LUND =0

UNIVERSITY

f ' EDAO45F: Program Analysis

LECTURE 5: POINTER ANALYSIS 1

Christoph Reichenbach

In the last lecture...

» Procedure Summaries
» IFDS algorithm

» |IDE algorithm

» Path Sensitivity

2/48

Our Memory Modelling Until Now

» Our analyses so far have considered:

» Static Variables
> Local (stack-dynamic) Variables
> (Stack-dynamic) parameters

Missing: heap variables!

3/48

Example Program

~0 0 0 0 M T T PP

~
=

[N T A |

oM M

//
//
//

5 1Y

//
//

s 1/

//
//

£ O

a——>» b

4/48

Concrete Heap Graph

“v points to ¢"
v >/

AN

variable location

» Heap graph connects memory locations

» Represents all heap-allocated objects and their points-to
relationships

» Edges labelled with field names

» Some objects not reachable from variables

a—)%;b
x
—() y

1

[

5/48

Aliasing

Aliases at // A:

> a and b represent the same object
—> a and b are aliased

Example s,
a = new();
a.x = null; —> a.x and b.x are aliased
b = a; » c and a.x and b.x are aliased
b.x = new();
a.x.y = 1;
c = new();
c.x = new(); S
C.X.X = a; ;
@ < B3 a—>(Je—b
// A x
c —> y

6/48

Pointer Analysis

3760
b
c—>£1

» Points-To Analysis:

» Analyse heap usage
» Which variables may/must point to which heap locations?

a—>€0

» Alias Analysis:
» Analyse address sharing
> Which pair/set of variables may/must point to the same
address?
alias

a=—b

7/48

Summary: Pointer Analysis

» Class of analyses to model dynamic heap allocation
» Points-To Analysis: computes mapping

» From variables

> To pointees (other variables)

» More general than Alias Analysis
» Alias Analysis: computes

» Sharing information between variables
» Implicitly produced by points-to analysis

alias

a=—b <= a>/{ <« b

8/48

Dataflow with Alias Information

bO
a — x a = new()
b — % = new()
C —> * c = new()
ax — 1 <§D a -1
bx +— 2 X _
cx +— 3 b.x =2
c.x =3
if ... —
Ol D5 wen
b,
[dx—4"d.x = 4 Unsound without
modelling connection
b

print (a.x)

5 between aliases
print (c.x)

9/48

Dataflow with Alias Information

alias

alias

Alias info allows

bO
a = x a = new()
b — x
b = new()
c = %
d o o« ¢ = new()
ax — {12} @_l_
b.x — {12} a.x =1
cx — {3} b.x = 2
dx {1,2} c.x =3
if ... —
) ?
ax — axU{4}]
b
bx — axU{4}) ra—

dx — axuUd{4}

b,

5

print (a.x)
print (c.x)

soundness. Note
alias

that d = a implies

alias
d.x = a.x.

9/48

Dataflow + Aliases

» Aliasing affects shared fields:

alias alias
a=—b — a.x — b.x for all x

» Exploiting aliasing knowledge:
» Multiply updates for each alias:

ax — axU{4}
bx — axU{4}
dx — axu{4}

» Multiply reads for each alias

[a.x — a.xUb.ch.xU{4}}

» Replace aliased paths by single representative
> Most efficient

10/48

Compute Aliases during Dataflow?

» Previoulsy: Dataflow analysis as analysis client of Alias

analysis:
» Can use Dataflow Analysis to compute pointer analyses
» Caveat:

y.field = z

» Transfer function updates y.field by z
» Must extract both y, z from in, to compute update
» Non-distributive in practice

11/48

Summary

» Analysis client: user of analysis, often another analysis
» E.g., Type analysis is client of name analysis

» Alias analysis helps make dataflow analysis more precise
» Fields inherit aliasing:

alias alias
az=bp — a.x == p.x for all x
. alias
> So if a.x == b.y, then:
p
> ax.z == b.y.z

alias
> ax.zz=by.zz

p
> a.x.z.2.z2 == b.y.z.z.7 etc.
» Dataflow analysis can compute pointer analyses

