

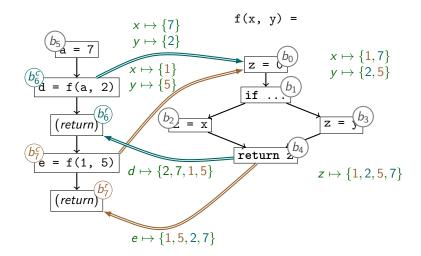
EDA045F: Program Analysis LECTURE 4: DATAFLOW ANALYSIS 3

Christoph Reichenbach

In the last lecture...

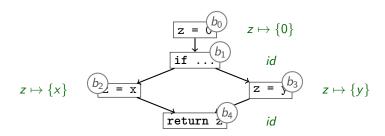
- ► Gen/Kill analyses
- Lattices
- Monotone Frameworks
- MFP algorithm
- MOP algorithm
- Distributive Frameworks
- Interprocedural Analysis
 - Context-sensitive vs. Context-insensitive analysis
 - Inlining for analysis

Interprocedural Data Flow Analysis



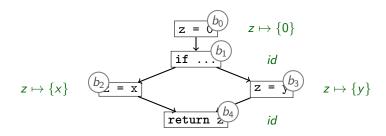
Context-insensitive: analysis merges all callers to f()

f(x, y) =



Compose transfer functions:

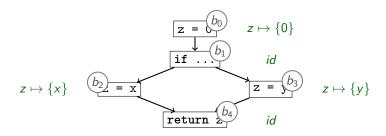
f(x, y) =



Compose transfer functions:

• $trans_{b_0} \circ trans_{b_1} = [z \mapsto 0]$

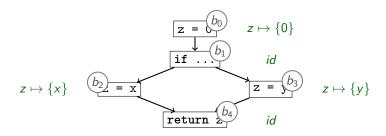
f(x, y) =



Compose transfer functions:

- $trans_{b_0} \circ trans_{b_1} = [z \mapsto 0]$
- ▶ $trans_{b_0} \circ trans_{b_1} \circ trans_{b_2} = [z \mapsto \{x\}]$

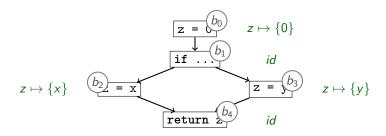
f(x, y) =



Compose transfer functions:

- $trans_{b_0} \circ trans_{b_1} = [z \mapsto 0]$
- ▶ $trans_{b_0} \circ trans_{b_1} \circ trans_{b_2} = [z \mapsto \{x\}]$
- ▶ $trans_{b_0} \circ trans_{b_1} \circ trans_{b_3} = [z \mapsto \{y\}]$

f(x, y) =



- Compose transfer functions:
 - $trans_{b_0} \circ trans_{b_1} = [z \mapsto 0]$
 - ▶ $trans_{b_0} \circ trans_{b_1} \circ trans_{b_2} = [z \mapsto \{x\}]$
 - ▶ $trans_{b_0} \circ trans_{b_1} \circ trans_{b_3} = [z \mapsto \{y\}]$
 - ▶ $trans_{b_0} \circ trans_{b_1} \circ (trans_{b_2} \sqcap trans_{b_3}) = [z \mapsto \{x, y\}]$

f(x, y) =



- Compose transfer functions:
 - $trans_{b_0} \circ trans_{b_1} = [z \mapsto 0]$
 - ▶ $trans_{b_0} \circ trans_{b_1} \circ trans_{b_2} = [z \mapsto \{x\}]$
 - ▶ $trans_{b_0} \circ trans_{b_1} \circ trans_{b_3} = [z \mapsto \{y\}]$
 - ▶ $trans_{b_0} \circ trans_{b_1} \circ (trans_{b_2} \sqcap trans_{b_3}) = [z \mapsto \{x, y\}]$
 - ▶ $trans_{b_0} \circ trans_{b_1} \circ (trans_{b_2} \sqcap trans_{b_3}) \circ trans_{b_4} = [z \mapsto \{x, y\}]$

Procedure Summaries vs Recursion

f calls g calls h calls f

- ▶ Reqiures additional analysis to identify who calls whom
- Compute summaries of mutually recursive functions together
- Recursive call edges analogous to loops

Composing transfer functions yields a combined transfer function for f():

```
trans_f = [return \mapsto \{x, y\} ]
```

► Use *trans*^f as transfer function for f(), discard f's body

Composing transfer functions yields a combined transfer function for f():

```
trans_f = [return \mapsto \{x, y\} ]
```

- ► Use *trans*_f as transfer function for f(), discard f's body
- Advantages:
 - Can yield compact subroutine descriptions
 - Can speed up call site analysis dramatically

Composing transfer functions yields a combined transfer function for f():

```
trans_f = [return \mapsto \{x, y\} ]
```

- ▶ Use *trans_f* as transfer function for f(), discard f's body
- Advantages:
 - Can yield compact subroutine descriptions
 - Can speed up call site analysis dramatically

Disadvantages:

- More complex to implement
- Recursion is challenging

Composing transfer functions yields a combined transfer function for f():

```
trans_f = [return \mapsto \{x, y\} ]
```

- ▶ Use *trans_f* as transfer function for f(), discard f's body
- Advantages:
 - Can yield compact subroutine descriptions
 - Can speed up call site analysis dramatically

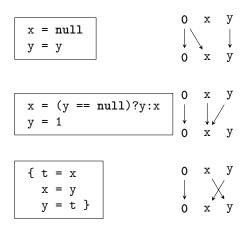
Disadvantages:

- More complex to implement
- Recursion is challenging

Limitations:

- Requires suitable representation for summary
- ▶ Requires mechanism for abstracting and applying summary
- Worst cases:
 - ▶ *trans*_f is symbolic expression as complex as f itself

Representation Relations Example procedure summary representation:



'May be null' analysis

Representation Relations relate
 in_b and out_b variables V

$$\bullet R \subseteq (\mathcal{V} \cup \{\mathbf{0}\}) \times (\mathcal{V} \cup \{\mathbf{0}\})$$

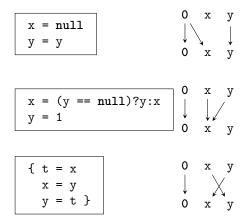
▶ if $\langle \mathbf{0}, X \rangle \in R$: X always 'may be null' in \mathbf{out}_b

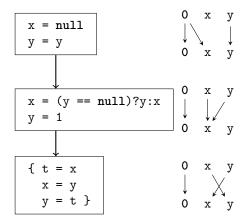
• if
$$\langle Y, X \rangle \in R$$
:

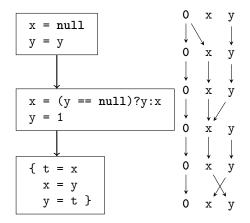
- If Y 'may be null' in in_b :
- $\Rightarrow X$ 'may be null' in **out**_b

