
\operatorname{pts}(\mathrm{a}) \supseteq\left\{\ell_{\mathrm{b}}\right\}
$$

- If Aliasing ( $\mathrm{a}=\mathrm{b}$ ):

$$
p t s(\mathrm{a}) \supseteq p t s(\mathrm{~b})
$$

- If Dereferencing read $(\mathrm{a}=* \mathrm{~b})$ :

$$
p t s(\mathrm{a}) \supseteq p t s(* \mathrm{~b})
$$

- If Dereferencing write ( $* \mathrm{a}=\mathrm{b}$ ):

$$
p t s(* \mathrm{a}) \supseteq p t s(\mathrm{~b})
$$

## Solving Constraints

- We have collected constraints:

1 pts $(a) \subseteq p t s(b)$
$2 p t s(* a) \subseteq p t s(b)$
$3 \operatorname{pts}(a) \subseteq p t s(* b)$

- Also, we have initial points-to set elements: $\ell \in p t s(a)$
- Build directed inclusion graph $G_{I}=\langle$ MemLoc, $E\rangle$
- Edges $a \rightarrow b \in E$ iff one of:
- pts $(a) \subseteq p t s(b)$
- $a \in p t s(v)$ and $p t s(* v) \subseteq p t s(b)$
- pts $(a) \subseteq p t s(* v)$ and $b \in p t s(v)$
- While keeping in mind the following:
- $(\ell \in p t s(a))$ and $(a \rightarrow b \in E) \Longrightarrow(\ell \in p t s(b))$
- Propagate $\ell$ along E


## Example

## - Actual:

```
C
int i, j, k;
int* a = &i;
int* b = &k;
a = &j;
    int** p = &a;
    int** q = &b;
    p = q;
    int* c = *q;
```


## - Andersen:

## Example

## - Actual:

- Andersen:
int** $\mathrm{p}=\& \mathrm{a}$;
int** $q=\& b ;$
$\mathrm{p}=\mathrm{q}$;
int* $c=* q$;
(i)
(j)
(k)


## Example

## - Actual:

$$
\begin{aligned}
& \text { int } i, j, k ; \\
& \text { int* } a=\& i ; / / \Leftarrow \\
& \text { int* } b=\& k ; \\
& a=\& j ; \\
& \text { int** } p=\& a ; \\
& \text { int** } q=\& b ; \\
& p=q ; \\
& \text { int* } c=* q ;
\end{aligned}
$$



- Andersen:

(3)
(k)


## Example

## - Actual:



- Andersen:



## Example

## - Actual:



- Andersen:



## Example

## - Actual:



- Andersen:
int** $\mathrm{p}=\& \mathrm{a} ; / / \Leftarrow$
int** q = \&b;
$\mathrm{p}=\mathrm{q}$;
int* $\mathrm{c}=$ *q;



## Example

## - Actual:



- Andersen:



## Example

- Actual:

$$
\begin{aligned}
& \mathrm{C} \\
& \text { int } \mathrm{i}, \mathrm{j}, \mathrm{k} ; \\
& \text { int* } \mathrm{a}=\& \mathrm{i} ; \\
& \text { int* } \mathrm{b}=\& \mathrm{k} ; \\
& \mathrm{a}=\& j ; \\
& \text { int** } \mathrm{p}=\& \mathrm{a} ; \\
& \text { int** } \mathrm{q}=\& \mathrm{~b} ; \\
& \mathrm{p}=\mathrm{q} ; \\
& \text { int* } \mathrm{c}=* \mathrm{q} ;
\end{aligned}
$$



- Andersen:


Andersen's algorithm must propagate along inclusion graph

## Example

- Actual:

$$
\begin{aligned}
& \mathrm{C} \\
& \text { int } \mathrm{i}, \mathrm{j}, \mathrm{k} ; \\
& \text { int* } \mathrm{a}=\& \mathrm{i} ; \\
& \text { int* } \mathrm{b}=\& \mathrm{k} ; \\
& \mathrm{a}=\& j ; \\
& \text { int** } \mathrm{p}=\& \mathrm{a} ; \\
& \text { int** } \mathrm{q}=\& \mathrm{~b} ; \\
& \mathrm{p}=\mathrm{q} ; \\
& \text { int* } \mathrm{c}=* \mathrm{q} ;
\end{aligned}
$$



- Andersen:


Andersen's algorithm must propagate along inclusion graph

## Example

- Actual:

$$
\begin{aligned}
& \mathrm{C} \\
& \text { int } \mathrm{i}, \mathrm{j}, \mathrm{k} ; \\
& \text { int* } \mathrm{a}=\& \mathrm{i} ; \\
& \text { int* } \mathrm{b}=\& \mathrm{k} ; \\
& \mathrm{a}=\& j ; \\
& \text { int** } \mathrm{p}=\& \mathrm{a} ; \\
& \text { int** } \mathrm{q}=\& \mathrm{~b} ; \\
& \mathrm{p}=\mathrm{q} ; \\
& \text { int* } \mathrm{c}=* \mathrm{q} ;
\end{aligned}
$$



- Andersen:


Andersen's algorithm must propagate along inclusion graph

## Complexity

- Complexity of graph closure: $O\left(n^{3}\right)$
- Traditional assumption about Andersen's analysis
- Recent work observes ${ }^{3}$ : Close to $O\left(n^{2}\right)$ if:

1 Few statements dereference each variable
2 Control flow graphs not too complex

- Both conditions are common in practical programs


## Summary

- Andersen's analysis:
- Subset-based
- Builds inclusion graph for propagating memory locations along subset constraints
- $O\left(n^{3}\right)$ worst-case behaviour
- Closer to $O\left(n^{2}\right)$ in practice
- More precise than Steensgaard's analysis
- Less scalable than Steensgaard's analysis


## The Call Graph



## The Call Graph

- $G_{\text {call }}=\left\langle P, E_{\text {call }}\right\rangle$
- Connects procedures from $P$ via call edges from $E_{\text {call }}$
- 'Which procedure can call which other procedure?'
- Often refined to:
'Which call site can call which procedure?'
- Used by program analysis to find procedure call targets



## Finding Calls and Targets

```
```

class Main {

```
```

class Main {
public void
public void
main(String[] args) {
main(String[] args) {
A[] as = { new A(), new B(D);
A[] as = { new A(), new B(D);
for (A a : as) {
for (A a : as) {
A a2 = a.f();
A a2 = a.f();
print(a.g());
print(a.g());
print(a2.g());
print(a2.g());
}
}
}
}
}

```
```

}

```
```

```
class D extends A {
    @Override
    public String
    g() { return "D"; }
}
```

class D extends A \{
@Override public String g() \{ return "D"; \} \}

```
```

class C extends A {

```
```

```
```

class C extends A {

```
```

    @Override
        public String
        g() \{ return "A"; \}
    \} @Override public String g() \{ return "A"; \} \}

```
class A {
    public A
    f() { return new C(D, }
    public String
    g() { return "A"; }
}
```

class B extends A \{ @Override public String g() \{ return "B"; \} \}

## Finding Calls and Targets



## Dynamic Dispatch: Call Graph

Challenge: Computing the precise call graph:


## Summary

- Call Graphs capture which procedure calls which other procedure
- For program analysis, further specialised to map:

$$
\text { Callsite } \rightarrow \text { Procedure }
$$

- Direct calls: straightforward
- Virtual calls (dynamic dispatch):
- Multiple targets possible for call
- Not straightforward


## Callgraphs with Points-to Data

```
class A {
    public A
    f() {
        return new C();
    }
}
```

```
class B extends A {
    public A
    f() {
        return new A();
    }
}
```

```
class C extends A {
```

class C extends A {
public A
public A
f() {
f() {
return new B();
return new B();
}
}
}

```
}
```

$\mathrm{A} \mathrm{a}=$ new A() ;
$\mathrm{a}=\mathrm{a} . \mathrm{f}()$;
$\mathrm{a}=\mathrm{a} . \mathrm{f}()$;

- Precision of call graph affects quality of all interprocedural analyses
- IFDS, IDE
- Points-to analyses
- Idea: Use points-to analysis to determine dynamic type of objects
- More precise virtual call resolution!
- Problem: Mutual dependency between call-graph and points-to analysis!


## Review

- Pointer Analysis
- Points-To Analysis
- Alias Analysis
- Concrete Heap Graphs
- Abstract Heap Graphs
- Access Paths
- Heap Summarisation
- Call-site
- Variable-based
- $k$-Limiting
- Steensgard's Analysis
- Andersen's Analysis
- Call graphs


## To be continued. . .

Next week:

- Program Analysis with Datalog