» Requires non-distributive framework for realistic languages

12/48

Concrete Heap Graphs (1/2)

Capturing the heap as a graph:

Geng = (MemlLoc, » , >)

» Gcng describes the actual heap contents
» MemLoc represents addressable memory locations
> Named variables (a)
> Unnamed variables (O)
» Heap size typically ‘unbounded for all practical purposes’
» (>): Points-to relation from named variables

a => 80
» (>): Points-to relation from objects/arrays
f
é]_ -> g]_

2 ——(lo——>0)

13/48

Concrete Heap Graphs (2/2)

» Direct points-to references:
(>): Var - MemLoc

» Language difference:
» Java: Var is set of global / local variables and pameters
> Disjoint from MemLoc
» C/C++: Var = MemLoc

» Address-of operator (&) allows translating variable into MemLoc

» Points-to references via fields:
(>): MemLoc x Field — MemLoc

> Field labels Field:
»E.g., xin ‘a.x’ (Java) / ‘a->x" (C/C++)
> Array indices for ‘a[10]" (i.e., N C Field)

1448

Example

Example

proc makeList(len) {

tail = new() /1=
tail.next = null //<
body = tail //<=
while len > 0 {
t = body //<=
body = new() //<
body.next = t //«
len = len - 1
I
list = new() /1=
list.head = body //<
list.tail = tail //<&

return list

list —><

N

head body
next

\v %
ot

WA
/

f

i

N
\

<

next

%next

tail —> tail
next

s
=

15/48

Managing Heap Graphs

» Size of Concrete Heap Graphs is unbounded
» Need summarisation technique to model heap
» Store-less heap models:

» Do away with heap locations
» Model heap exclusively via access paths

list.head.next.next

» Store-based heap models:

» Keep heap locations explicit
» Introduce Summary nodes that can describe multiple CHG
nodes

16 /48

Store-less Model

» Access path-based equivalences:

head —>()e—body > Must: list.tail :%z tail
next » Must: list.head == body
Q<— t » Must: body.next alias t
== » May: body.nextx 2022 tail
list —’<> v » Use regular expressions to denote
repetition
next alias .
» body.nextx =— tail means:
li :
next body 22 tail
tail = < tail body .next s tail
‘ .
:ex body.next.next s tail
nu

» For May or Must information s

Store-based Model

» Concrete Heap Graph (CHG): graph of the program'’s reality
GCHG = (MemLoc, >, —_>>

» Abstract Heap Graph (AHG): approximation of the program'’s
reality
Gang = (P(MemLoc), —, —)

(=) : P(Var) = P(MemLoc)

(=) : P(MemLoc) x P(Field) — P(MemLoc)
» Key idea: AHG is finite graph that summarises CHG
» Soundness via:

v > / implies {viuV — {{yul

o 5 0 implies {Yuvy BT reyun

» Technique: Summary nodes

18/48

Summary Nodes and Edges

head

list —><

—> body

next

tail

Notation:
» Abstract node N C MemlLoc:
> |N| = 1: precise:. O
> |N| > 1: summary:
» Consider edge V' — L:
» |V| = 1: precise:
V—> L
> | V| > 1: summary:
V--&> L

» Analogous for (—fb)

Example:

list —> '

Summaries from Allocation Sites

Example

proc makelList(len) {

(o]
(1]
[2]
(3]
(4]
(5]
(6]
(7]
(8l
(9]
[10]
[11]
[12]
}

tail = new()
tail.next = null
body = tail
while len > 0 {
t = body
body = new()
body.next = t
len = len - 1
}
list = new()
list.head = body
list.tail tail

return list

head

list >(9)

tail

20/48

Summaries from Allocation Sites

Example

proc makelList(len) {

(o]
(1]
[2]
(3]
(4]
(5]
(6]
(7]
(8l
(9]
[10]
[11]
[12]
}

tail = new()
tail.next = null
body = tail
while len > 0 {
t = body
body = new()
body.next = t
len = len - 1
}
list = new()
list.head = body
list.tail tail
return list

next

=~
’ 1

head ‘," N P
list —> v b <+— body

Ny

.
\Y next t

- <+—— tail
tail

null

» Summarise MemLoc allocated at
same program location

20/48

Summaries via k-Limiting

» k-Limiting: bound size
» Examples: Limiting. . .
» Access path length
Example (k=3):
list.head.next
list.head.next.next
list.head.next.next.next
list.head.next.next.val
» # of (—) hops after named variable