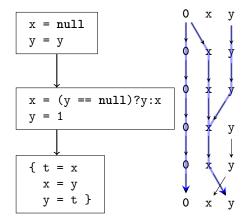
Summary

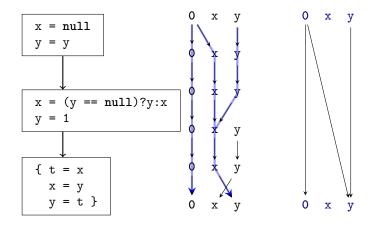
- Procedure summaries built from composed transfer functions
- Can speed up context-sensitive analysis of popular functions, compared to inlining
- ▶ Needs some suitably abstract analysis for the given program
 - Example: IFDS-style Representation Relations
- Recursion is nontrivial:
 - Analyse function calls (call graph)
 - Analyse strongly connected components together



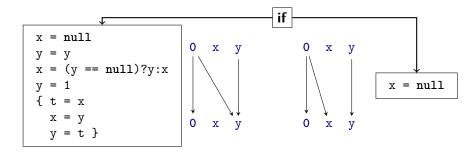


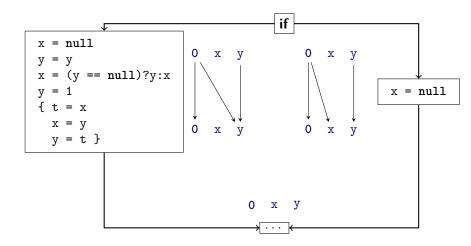


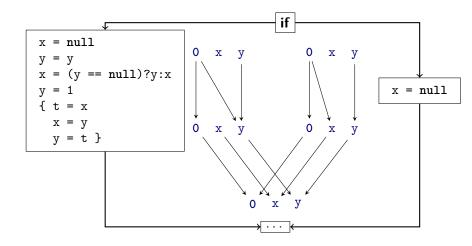


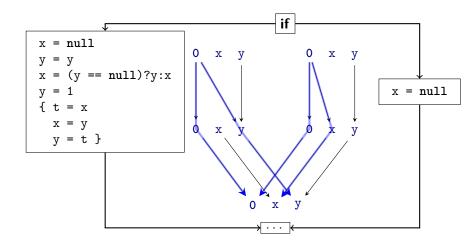


Composed representation relations are again representation relations









Behaves analogous to disjunction / 'May' analysis: if reachable from 0 then *may be true*

Dataflow via Graph Reachability

$$n = \langle b, v
angle$$

- Assume binary latice $(\{\top, \bot\}, \sqsubseteq, \sqcap, \sqcup)$
 - ▶ $a \sqcap b = \bot$ iff $a = \bot$ and $b = \bot$, otherwise $a \sqcap b = \top$
 - Typical for 'May' analysis ('may be null')

- ► We can encode Dataflow problem as Graph-Reachability
- Graph nodes $n = \langle b, v \rangle$
 - b: CFG node
 - v: Variable or 0
 - Variable: Property of interest connected to variable
 - 0: Property of interest connected to executing this statement/block

Dataflow via Graph Reachability

$$n = \langle b, v
angle$$

- Assume binary latice $(\{\top, \bot\}, \sqsubseteq, \sqcap, \sqcup)$
 - ▶ $a \sqcap b = \bot$ iff $a = \bot$ and $b = \bot$, otherwise $a \sqcap b = \top$
 - Typical for 'May' analysis ('may be null')
 - Equivalently for 'Must' analysis:

'must be null' = not ('may be non-null')

- ▶ We can encode Dataflow problem as Graph-Reachability
- Graph nodes $n = \langle b, v \rangle$
 - b: CFG node
 - v: Variable or 0
 - Variable: Property of interest connected to variable
 - 0: Property of interest connected to executing this statement/block

A Dataflow Worklist Algorithm: IFDS

- Context-sensitive interprocedural dataflow algorithm
- Historical name: IFDS (Interprocedural Finite Distributive Subset problems)
- 'Exploded Supergraph': $G^{\sharp} = (N^{\sharp}, E^{\sharp})$
 - $\blacktriangleright N^{\sharp} = N_{\mathsf{CFG}} \times \mathcal{V} \cup \{0\}$
 - Plus parameter/return call edges
- $\blacktriangleright b^s_{main}$ is the CFG ENTER node of the main entry point
- \blacktriangleright Property-of-interest holds if reachable from $\langle b_{\mathsf{main}}^s, \mathbf{0} \rangle$
- Key ideas:
 - Worklist-based
 - Construct Representation Relations on demand
 - Construct 'Exploded Supergraph'
 - CFG of all functions $\times \mathcal{V} \cup \{\mathbf{0}\}$

IFDS Datastructures

Instead of $\langle \langle b_0, v_0 \rangle, \langle b_3, v_0 \rangle \rangle$ we also write: $\langle b_0, v_0 \rangle \rightarrow \langle b_3, v_0 \rangle$

All WORKLIST edges are also PATHEDGE edges

PATHEDGE edge

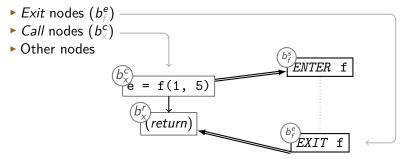
Result of our analysis

SUMMARYINST

Generated from summary nodes Otherwise equivalent to N^{\sharp} -edges

IFDS Strategy

Algorithm distinguishes between three types of nodes:



On-demand processing

Procedure propagate $(n_1 \rightarrow n_2)$: begin if $n_1 \rightarrow n_2 \in PATHEDGE$ then return PATHEDGE := PATHEDGE $\cup \{n_1 \rightarrow n_2\}$ WORKLIST := WORKLIST $\cup \{n_1 \rightarrow n_2\}$ end

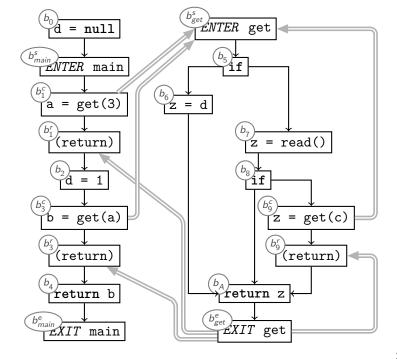
Running Example

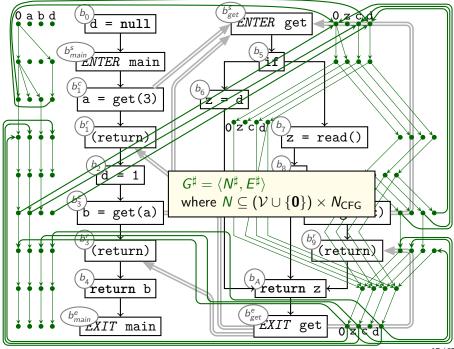
ATL: main()

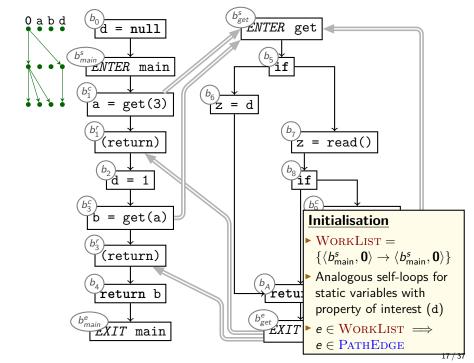
```
global default = null
proc main() {
    a = get(3)
    default = 1
    b = get(3)
    return b
}
```

