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In the last lecture...

» Gen/Kill analyses

» Lattices

» Monotone Frameworks
» MFP algorithm

» MOP algorithm

» Distributive Frameworks
» Interprocedural Analysis

» Context-sensitive vs. Context-insensitive analysis
> Inlining for analysis
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Interprocedural Data Flow Analysis

x s {7) T P =

v 2)

x = {1,7}
y = {2,5}

z+—{1,2,5,7}

e {1,5,2,7}

Context-insensitive: analysis merges all callers to £ ()
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Alternative to Inlining: Summarise
Procedure (Here: Reaching Defs.)

f(x, y) =

» Compose transfer functions:
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Alternative to Inlining: Summarise
Procedure (Here: Reaching Defs.)

f(x, y) =

» Compose transfer functions:
> transy, o transy, = [z — 0]
> transp, o transp, o transp, = [z — {x}]
> transy, o transy, o transy, = [z — {y}]
> transp, o transp, o (transp, M transy,) = [z — {x,y}]

> transp, o transp, o (transp, I transy,) o transp, = [z — {x,y}]
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Procedure Summaries vs Recursion

f calls g calls h calls £

» Reqiures additional analysis to identify who calls whom
» Compute summaries of mutually recursive functions together
» Recursive call edges analogous to loops
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Procedure Summaries

» Composing transfer functions yields a combined transfer
function for £():
transs = [return — {x,y}]

» Use transy as transfer function for £ (), discard f's body
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Procedure Summaries

» Composing transfer functions yields a combined transfer
function for £():

transy = [return — {x, y}]

» Use transy as transfer function for £ (), discard f's body
» Advantages:
» Can yield compact subroutine descriptions
» Can speed up call site analysis dramatically
» Disadvantages:
» More complex to implement
» Recursion is challenging
» Limitations:
» Requires suitable representation for summary
» Requires mechanism for abstracting and applying summary
» Worst cases:
> transy is symbolic expression as complex as £ itself
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Representation Relations
Example procedure summary representation:

null

(y == null)?y:x

o on
<

O «— O

«—

‘May be null’ analysis

» Representation Relations relate

in, and out, variables V
»RC (VU{0}) x (Vu{0})
»if (0, X) € R:

X always ‘may be null" in out,
»if (Y, X) € R:

If Y ‘may be null’ in iny:

= X ‘may be null’ in out,
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Summary

» Procedure summaries built from composed transfer functions

» Can speed up context-sensitive analysis of popular functions,
compared to inlining

» Needs some suitably abstract analysis for the given program
» Example: IFDS-style Representation Relations

» Recursion is nontrivial:

> Analyse function calls (call graph)
» Analyse strongly connected components together
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Composing Representation Relations

Recall Representation Relations (may be null analysis):

»
nn

null
y

<
non

(y == null)?y:x
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X
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Composing Representation Relations

Recall Representation Relations (may be null analysis):

0 x
x = null y
y=5 ¢
0
x = (y == null)?y:x
y = ! y
{t=x y
X =y
y=t} 0 x ¥y
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Composing Representation Relations

Recall Representation Relations (may be null analysis):

0 x vy 0 x vy
x = null
vey A
0 x y
Pl
x = (y == null)?y:x 4
| 1/
0 X y
Pl
{t=x 0 x vy
x =y v X
y=1t} 0 x y 0 x vy

Composed representation relations are again representation relations
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Merging Control-Flow Paths

null

[y

X = null

A X< M

< oW oo

X

y

0
¥
(y == null)?y:x [
0
t}

O «——O
<<
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Merging Control-Flow Paths

null

X = null 0 o
y=y X ¥y Xy
x = (y == null)?y:x
y:l X =
{t=x
x=y 0 x 0 x
y=t31 X y

Behaves analogous to disjunction / ‘May’ analysis: if
reachable from 0 then may be true
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Dataflow via Graph Reachability
n=(b,v)

» Assume binary latice ({T, L}, C, M, L)
»aflb=_1iffa=_1 and b= 1, otherwise alMlb=T
> Typical for ‘May’ analysis (‘may be null’)