S

list.head.next
list.head.nextx
list.head.nextx
list.head. (val|next)*

> # of nodes transitively reachable via (—) after named variable

> # of nodes in a loop / function body

21/48

Variable-Based Summaries

head

tail

next

next
«— tail
next

null

head

tail

<+—— body

next

null

» Summarise MemLoc when not
referenced by variables

» For May analyses: summarise nodes
potentially pointed to by same set of

variables

22/48

Other Summary Techniques

» General idea: Map P(MemLoc) to finite (manageable!) set
» Can combine different techniques for increased precision
» Other techniques: distinguish heap nodes by:

» How many edges point to the node?

> Is the node in a cycle?

» What is the type of the node? (ArrayList,
StringTokenizer, File, ...)

23/48

Design Considerations

» First goal remains: make output finite
» Useful for analysis clients

» Efficient to compute / represent

» When considering flow-sensitive models:

» Different program locations will have different AHGs
» Exploit sharing across program locations

24/48

Summary of Heap Summaries

» Heap size is unbounded, must summarise
» Store-less Models:

» Use access paths to describe memory locations
» Common in alias analysis
» Store-based Models:
» Use Abstract Heap Graph for summarisation
» Common for finding memory bugs
» Summarisation techniques:
» Allocation-Site Based: summarise nodes allocated at same
program point
» k-Limiting: Set bound on some property P: no more than k
Ps allowed
» Variable-Based: summarise data not pointed to by variables
or pointed to by the same variables (May analysis)
» Many combinations / extensions conceivable

25/48

Pointer Operations in C and Java

Referencing Dereferencing Aliasing
Create location: Access location: Copy pointer:
C C C
my_t *p = &var; - read - my_t *pa;
p = malloc(8); int x = *ptr; pa = pb;
x = ptr2->fld;
- write -
*ptr = x;

ptr2->fld = x;

Java Java Java
A a = new AQ) - read - A a=b;
int x = a.f;
- write -

a.f = x;
’ 26/48

Pointer Operations

» Three principal pointer operations:
» Referencing:
> v := address-of{...)
> Create location ¢
> Introduce v > ¢
» Dereferencing:
> x = v.f
> Access existing location /¢
> Aliasing:
> Pointer/reference variables vy, v,
v i=v;
>y > = v, >/

27 /48

Summary

» Points-to anaysis: approximate ‘v points to location ¢’
v >/

» Analysis must consider:
» Referencing: taking location
» Dereferencing: accessing object at location
» Aliasing: copying location
» Locations ¢ may model different parts of memory:
» Static variables: uniquely defined
> Stack-dynamic variables: zero or more copies (recursion!)
» Heap-dynamic variables:zero or more copies without variable
names attached

28/48

Steensgaard’s Points-To Analysis!

» Fast: O(na(n,n)) over variables in program

» Developed to deal with large code bases at AT&T
» Sacrifices Precision

» Equality-based

> Intuition:

Whenever two variables could point to the same memory
location, treat them as globally equal

29/48

Steensgard: Pointer Operations

» Recall C pointer semantics:

» &a: Address of a
» xa: Object pointed to by a

» Converse operators: *(&a) = a

Steensgard’s analysis considers four cases:

] \ Cc \ Java
Referencing a=2&b|a=mnew AQ
Aliasing a=b |a=bD
Dereferencing read | a = *b | a = b.f
Dereferencing write | *a = b | a.f = b

30/48

Constraint Collection

» 'Points-to-set”: pts(v) approximates {{|v > (}
» Corresponds to {{|v — ¢}

» For each statement in program:
> If Referencing (a = &b):

by, € pts(a)

> If Aliasing (a = b):
pts(a) = pts(b)