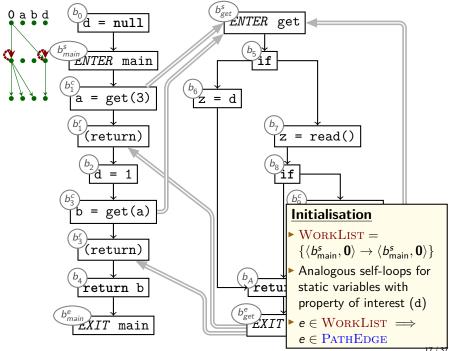
ATL: get()

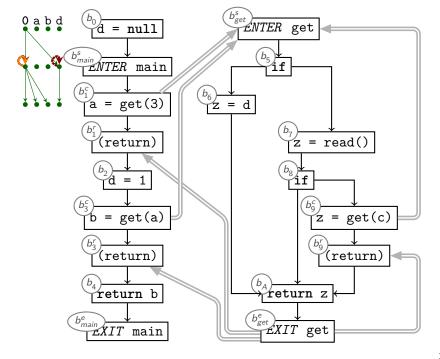
```
proc get(c) {
  if c == 0 {
    z = default
  } else {
    z = read()
    if z < 0 {
      z = get(c + -1)
    } else skip
  }
  return z
}
```