» We can encode Dataflow problem as Graph-Reachability
» Graph nodes n = (b, v)

» b: CFG node

» v: Variable or 0

> Variable: Property of interest connected to variable
> 0: Property of interest connected to executing this
statement/block
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Dataflow via Graph Reachability
n=(b,v)

» Assume binary latice ({T, L}, C, M, L)
»allb= 1 iffa= 1 and b= 1, otherwise allb=T
> Typical for ‘May’ analysis (‘may be null’)
» Equivalently for ‘Must’ analysis:
‘must be null’ = not (‘may be non-null’)

» We can encode Dataflow problem as Graph-Reachability
» Graph nodes n = (b, v)
» b: CFG node

» v: Variable or 0

» Variable: Property of interest connected to variable
> 0: Property of interest connected to executing this
statement/block
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A Dataflow Worklist Algorithm: IFDS

» Context-sensitive interprocedural dataflow algorithm

» Historical name: IFDS

(Interprocedural Finite Distributive Subset problems)
> ‘Exploded Supergraph’: G* = (N¥, E¥)

> Nf = Ncre x V U {0}

> Plus parameter/return call edges

» b . is the CFG ENTER node of the main entry point

» Property-of-interest holds if reachable from (bZ,.;., 0)
» Key ideas:

» Worklist-based

» Construct Representation Relations on demand
» Construct ‘Exploded Supergraph’

» CFG of all functions x VU {0}
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IFDS Datastructures

Instead of ({bo, vo), (b3, vo)) we also write:
(bo, vo) — (b3, vo)

WORKLIST edge All WORKLIST edges are also PATHEDGE edges
(bo, vo) === (b3, vo)
PATHEDGE edge Result of our analysis
Ni-edge

SUMMARYINST Generated from summary nodes
Otherwise equivalent to N*-edges
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IFDS Strategy

» Algorithm distinguishes between three types of
nodes:
» Exit nodes (b¢)
» Call nodes (b°)

» Other nodes @
A%NTER f

T v
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On-demand processing

Procedure propagate(n; — np):
begin
if N1 — ny € PATHEDGE then
return
PATHEDGE := PATHEDGE U {n; — no}
WORKLIST := WORKLIST U {n; — np}
end
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Running Example

ATL: main() ATL: get()
global default = null proc get(c) {
proc main() { if ¢ == 0 {

a = get(3) z = default
default = 1 } else {
b = get(3) z = read()
return b if z < 0 {
} z = get(c + -1)
} else skip
}
return z

}
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@‘

T

= read()
Or
b

z = get(c)
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5
bge

£NTER get

Gt = (N!, EY)
where N C (VU {0}) x Ncre
[

——1 ~ K
&bg(rét 7
O | Coorurm o)
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)

7
=

¥

e
T
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= read()
Or
be S

Initialisation
» WORKLIST =

{<brsnain7 0> — <brsnain7 0>}
> Analogous self-loops for

static variables with
property of interest (d)

» e €¢ WORKLIST —
e € PATHEDGE
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Oabd
[ 2 BN )
Procedure propagate(n; — m):
P o begin
h if n1 — n, € PATHEDGE then
return
Y PATHEDGE := PATHEDGE U {n; — ny}

WORKLIST := WORKLIST U {n; — mp}
end

]
Step (regular edge)

> Pick e off the work queue
e=n — N

> np neither call (c) nor exit (e)?

@> Find all n, — n3
propagate(n; — n3)

G evura o]

bgl> Remove e from WORKLIST

> e remains in PATHEDGE
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G evura o]

Step (call edge)

» Pick e = n; — n§ off the work queue
> n5 is call (c)?

> Init called procedure:

> Find all parameter edges
t = nS — (bg,v) € E*
> propagate((bz, v) — (b7, v))

= U0zcCd
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G evura o]

O 'Z.CT

AN

Step (call edge)
» Pick e = n; — n§ off the work queue
> n5 is call (c)?