> If Dereferencing read (a = *b):

for each ¢ € pts(b) = pts(a) = pts(¢)

> If Dereferencing write (¥a = b):

for each ¢ € pts(a) = pts(b) = pts(¢)

31/48

Example

]

&y Ly € pts(x) » Actual:
y pts(x) = pts(y)

xy for each ¢ € pts(y)

= pts(x) = pts(¥)

for each £ € pts(x)

— pts(y) = pts(0)

]
nounn

»

*

M
I

<

i
& © ®

C

int i, j, k;
int* a = &i;
int* b = &k;
a=&j; //<
int**x p = &a;
int**x q = &b;
p=4q;

int* c = *q;

» Steensgaard:

4o

32/48

Example

]

&y ly € pts(x) » Actual:

y pts(x) = pts(y)
xy for each £ € pts(y) ®—)

= pts(x) = pts(¢)

]
nounn

»

& © ©

)) @—®
C
int i, j, k; » Steensgaard:
int*x a = &i; <:>———4> C:L“\b><:>
int* b = &k;
a=&j; C(D_'> @\A @
int**x p = &a; <:>
int** q = &b; //<
P =9

int* c = *q;

32/48

Example

]

gyl % ;))ts(x) » » Actual:
ts(x) = pts
Zy for each EPG gts(y) () e
f:> plfséx) = p(ts)(Z)
or each £ € pts(x (: >
— pis(y) = pis(0) ®

]
nounn

»

*

M
I

<

& © ©

C

int i, j, k;
intx a = &i; ®\A@*
int* b = &k;

a=4&j; <:>”/47 (:L
int**x p = &a;

int**x q = &b;

p=q; //<

int* c = *q;

» Steensgaard:

-
sle ®

32/48

Example

]

&y
y
*y

]
nounn

»

*

M
I

<

C

Ly € pts(x)

pts(x) = pts(y)

for each £ € pts(y)
= pts(x) = pts(¢)
for each £ € pts(x)
— pts(y) = pts(0)

int i, j, k;
int* a = &i;
int* b = &k;

int**x p = &a;
int**x q = &b;

p:

q; //<

int* c = *q;

()
()

? >
@O

» Steensgaard:

o [&_[o
o6
®

When merging: ‘collapse’

children (merge recursively)

32/48

Example

]

&y 4y € pts(x)

y pts(x) = pts(y)

xy for each ¢ € pts(y)
= pts(x) = pts(¢)

]
nounn

»

? >
® @@
@O

*x =y for each £ € pts(x)
— pts(y) = pts(0)
= S d:
int 1, j, k; » Steensgaard:
int* a = &i; @\ @ @
int* b = &k; N
a = &j; OO s =160
intx* p = &a; @//V @
int**x q = &b;
p=4q;

intx ¢ = *q; //< When merging: ‘collapse’
children (merge recursively)

32/48

Constraint Representation & Solving

» vV € P(MemLoc): set of possible locations of variable v
> Represent with UNION-FIND data structure (efficient union)
» Collapse child nodes when merging
» Implementing Referencing (a = &b)
> pts(@) .union(b)
» Implementing Aliasing (a = b)
> pts(2) .union(pts(b))
» Implementing Dereferencing (*a = b)
> pts(pts(3)) . union(pts(b))

| Result is immediate: no further analysis needed

33/48

Summary

» Points-to sets pts(v) serve as abstraction over addresses that
v can point to

» Steensgaard’s points-to analysis:

» Insensitive to flow, context, fields, ...
» Steensgaard’s analysis in practice:

» Highly efficient

» Imprecise

34/48

Andersen’s Points-To Analysis?

» Asymptotic performance is O(n?)