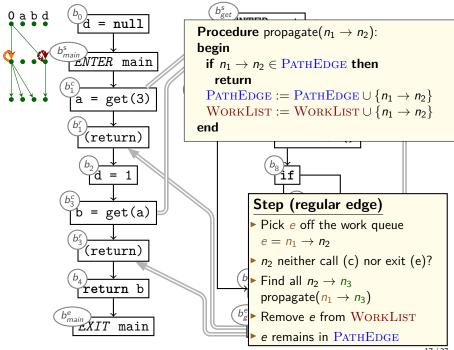


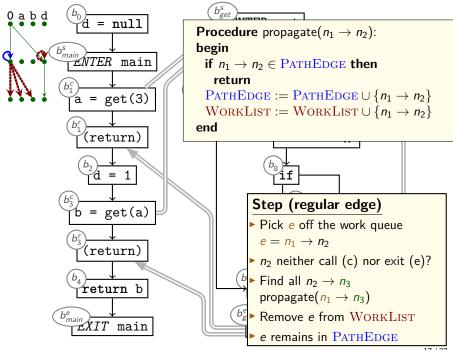


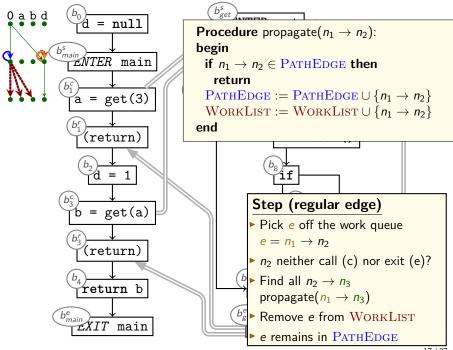


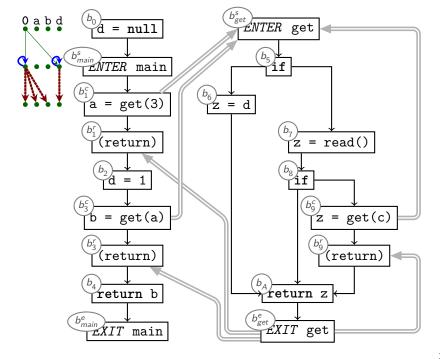


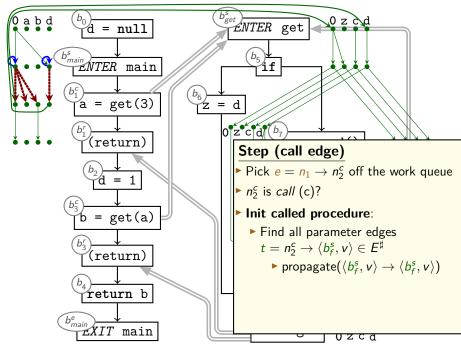


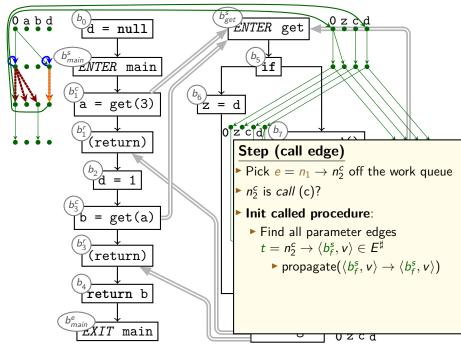


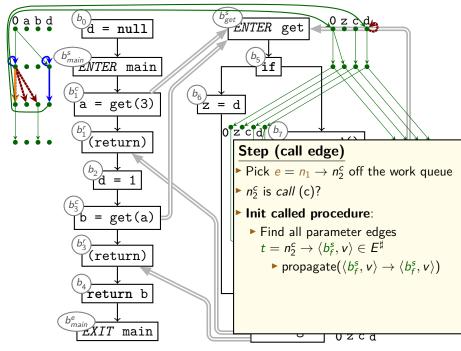


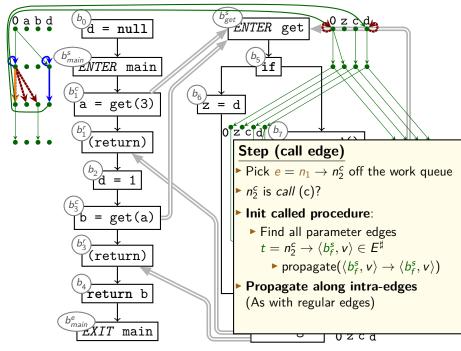


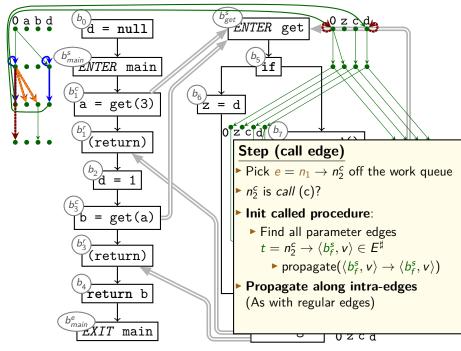


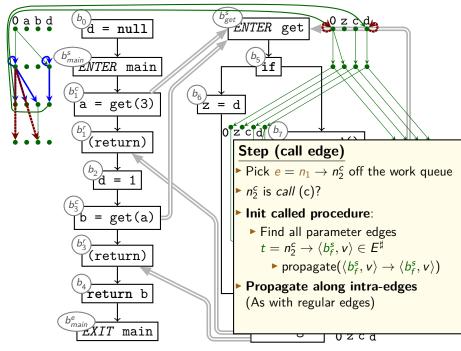


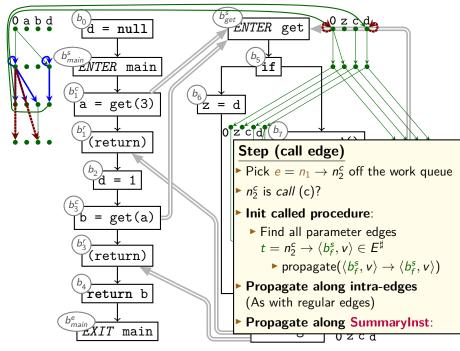


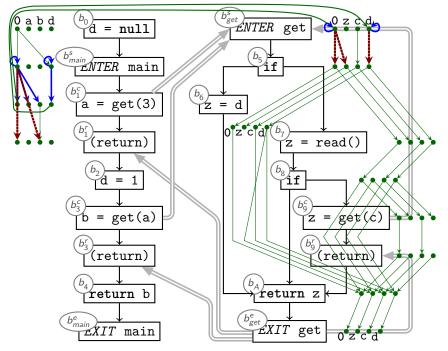


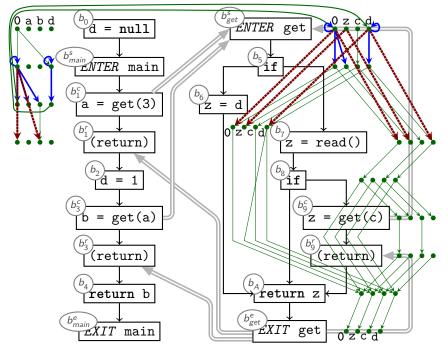




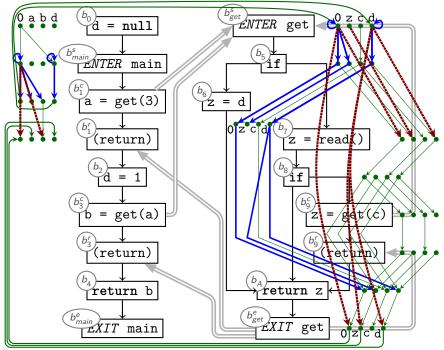


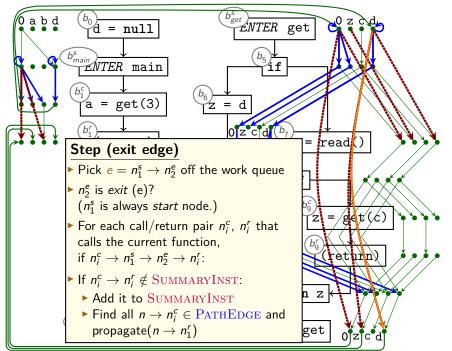


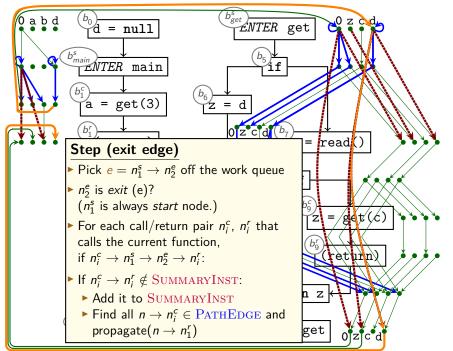


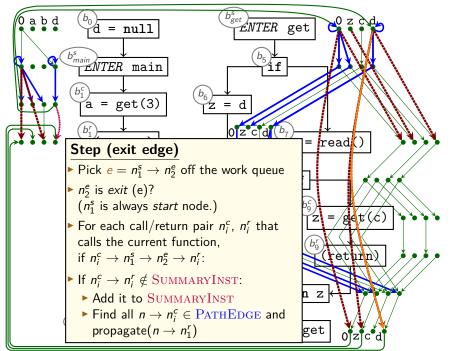


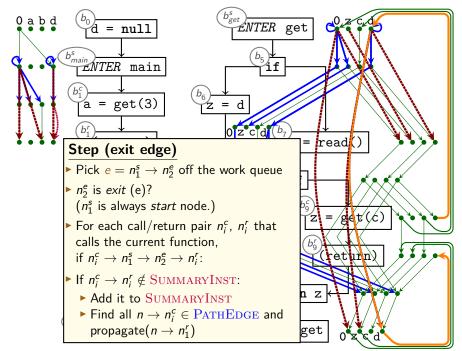


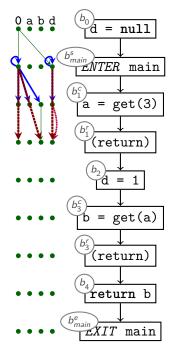




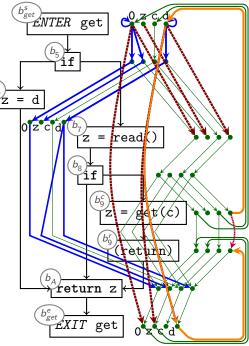


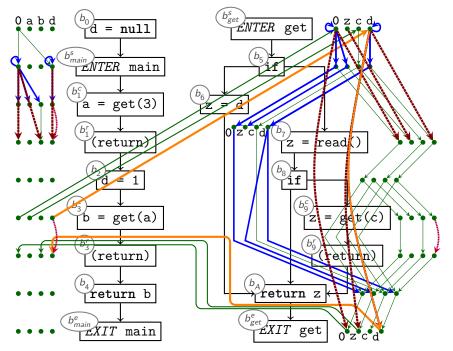


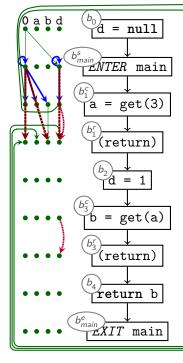


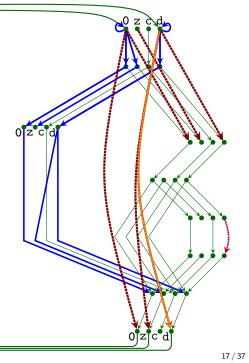


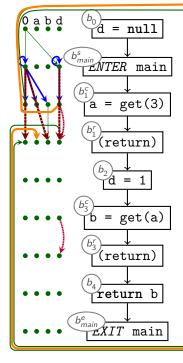
 b_6

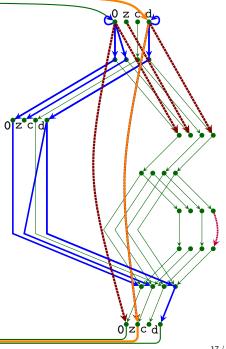


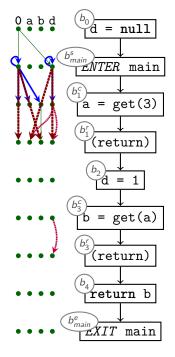


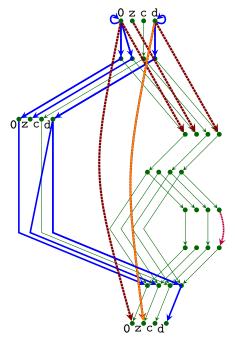


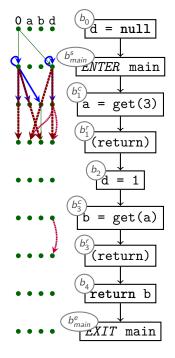


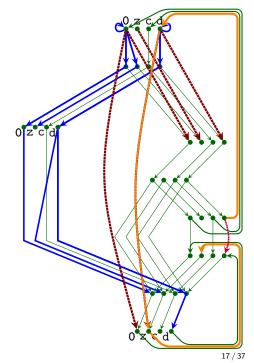


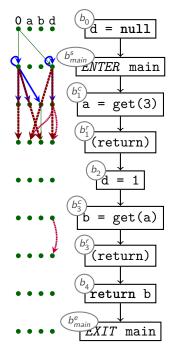


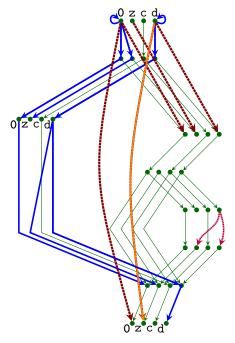


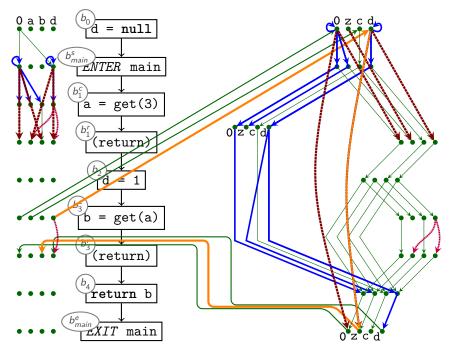


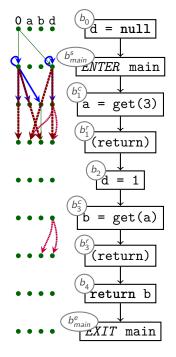


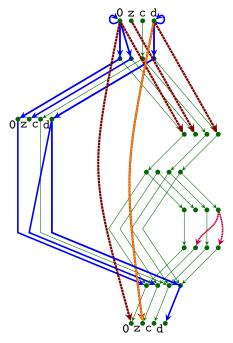


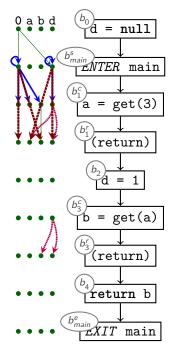


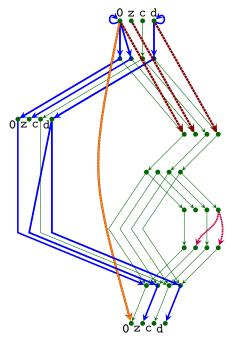


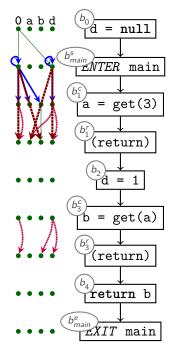


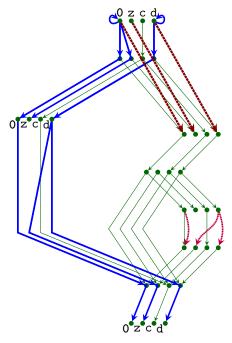


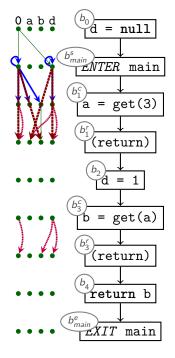


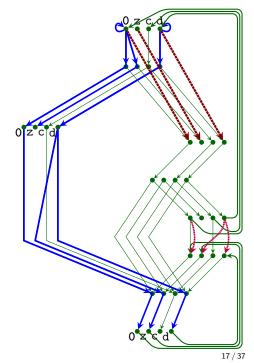


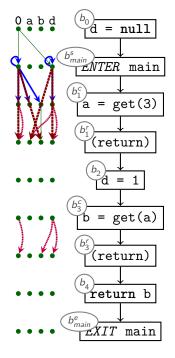


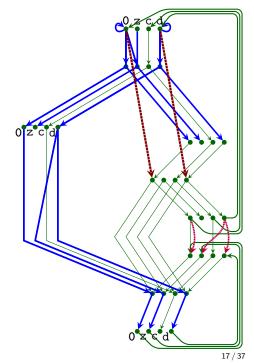


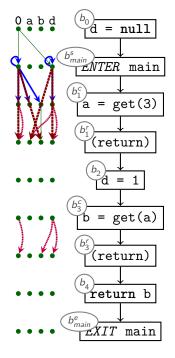


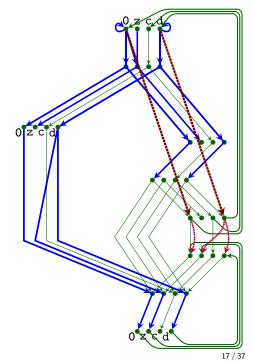


