
EDA045F: Program Analysis
LECTURE 4: DATAFLOW ANALYSIS 3

Christoph Reichenbach



In the last lecture. . .

I Gen/Kill analyses
I Lattices
I Monotone Frameworks
I MFP algorithm
I MOP algorithm
I Distributive Frameworks
I Interprocedural Analysis

I Context-sensitive vs. Context-insensitive analysis
I Inlining for analysis

2 / 37



Interprocedural Data Flow Analysis

a = 7

d = f(a, 2)

e = f(1, 5)

f(x, y) =

z = 0

if ...

z = x z = y

return z

b0

b1

b2 b3

b4

b5

bc
6

bc
7

(return)

(return)

br
6

br
7

x 7→ {7}
y 7→ {2}

x 7→ {1}
y 7→ {5}

x 7→ {1, 7}
y 7→ {2, 5}

z 7→ {1, 2, 5, 7}d 7→ {2, 7, 1, 5}

e 7→ {1, 5, 2, 7}

Context-insensitive: analysis merges all callers to f()
3 / 37



Alternative to Inlining: Summarise
Procedure (Here: Reaching Defs.)

f(x, y) =

z = 0

if ...

z = x z = y

return z

b0

b1

b2 b3

b4

z 7→ {0}

id

z 7→ {y}z 7→ {x}

id

I Compose transfer functions:

I transb0 ◦ transb1 = [z 7→ 0]
I transb0 ◦ transb1 ◦ transb2 = [z 7→ {x}]
I transb0 ◦ transb1 ◦ transb3 = [z 7→ {y}]
I transb0 ◦ transb1 ◦ (transb2 u transb3) = [z 7→ {x , y}]
I transb0 ◦ transb1 ◦ (transb2 u transb3) ◦ transb4 = [z 7→ {x , y}]

4 / 37



Alternative to Inlining: Summarise
Procedure (Here: Reaching Defs.)

f(x, y) =

z = 0

if ...

z = x z = y

return z

b0

b1

b2 b3

b4

z 7→ {0}

id

z 7→ {y}z 7→ {x}

id

I Compose transfer functions:
I transb0 ◦ transb1 = [z 7→ 0]

I transb0 ◦ transb1 ◦ transb2 = [z 7→ {x}]
I transb0 ◦ transb1 ◦ transb3 = [z 7→ {y}]
I transb0 ◦ transb1 ◦ (transb2 u transb3) = [z 7→ {x , y}]
I transb0 ◦ transb1 ◦ (transb2 u transb3) ◦ transb4 = [z 7→ {x , y}]

4 / 37



Alternative to Inlining: Summarise
Procedure (Here: Reaching Defs.)

f(x, y) =

z = 0

if ...

z = x z = y

return z

b0

b1

b2 b3

b4

z 7→ {0}

id

z 7→ {y}z 7→ {x}

id

I Compose transfer functions:
I transb0 ◦ transb1 = [z 7→ 0]
I transb0 ◦ transb1 ◦ transb2 = [z 7→ {x}]

I transb0 ◦ transb1 ◦ transb3 = [z 7→ {y}]
I transb0 ◦ transb1 ◦ (transb2 u transb3) = [z 7→ {x , y}]
I transb0 ◦ transb1 ◦ (transb2 u transb3) ◦ transb4 = [z 7→ {x , y}]

4 / 37



Alternative to Inlining: Summarise
Procedure (Here: Reaching Defs.)

f(x, y) =

z = 0

if ...

z = x z = y

return z

b0

b1

b2 b3

b4

z 7→ {0}

id

z 7→ {y}z 7→ {x}

id

I Compose transfer functions:
I transb0 ◦ transb1 = [z 7→ 0]
I transb0 ◦ transb1 ◦ transb2 = [z 7→ {x}]
I transb0 ◦ transb1 ◦ transb3 = [z 7→ {y}]

I transb0 ◦ transb1 ◦ (transb2 u transb3) = [z 7→ {x , y}]
I transb0 ◦ transb1 ◦ (transb2 u transb3) ◦ transb4 = [z 7→ {x , y}]

4 / 37



Alternative to Inlining: Summarise
Procedure (Here: Reaching Defs.)

f(x, y) =

z = 0

if ...