> Init called procedure:

> Find all parameter edges
t = nS — (bg,v) € E*
> propagate((bz, v) — (b7, v))

|_|> Propagate along intra-edges

(As with regular edges)
> Propagate along Summarylnst:

= U0zcCd
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1
Step (exit edge)

» Pick e = n; — n5 off the work queue

> n§ is exit (e)?
(n3 is always start node.)
> For each call/return pair nf, n! that
calls the current function,
if nf — nj — nS — nl:
> If nf — nf ¢ SUMMARYINST:
> Add it to SUMMARYINST

> Find all n — nf € PATHEDGE and
propagate(n — nf)
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Oz c

(return)
FXIT main
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o0 @ TER main
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17/37



Tce
Qe
e

Oz c

(return)

a

oo @ TER main

0'- OVOV -(return)
voee Clotumy]

FXIT main

17/37



o0 @ TER main

Oz c

to 8t Qrovary
ceee Clotams

FXIT main

17/37



%A A

-Step (call edge)

> Pick e = n; — n§ off the work queue

> n is call (c)?
> Init called procedure:
» Find all parameter edges
t =nS — (b, v) € E*
> propagate((b3, v) = (b, v))
> Propagate along intra-edges
(As with regular edges)

> Propagate along Summarylnst:
(As with regular edges)
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= get(a)
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= get(a) '=.. \
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IT main
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(return)
eturn b
FXIT main

@ TER main

e
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/

Worklist empty: Done \

» Can now read results off of '
PATHEDGE

> e.g. at end of main():

> a may be null
> b and d definitely non-null

U

0
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The IFDS Algorithm: Initialisation and

Propagation)

Procedure Init():

begin
WORKLIST := PATHEDGE := ()
propagate(<brsnain’ 0> - <brs;13in7 0>)
ForwardTabulate()

end

Procedure propagate(n; — n):
begin
if N1 — n, € PATHEDGE then
return
PATHEDGE := PATHEDGE U {n; — ny}
WORKLIST := WORKLIST U {n; — mp}
end
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IFDS: Forward Tabulation

Procedure ForwardTabulate():
begin
while np — n; € WORKLIST do
WorkList := WorkList \ {ng — n;}
(bo, o) = no; (b1, v1) = m
if by is neither Call nor Exit node then
foreach n, — n, € E*:
propagate(ny — m2)
else if b; is Call node then begin
foreach call edge m — np € E*:
propagate(n, — )
foreach non-call edge n1 — ny € E* U SUMMARYINST:
propagate(ng — n2)
end else if b; is Exit node then begin
foreach caller/return node pair bf, b/ that calls by and vars v, v1 do
ns = (b, w); nr = (bf,v1)
if {ns = no,np — m,m — n,} C E* and not n; — n, € SUMMARYINST then
SUMMARYINST := SUMMARYINST U {ns — n,}
foreach n, — n, € PATHEDGE:
propagate(n;, n)

end done end done end
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Summary: IFDS Algorithm

» Computes yes-or-no ‘May’ analysis on all variables
> Original notion of ‘variables’ is slightly broader)
» Represents facts-of-interest as nodes (b, v):
> b is node (basic block) in CFG
» v is variable that we are interested in
» Uses
> ‘Exploded Supergraph’ G*
> All CFGs in program in one graph
> Plus interprocedural call edges

» Representation relations
» Graph reachability
» A worklist
» Distinguishes between Call nodes, Exit nodes, others
» Demand-driven: only analyses what it needs
> Whole-program analysis
» Computes Max. Fixpoint on distributive frameworks
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Beyond True and False

» What if abstract domain is not boolean?
reg, {T,AV, A= A0 1}
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Beyond True and False

» What if abstract domain is not boolean?
reg, {T,AV, A= A0 1}
» Multiple boolean properties per variable
> easy for powerset lattice P({+, —,0})
» Limitation: Transfer functions only depend on one variable
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Extending IFDS?

» Not all analyses map well to IFDS
» Core ideas are appealing:

» Automatically compute procedure summaries
» Exploit graph reachability + worklist for dependency tracking
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Extending IFDS?