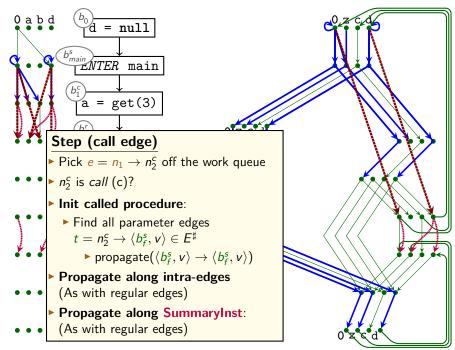


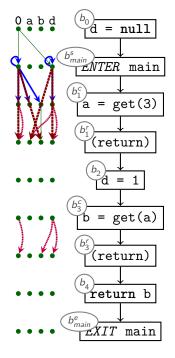


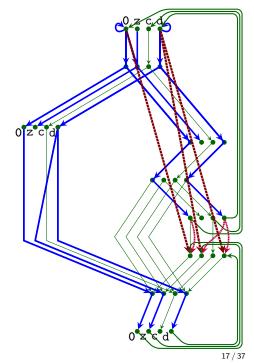


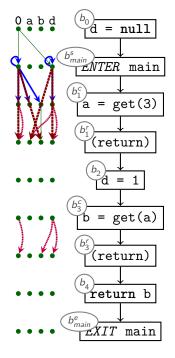


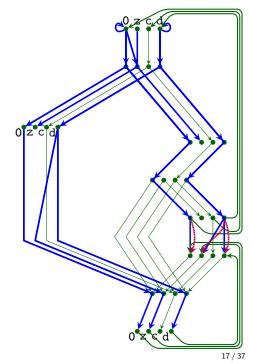


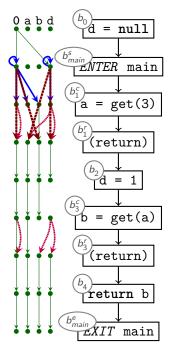


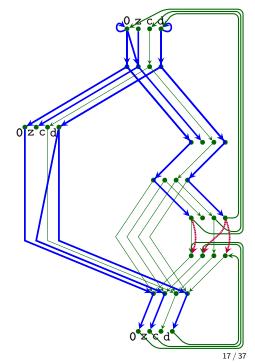


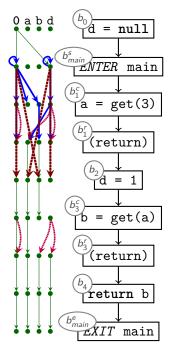


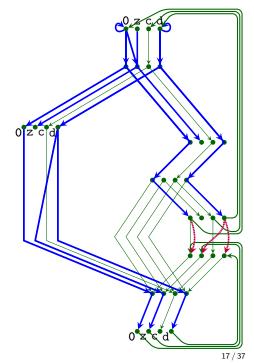


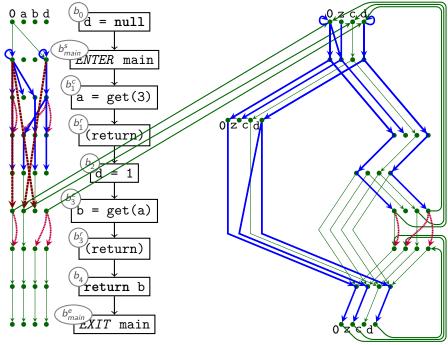


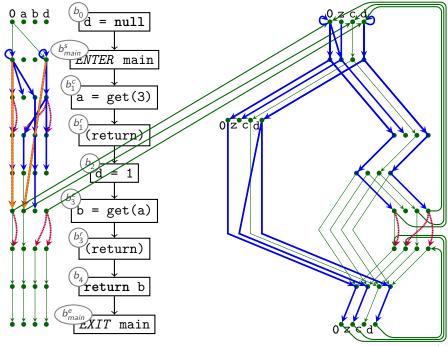


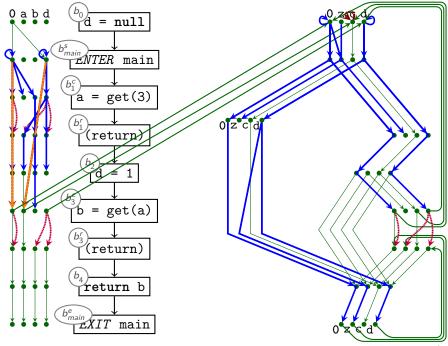


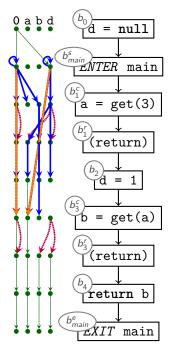


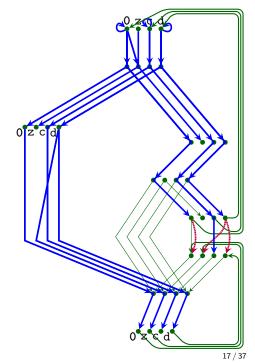


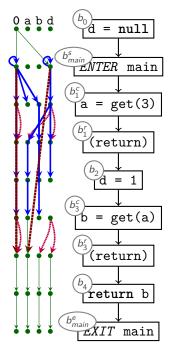


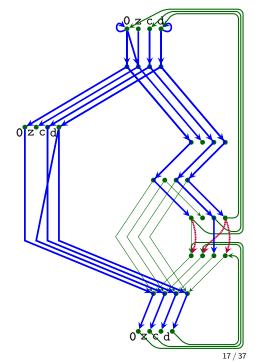


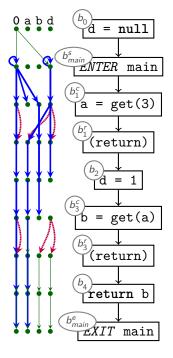


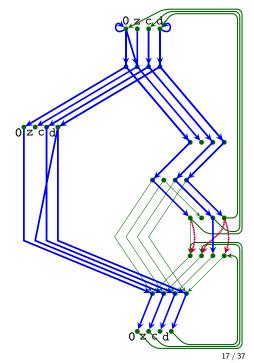


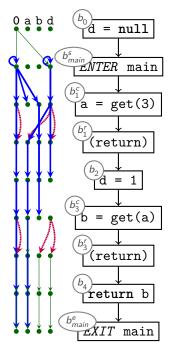


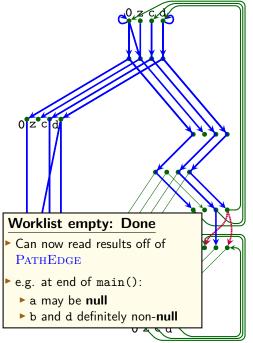












The IFDS Algorithm: Initialisation and Propagation)

```
\begin{array}{l} \textbf{Procedure Init():} \\ \textbf{begin} \\ \textbf{WORKLIST} := \textbf{PATHEDGE} := \emptyset \\ \texttt{propagate}(\langle b^s_{\mathsf{main}}, \mathbf{0} \rangle \rightarrow \langle b^s_{\mathsf{main}}, \mathbf{0} \rangle) \\ \texttt{ForwardTabulate()} \\ \textbf{end} \end{array}
```

```
Procedure propagate(n_1 \rightarrow n_2): begin
```

if $n_1 \rightarrow n_2 \in \text{PATHEDGE}$ then

return

PATHEDGE := PATHEDGE $\cup \{n_1 \rightarrow n_2\}$

WORKLIST := WORKLIST $\cup \{n_1 \rightarrow n_2\}$

end

IFDS: Forward Tabulation

Procedure ForwardTabulate(): begin while $n_0 \rightarrow n_1 \in \text{WORKLIST}$ do WorkList := WorkList $\setminus \{n_0 \rightarrow n_1\}$ $\langle b_0, v_0 \rangle = n_0; \langle b_1, v_1 \rangle = n_1$ if *b*₁ is neither *Call* nor *Exit* node then foreach $n_1 \rightarrow n_2 \in E^{\sharp}$: propagate($n_0 \rightarrow n_2$) else if b₁ is Call node then begin **foreach** call edge $n_1 \rightarrow n_2 \in E^{\sharp}$: propagate($n_2 \rightarrow n_2$) foreach non-call edge $n_1 \rightarrow n_2 \in E^{\sharp} \cup \text{SUMMARYINST}$: propagate($n_0 \rightarrow n_2$) end else if b₁ is *Exit* node then begin **foreach** caller/return node pair b_i^c , b_i^r that calls b_0 and vars v_0 , v_1 do $n_s = \langle b_i^c, v_0 \rangle; n_r = \langle b_i^c, v_1 \rangle$ if $\{n_s \to n_0, n_0 \to n_1, n_1 \to n_r\} \subset E^{\sharp}$ and not $n_s \to n_r \in \text{SummaryINST}$ then SUMMARYINST := SUMMARYINST $\cup \{n_s \rightarrow n_r\}$ foreach $n_z \rightarrow n_s \in \text{PATHEDGE}$: propagate (n_z, n_r) end done end done end

Summary: IFDS Algorithm

- Computes yes-or-no 'May' analysis on all variables
 - Original notion of 'variables' is slightly broader)
- Represents facts-of-interest as nodes $\langle b, v \rangle$:
 - b is node (basic block) in CFG
 - \triangleright v is variable that we are interested in

Uses

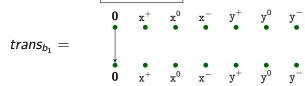
- 'Exploded Supergraph' G[#]
 - All CFGs in program in one graph
 - Plus interprocedural call edges
- Representation relations
- Graph reachability
- A worklist
- Distinguishes between Call nodes, Exit nodes, others
- Demand-driven: only analyses what it needs
- Whole-program analysis
- Computes Max. Fixpoint on distributive frameworks

What if abstract domain is not boolean?
 e.g., {⊤, A⁺, A[−], A⁰, ⊥}

What if abstract domain is not boolean?

▶ e.g., $\{\top, A^+, A^-, A^0, \bot\}$

- Multiple boolean properties per variable
 - ▶ easy for powerset lattice $\mathcal{P}(\{+,-,0\})$
- *Limitation*: Transfer functions only depend on one variable
- Some problems not representable, others must adapt lattice Consider $b_1 = y = 0 x$:

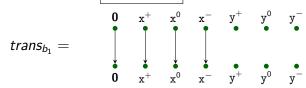


This is how the algorithm was originally proposed

What if abstract domain is not boolean?