» More precise than Steensgaard'’s analysis

» Subset-based (a.k.a. inclusion-based)

» Popular as basis for current points-to analyses

35/48

Collecting Constraints

» Collect constraints, resolve as needed
» For each statement in program, we record:
> If Referencing (a = &b):

pts(a) {6}

> If Aliasing (a = b):
pts(a) Dpts(b)

> If Dereferencing read (a = *b):

pts(a) D pts(*b)

> If Dereferencing write (xa = b):

pts(*a) 2 pts(b)

36/48

Solving Constraints

» We have collected constraints:
pis(a)Cpts(b)
pts(*a)Cpts(b)
pis(a) Cpts(xb)
» Also, we have initial points-to set elements: ¢ € pts(a)
» Build directed inclusion graph G, = (MemLoc, E)
» Edges a—b € E iff one of:
> pts(a)Cpts(b)
> a € pts(v) and pts(*v)Cpts(b)
> pts(a)Cpts(*v) and b € pts(v)
» While keeping in mind the following:
> (£ € pts(a)) and (a—b € E) = (¢ € pts(b))
» Propagate ¢ along E

37/48

Example

> Actual:

C

int i, j, k;

int* a = &i;

int* b = &k;

a = &j; » Andersen:
int**x p = &a;

int**x q = &b;

P =4q;

int* c = *q;

38/48

Example

C
int i, j, k; //<=
int* a = &i;

int* b = &k;
a=&j;

int**x p = &a;
int**x q = &b;
P =4q;

int* ¢ = *q;

» Actual:

@
@
()
> Andersen:
@
@
)

38/48

Example

» Actual:

C

int i, j, k; <:>
int* a = &i; //<

int* b = &k; <:>
a = &j; » Andersen:

int**x p = &a; ~
int**x q = &b; e

P =49

int* c = *q;

® © ©

38/48

Example

» Actual:

&
int i, j, k; @ @
()

int* a = &i;
int* b = &k; //<
a = 4&j; » Andersen:

int**x p = &a; e >e

int**x q = &b;
P =4q; @ @

int* c = *q; A@

38/48

Example

» Actual:
=
int i, j, k; @ o
int* a = &i;
int* b = &k; @
a=4&j; //<= » Andersen:

int**x p = &a;
int**x q = &b;
P =4q;

int* c = *q;

V

[

® ®
® S ®

38/48

Example

C
int i, j, k;
int* a = &i;

int* b = &k;
a=4&j;

int**x p = &a; //<
int**x q = &b;

P =4q;

int* c = *q;

» Actual:

)
@) (®)
& © ®

» Andersen:

®

i
& SO

[

38/48

Example

C
int i, j, k;
int* a = &i;

int* b = &k;
a=4&j;

int**x p = &a;
int*x q = &b; //<
P=a

int* c = *q;

v
>
o)
(=
c
=

i

» Andersen:

® ®
©

[

©
® S

38/48

Example

C

int i, j, k;
int* a = &i;
int* b = &k;
a=4&j;

int**x p = &a;
int**x q = &b;
p=a; //E
int* c = *q;

» Actual:

@ ®
@O—0®

/.

» Andersen:

GDW\U
©

é@fé@ ®

38/48

Example

» Actual:

. ®
int i, j, k; @ @

6
int* a = &i; e e

int* b = &k;

a=&j; » Andersen:
int**x p = &a;

int**x q = &b;

P =49

intx ¢ = *q; //<

38/48

Example

» Actual:

. ®
int i, j, k; @ @

6
int* a = &i; e @

int* b = &k;

a=&j; » Andersen:
int**x p = &a;

int**x q = &b;

P =49

int* c = *q;

38/48

Example

C
int i, j, k;
int* a = &i;

int* b = &k;

= &3
int**x p = &a;
int**x q = &b;
P =4q;

int* c = *q;

» Actual:

L
| 17

©
=)

» Andersen:

-

__\\/

C

Andersen’s algorithm must propagate along inclusion graph |

38/48

Example

C
int i, j, k;
int* a = &i;

int* b = &k;
a=4&j;
int**x p = &a;
int**x q = &b;
P =4q;

int* c = *q;

» Actual:

v
/.

©
=)

» Andersen:

i
(=) @/C;

\V/ %

HE ‘:t:
f—(c—F

Andersen’s algorithm must propagate along inclusion graph |

38/48

Example

C
int i, j, k;
int* a = &i;

int* b = &k;
a=4&j;
int**x p = &a;
int**x q = &b;
P =4q;

int* c = *q;

» Actual:

v
/.