» Not all analyses map well to IFDS
» Core ideas are appealing:

» Automatically compute procedure summaries
» Exploit graph reachability + worklist for dependency tracking

It is possible to extend this to other classes of problems
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Linear Reaching Values

Statement ‘ ing ‘ out,

X = 42 M {[x =42} UM\ [x+— _])
x=y+1 | M={[y—c],...} [{[x=c+1]JUM\[x+— _])
x=y*x7 | M={[y—c],...} | {[x—=cxT7JUM\[x—_])

x=y+z | M {x—= L]JUM\ [x — _])
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Linear Reaching Values

Statement ‘ ing

‘ outy,

X

I ]

= 42

=y +1
=y*7
=y+z

M

M={lyc,...}

{x = 42l UM\ [x — _])
{[x = c+1}U(M\ [x — _])

M={ly ...} | {Ixrrex UM\ x> _])

M

{x = LU M\ [x—_])

» The above sketches a distributive reaching values analysis

» Each annotation of form vi — ¢1 X v» + &
» Tradeoff: no support for adding / multiplying / ... (multiple

variables)

» Encode in IFDS?

In the following, we consider Linear Constant Propagation, which
is the Must analysis version of Reaching Definitions.
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Labelling Graph Edges

0

x = 2 2] % v
rog T } [y 7
0 X v
0 X v
xTyre | [x >y +2 1
y=3xy+1 Xy +2] [y 3xy+1]
0 X v
{t=x 0 X y
x =y | [yHMHy]
y=t} 0 X y

» Extending IFDS to support information processing
» Carrying over key techniques:

» Track dependencies

» Generate procedure summaries on the fly
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-2 O ko2 * y
oyt i\ [y 7%
0 x y
i | |
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0 x y
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Labelling Graph Edges

x =2 0 x 2] * y
Py T ! [y =7 %3]
0 X y
i [x — 2LL l
+ 2 0 x v
X:
y=§*y+1 | [x—y+2] |y=3xy+1]
0 b's y
i [x»—>7><y+2]l l[yl—>2l><y+1]
{t=x 0 x y
XxX=y i Iy F%;%i:::><:::I%;E+ y]
y=t1% 0 X y
[x =21 xy+1] [y—=7xy+2]

» Extending IFDS to support information processing
» Carrying over key techniques:

» Track dependencies

» Generate procedure summaries on the fly
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Representation

[X = Cx1 X X+ dX71] o [X = Cx2 X Vi + dX72]
[y = cy1 xy+dyi] ly = cyo X va+d, o]

[X —> (CX72 X CX71) X v+ (dX72 + ¢y X Xm)]
[y = (¢y2x ¢y1) X vi+(dy2+ ¢y x dy)]

» ¢;, d;: constants
> v;: program variables
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Representation

[X = Cx1 X X + dx,l] o [X = Cx2 X Vi + dX72]
[y = cy1 xy+dyi] [y = ¢y2 X va+dy o]

[X —> (CX’Q X CX71) X vy + (dXT2 + ¢y X Xm)]
[y = (¢y2x ¢y1) X vi+(dy2+ ¢y x dy)]

» ¢;, d;: constants
> v;: program variables
» (Maps of) linear functions are closed under composition
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Representation

[x = o1 X x4+ dy 1] . [x = o X v+ dy 9]
[y = cy1 xy+dyi] [y = cyo X va+dy o]

[X —> (CX’Q X Cx,l) X vy + (dX72 + ¢y X Xm)]
[y = (¢y2x ¢y1) X vi+(dy2+ ¢y x dy)]

» ¢;, d;: constants

> v;: program variables

» (Maps of) linear functions are closed under composition
» Must support 'l to merge, map to L on mismatch

{ [X+—>CX71 X V1+dx~1] } - { [X+—>CX71 X V1+C/X11] }

[y = Cy1 X V3 + dy71] [y = Cyo2 X V2 =+ C/yfg]