▶ e.g., $\{\top, A^+, A^-, A^0, \bot\}$

- Multiple boolean properties per variable
 - ▶ easy for powerset lattice $\mathcal{P}(\{+,-,0\})$
- *Limitation*: Transfer functions only depend on one variable
- Some problems not representable, others must adapt lattice Consider $b_1 = \begin{bmatrix} y = 0 x \end{bmatrix}$:

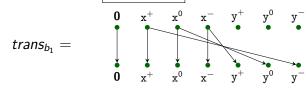


This is how the algorithm was originally proposed

What if abstract domain is not boolean?

▶ e.g., $\{\top, A^+, A^-, A^0, \bot\}$

- Multiple boolean properties per variable
 - ▶ easy for powerset lattice $\mathcal{P}(\{+,-,0\})$
- *Limitation*: Transfer functions only depend on one variable
- Some problems not representable, others must adapt lattice Consider $b_1 = y = 0 x$:



This is how the algorithm was originally proposed

Extending IFDS?

- Not all analyses map well to IFDS
- Core ideas are appealing:
 - Automatically compute procedure summaries
 - Exploit graph reachability + worklist for dependency tracking

Extending IFDS?

- ▶ Not all analyses map well to IFDS
- Core ideas are appealing:
 - Automatically compute procedure summaries
 - Exploit graph reachability + worklist for dependency tracking

It is possible to extend this to other classes of problems

Linear Reaching Values

Statement	~	out _b
x = 42	Μ	$\{[x\mapsto 42]\}\cup (M\setminus [x\mapsto _])$
x = y + 1	$M = \{[y \mapsto c], \ldots\}$	$\{[x \mapsto c+1]\} \cup (M \setminus [x \mapsto _])$
x = y * 7	$M = \{[y \mapsto c], \ldots\}$	$\{[x \mapsto c \times 7]\} \cup (M \setminus [x \mapsto _])$
x = y + z	Μ	$\{[x\mapsto \bot]\} \cup (M \setminus [x\mapsto _])$

Linear Reaching Values

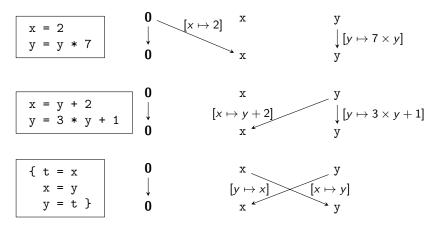
Statement	in _b	out _b
		$\{[x\mapsto 42]\}\cup (M\setminus [x\mapsto _])$
		$\{[x \mapsto c+1]\} \cup (M \setminus [x \mapsto _])$
x = y * 7		$\{[x \mapsto c \times 7]\} \cup (M \setminus [x \mapsto _])$
x = y + z	Μ	$\{[x\mapsto \bot]\} \cup (M \setminus [x\mapsto _])$

► The above sketches a *distributive* reaching values analysis

- ▶ Each annotation of form $v_1 \mapsto c_1 \times v_2 + c_2$
- Tradeoff: no support for adding / multiplying / ... (multiple variables)
- Encode in IFDS?

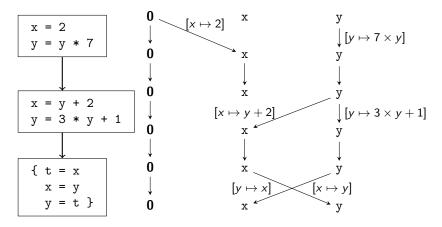
In the following, we consider *Linear Constant Propagation*, which is the **Must** analysis version of *Reaching Definitions*.

Labelling Graph Edges



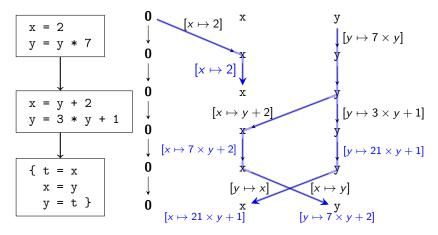
- Extending IFDS to support information processing
- Carrying over key techniques:
 - Track dependencies
 - Generate procedure summaries on the fly

Labelling Graph Edges



- Extending IFDS to support information processing
- Carrying over key techniques:
 - Track dependencies
 - ► Generate procedure summaries on the fly

Labelling Graph Edges



- Extending IFDS to support information processing
- Carrying over key techniques:
 - Track dependencies
 - Generate procedure summaries on the fly

Representation

$$\left\{ \begin{array}{l} [x \mapsto c_{x,1} \times x + d_{x,1}] \\ [y \mapsto c_{y,1} \times y + d_{y,1}] \end{array} \right\} \circ \left\{ \begin{array}{l} [x \mapsto c_{x,2} \times v_1 + d_{x,2}] \\ [y \mapsto c_{y,2} \times v_2 + d_{y,2}] \end{array} \right\} \\ = \\ \left\{ \begin{array}{l} [x \mapsto (c_{x,2} \times c_{x,1}) \times v_1 + (d_{x,2} + c_{x_1} \times d_{x_1})] \\ [y \mapsto (c_{y,2} \times c_{y,1}) \times v_1 + (d_{y,2} + c_{y_1} \times d_{y_1})] \end{array} \right\}$$

- ► *c_i*, *d_i*: constants
- v_i: program variables

Representation

$$\left\{ \begin{array}{l} [x \mapsto c_{x,1} \times x + d_{x,1}] \\ [y \mapsto c_{y,1} \times y + d_{y,1}] \end{array} \right\} \circ \left\{ \begin{array}{l} [x \mapsto c_{x,2} \times v_1 + d_{x,2}] \\ [y \mapsto c_{y,2} \times v_2 + d_{y,2}] \end{array} \right\} \\ = \\ \left\{ \begin{array}{l} [x \mapsto (c_{x,2} \times c_{x,1}) \times v_1 + (d_{x,2} + c_{x_1} \times d_{x_1})] \\ [y \mapsto (c_{y,2} \times c_{y,1}) \times v_1 + (d_{y,2} + c_{y_1} \times d_{y_1})] \end{array} \right\}$$

- c_i, d_i : constants
- v_i: program variables
- ► (Maps of) linear functions are closed under composition

Representation

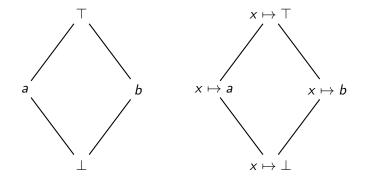
$$\left\{ \begin{array}{l} \left[x \mapsto c_{x,1} \times x + d_{x,1} \right] \\ \left[y \mapsto c_{y,1} \times y + d_{y,1} \right] \end{array} \right\} \circ \left\{ \begin{array}{l} \left[x \mapsto c_{x,2} \times v_1 + d_{x,2} \right] \\ \left[y \mapsto c_{y,2} \times v_2 + d_{y,2} \right] \end{array} \right\} \\ = \\ \left\{ \begin{array}{l} \left[x \mapsto (c_{x,2} \times c_{x,1}) \times v_1 + (d_{x,2} + c_{x_1} \times d_{x_1}) \right] \\ \left[y \mapsto (c_{y,2} \times c_{y,1}) \times v_1 + (d_{y,2} + c_{y_1} \times d_{y_1}) \right] \end{array} \right\}$$