©
=)

» Andersen:

A

@
@

IN
{il;(*c)
Vv

()

* g A

g

V

Andersen’s algorithm must propagate along inclusion graph |

38/48

Complexity

» Complexity of graph closure: O(n?)
» Traditional assumption about Andersen's analysis

» Recent work observes®: Close to O(n?) if:

1 Few statements dereference each variable
2 Control flow graphs not too complex
» Both conditions are common in practical programs

39/48

Summary

» Andersen’s analysis:
» Subset-based
» Builds inclusion graph for propagating memory locations along
subset constraints
» O(n®) worst-case behaviour
» Closer to O(n?) in practice
» More precise than Steensgaard’s analysis
» Less scalable than Steensgaard'’s analysis

40/48

The Call Graph

int main(int argc,
char *ar {
if (argc>1) {
argv[0]);
}
G
return—~0;
}

void f(char *s) {
for (char *p = s; *p; p++) {
*p =*p);
}
puts(s);

|

char up(char c) {
if (¢ >= ’a’ & c <= ’z’) {
return ¢ - (’a’ - ’A’);
}
return c;

}

‘\\\\\\‘

void g(void) {
puts("Hello, World!");
}

41/48

The Call Graph

> QUeall = <P’ Ecall>
» Connects procedures from P via call edges from Ey
» ‘Which procedure can call which other procedure?’

» Often refined to:
‘Which call site can call which procedure?’

» Used by program analysis to find procedure call targets

f——up

main /
N

42/48

Finding Calls and Targets

class Main {
public void
main(String[] args) {

A[]l as = {G@ew A0y G@evw BOD};

for (A a : as) {
A a2 =a.f();
print(a.g());
print(a2.g());
}
}
}

}

class A {

public A

£ { returnG@ew CO3 }

public String
g { return "A"; }

class D extends A {
@Override
public String
g { return "D"; }
}

class C extends A {
@0verride
public String
g() { return "A"; }
}

class B extends A {
@Override
public String
g() { return "B"; }
}

43 /48

Finding Calls and Targets

class Main {
public void
main(String[] args) {

&)

A[] as
for (A

new A(Q), new B(O) };
as) {

class A {
public A
—>f() { return new C(Q); }

public String
\ﬁg() { return "A"; }
}

™\

class D extends A {
@Override
public String
g { return "D"; }
}

@0verride

class C extends

public String
() { return "A"; }

class B extends A {
@Override

public String
\\\ﬂg() { return "B"; }
¥

43 /48

Dynamic Dispatch: Call Graph

Challenge: Computing the precise call graph:

Main. m;iy)/

AN

direct call

virtual call

L

B.<init>()

C.<init>()

C.<init>0) |
|D.<init>0) |
b.50]

D.<init>()

D.gO

44 /48

Summary

» Call Graphs capture which procedure calls which other
procedure

» For program analysis, further specialised to map:
Callsite — Procedure

» Direct calls: straightforward
» Virtual calls (dynamic dispatch):

» Multiple targets possible for call
» Not straightforward

45/48

Callgraphs with Points-to Data

class A { class B extends A { class C extends A {
public A public A public A
£O { £fO { £O {
return new C(); return new A(); return new B();
} } }
} } }
A a = new AQ);
a=a.f();
a=a.fQ);

» Precision of call graph affects quality of all interprocedural

analyses
» IFDS, IDE
» Points-to analyses

» Idea: Use points-to analysis to determine dynamic type of

objects

» More precise virtual call resolution!
» Problem: Mutual dependency between call-graph and

points-to analysis!

46 /48

Review

» Pointer Analysis

» Points-To Analysis
» Alias Analysis

» Concrete Heap Graphs
» Abstract Heap Graphs
» Access Paths
» Heap Summarisation

» Call-site

» Variable-based

» k-Limiting
» Steensgard’s Analysis
» Andersen’s Analysis
» Call graphs

47/48

To be continued. ..

Next week:

» Program Analysis with Datalog

48 /48