{ [x — 1 X x4+ di 1] }
[y = 1]
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Micro-Functions and Lattices

» Extend lattices to such ‘Micro-Functions':

VANRVAN
AVARNVA
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Micro-Functions, Efficient
Representation

» Micro-Functions must support:
Encoding
Computation f(x)
Equality testing f = f’
Composition fof
Meet frf

» Other examples:

» IFDS problems
» Value bounds analysis
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Micro-Functions, Efficient
Representation

» Micro-Functions must support:

Encoding O(1) space
Computation f(x)  O(1) time
Equality testing f =f" O(1) time
Composition fof' O(1) time
Meet ff O(1) time

» Micro-functions are efficiently representable if they satisfy
space / time constraints

» Required for the algorithm's time bounds
» Other examples:

» IFDS problems
» Value bounds analysis
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The IDE Algorithm (1/1)

> Interprocedural Distributive Environments algorithm
» Extends IFDS to ‘labelled’ edges as described above
» Assumes distributive framework over micro-functions
» Algorithmic changes:
» First phase analogous to IFDS
» Second phase applies computed functions to read out results
» Maintain/update mapping from path edges to
micro-functions f:

PATHEDGE = { (b, vo) =% (b1, v1),...}

» ‘Missing edges’ equivalent to x — T
> Initialise:

PATHEDGE = {(bg, vo) =5 (b, v1),...}

> Always exactly one f per {(by, vo) = (b1, v1)} € PATHEDCE
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The IDE Algorithm (2/2)

Procedure propagate(n; — np): —— IFDS version
begin
if N1 — n, € PATHEDGE then
return
PATHEDGE := PATHEDGE U {n; — ny}
WORKLIST := WORKLIST U {n; — ny}
end

4

Procedure propagate,pe(m EA np): —— IDE version
begin
let ny L/> ny € PATHEDGE
fupd 1= f M1 f
if fipa = f’ then
return

! fu
PATHEDGE := (PATHEDGE \ {m N mB)U{m % m}

WORKLIST := WORKLIST U {n; — ny}
end
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Summary

» IDE strictly generalises IFDS

» Utilises Micro-Functions to ensure efficient summaries:
» Intra-procedural summaries via PATHEDGE
» Inter-procedural procedure summaries via SUMMARYINST

» Runtime is O(LED?) if micro-functions are efficiently
representable
» L: Lattice height
> IFDS: 1
> IDE: length of longest descending chain
» E: Number of control-flow edges
» D: Number of variables

» IFDS supported by Soot, Phasar, WALA
» IDE supported by Soot, Phasar
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Path Sensitivity

non-null
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Path Sensitivity

AN
non-null null
/

Path-insensitive
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Path Sensitivity

Path-insensitive

[Path—sensitive}
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Multiple Conditionals

b
<%>if X

== null |

true

b

false

y = new()

= null |

X — null
y + non-null

X — non-null
y —null

b
<%>if X

== null |
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Multiple Conditionals

b
<Pif x == null |

true

b

false

y = new()

b2
y = null

X — null
y = non-null

X +— non-null
y —null

b.
<;3>if x == null |

Should we carry path information across merge points?
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Paths

proc f(a, b, ¢)

O
¢»'f a>0

1

IIF!;YIJ"

2 paths
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Paths
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Paths

“vieirzR]

¢=!Ef a>o0
| 2 paths

‘!!Ef b>0
| 4 paths

‘z!af c>0
@ . 8 paths

(EXIT |

Number of paths grows exponentially
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Summary

» Path-sensitive analysis considers conditionals:

» May propagate different information along different paths
» Only for forward analyses
> Number of paths O(# of conditionals)

> Avoid exponential blow-up by merging (as before)
» Path-sensitive procedure summaries might require exponential
number of cases

» Exponential analyses/representations usually not practical
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Homework 2

» IFDS analysis in Soot
» Flow Analysis on paper
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Review

» Procedure Summaries
» IFDS algorithm

» |IDE algorithm

» Path Sensitivity
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To be continued. ..

Next week:

» Heap Analysis

37/37