- ► *c_i*, *d_i*: constants
- *v_i*: program variables
- ► (Maps of) linear functions are closed under composition
- Must support \sqcap to merge, map to \perp on mismatch

$$\left\{ \begin{array}{c} [x \mapsto c_{x,1} \times v_1 + d_{x,1}] \\ [y \mapsto c_{y,1} \times v_3 + d_{y,1}] \end{array} \right\} \sqcap \left\{ \begin{array}{c} [x \mapsto c_{x,1} \times v_1 + d_{x,1}] \\ [y \mapsto c_{y,2} \times v_2 + d_{y,2}] \end{array} \right\}$$
$$= \\ \left\{ \begin{array}{c} [x \mapsto c_{x,1} \times x + d_{x,1}] \\ [y \mapsto \bot] \end{array} \right\}$$

Micro-Functions and Lattices

Extend lattices to such 'Micro-Functions':



Micro-Functions, Efficient Representation

▶ Micro-Functions must support: Encoding Computation f(x)Equality testing f = f'Composition $f \circ f'$ Meet $f \sqcap f'$

- Other examples:
 - IFDS problems
 - Value bounds analysis

Micro-Functions, Efficient Representation

- ▶ Micro-Functions must support: Encoding O(1) space Computation f(x) O(1) time Equality testing f = f' O(1) time Composition $f \circ f'$ O(1) time Meet $f \sqcap f'$ O(1) time
- Micro-functions are efficiently representable if they satisfy space / time constraints
 - Required for the algorithm's time bounds
- Other examples:
 - IFDS problems
 - Value bounds analysis

The IDE Algorithm (1/1)

- Interprocedural Distributive Environments algorithm
- Extends IFDS to 'labelled' edges as described above
- Assumes distributive framework over micro-functions
- Algorithmic changes:
 - First phase analogous to IFDS
 - Second phase applies computed functions to read out results
- Maintain/update mapping from path edges to micro-functions f:

$$\mathbf{PATHEDGE} = \{ \langle b_0, v_0 \rangle \xrightarrow{f_0} \langle b_1, v_1 \rangle, \ldots \}$$

- \blacktriangleright 'Missing edges' equivalent to $x\mapsto \top$
- Initialise:

$$\mathbf{PATHEDGE} = \{ \langle b_0, v_0 \rangle \xrightarrow{v_1 \mapsto \top} \langle b_1, v_1 \rangle, \ldots \}$$

▶ Always exactly one *f* per $\{\langle b_0, v_0 \rangle \xrightarrow{f} \langle b_1, v_1 \rangle\} \in \text{PATHEDGE}$

The IDE Algorithm (2/2)

Procedure propagate $(n_1 \rightarrow n_2)$: -- IFDS version **begin**

```
if n_1 \rightarrow n_2 \in \text{PATHEDGE} then
return
PATHEDGE := PATHEDGE \cup \{n_1 \rightarrow n_2\}
WORKLIST := WORKLIST \cup \{n_1 \rightarrow n_2\}
end
```

Procedure propagate_{IDE} $(n_1 \xrightarrow{f} n_2)$: -- IDE version **begin**

1

let
$$n_1 \xrightarrow{f'} n_2 \in \text{PATHEDGE}$$

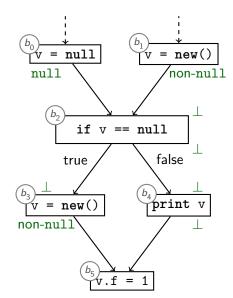
 $f_{\text{upd}} := f \sqcap f'$
if $f_{\text{upd}} = f'$ then
return

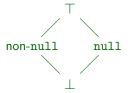
 $\begin{array}{l} \text{PathEdge} := \left(\text{PathEdge} \setminus \{ n_1 \xrightarrow{f'} n_2 \} \right) \cup \{ n_1 \xrightarrow{f_{upd}} n_2 \} \\ \text{WorkList} := \text{WorkList} \cup \{ n_1 \rightarrow n_2 \} \\ \text{end} \end{array}$

Summary

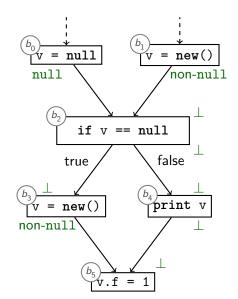
- IDE strictly generalises IFDS
- Utilises Micro-Functions to ensure efficient summaries:
 - ► Intra-procedural summaries via PATHEDGE
 - ► Inter-procedural procedure summaries via SUMMARYINST
- Runtime is O(LED³) if micro-functions are efficiently representable
 - L: Lattice height
 - ▶ IFDS: 1
 - ► IDE: length of longest descending chain
 - E: Number of control-flow edges
 - D: Number of variables
- ▶ IFDS supported by Soot, Phasar, WALA
- ▶ IDE supported by Soot, Phasar

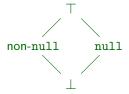
Path Sensitivity





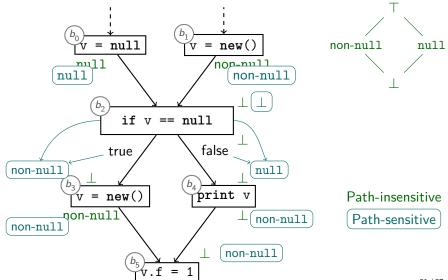
Path Sensitivity



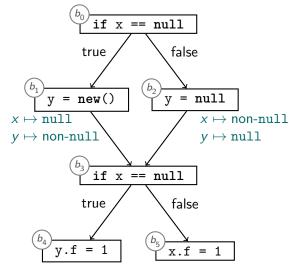


Path-insensitive

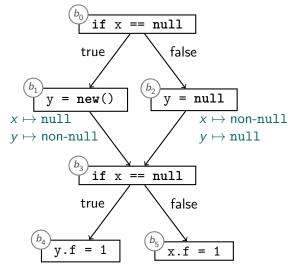
Path Sensitivity



Multiple Conditionals

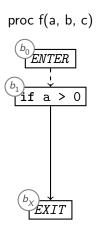


Multiple Conditionals



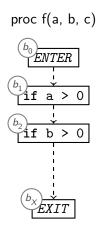
Should we carry path information across merge points?

Paths



2 paths

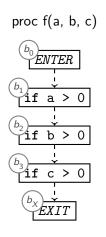
Paths



2 paths

4 paths

Paths



2 paths

4 paths

8 paths

Number of paths grows exponentially

Summary

- **Path-sensitive** analysis considers conditionals:
 - May propagate different information along different paths
- Only for forward analyses
- Number of paths O(# of conditionals)
 - Avoid exponential blow-up by merging (as before)
 - Path-sensitive procedure summaries might require exponential number of cases
- Exponential analyses/representations usually not practical

Homework 2

- ▶ IFDS analysis in Soot
- Flow Analysis on paper

Review

- Procedure Summaries
- IFDS algorithm
- ► IDE algorithm
- Path Sensitivity

To be continued...

Next week:

Heap Analysis