z = x z = y

return z

b0

b1

b2 b3

b4

z 7→ {0}

id

z 7→ {y}z 7→ {x}

id

I Compose transfer functions:
I transb0 ◦ transb1 = [z 7→ 0]
I transb0 ◦ transb1 ◦ transb2 = [z 7→ {x}]
I transb0 ◦ transb1 ◦ transb3 = [z 7→ {y}]
I transb0 ◦ transb1 ◦ (transb2 u transb3) = [z 7→ {x , y}]

I transb0 ◦ transb1 ◦ (transb2 u transb3) ◦ transb4 = [z 7→ {x , y}]

4 / 37



Alternative to Inlining: Summarise
Procedure (Here: Reaching Defs.)

f(x, y) =

z = 0

if ...

z = x z = y

return z

b0

b1

b2 b3

b4

z 7→ {0}

id

z 7→ {y}z 7→ {x}

id

I Compose transfer functions:
I transb0 ◦ transb1 = [z 7→ 0]
I transb0 ◦ transb1 ◦ transb2 = [z 7→ {x}]
I transb0 ◦ transb1 ◦ transb3 = [z 7→ {y}]
I transb0 ◦ transb1 ◦ (transb2 u transb3) = [z 7→ {x , y}]
I transb0 ◦ transb1 ◦ (transb2 u transb3) ◦ transb4 = [z 7→ {x , y}]

4 / 37



Procedure Summaries vs Recursion

f calls g calls h calls f

I Reqiures additional analysis to identify who calls whom
I Compute summaries of mutually recursive functions together
I Recursive call edges analogous to loops

5 / 37



Procedure Summaries
I Composing transfer functions yields a combined transfer
function for f():

transf = [return 7→ {x , y}]
I Use transf as transfer function for f(), discard f’s body

I Advantages:
I Can yield compact subroutine descriptions
I Can speed up call site analysis dramatically

I Disadvantages:
I More complex to implement
I Recursion is challenging

I Limitations:
I Requires suitable representation for summary
I Requires mechanism for abstracting and applying summary
I Worst cases:

I transf is symbolic expression as complex as f itself

6 / 37



Procedure Summaries
I Composing transfer functions yields a combined transfer
function for f():

transf = [return 7→ {x , y}]
I Use transf as transfer function for f(), discard f’s body
I Advantages:

I Can yield compact subroutine descriptions
I Can speed up call site analysis dramatically

I Disadvantages:
I More complex to implement
I Recursion is challenging

I Limitations:
I Requires suitable representation for summary
I Requires mechanism for abstracting and applying summary
I Worst cases:

I transf is symbolic expression as complex as f itself

6 / 37



Procedure Summaries
I Composing transfer functions yields a combined transfer
function for f():

transf = [return 7→ {x , y}]
I Use transf as transfer function for f(), discard f’s body
I Advantages:

I Can yield compact subroutine descriptions
I Can speed up call site analysis dramatically

I Disadvantages:
I More complex to implement
I Recursion is challenging

I Limitations:
I Requires suitable representation for summary
I Requires mechanism for abstracting and applying summary
I Worst cases:

I transf is symbolic expression as complex as f itself

6 / 37



Procedure Summaries
I Composing transfer functions yields a combined transfer
function for f():

transf = [return 7→ {x , y}]
I Use transf as transfer function for f(), discard f’s body
I Advantages:

I Can yield compact subroutine descriptions
I Can speed up call site analysis dramatically

I Disadvantages:
I More complex to implement
I Recursion is challenging

I Limitations:
I Requires suitable representation for summary
I Requires mechanism for abstracting and applying summary
I Worst cases:

I transf is symbolic expression as complex as f itself
6 / 37



Representation Relations
Example procedure summary representation:

x = null
y = y

0

0

x

x

y

y

x = (y == null)?y:x
y = 1

0

0

x

x

y

y

{ t = x
x = y
y = t }

0

0

x

x

y

y

‘May be null’ analysis
I Representation Relations relate
inb and outb variables V

I R ⊆ (V ∪ {0})× (V ∪ {0})
I if 〈0, X 〉 ∈ R :

X always ‘may be null’ in outb
I if 〈Y , X 〉 ∈ R :
If Y ‘may be null’ in inb:
⇒ X ‘may be null’ in outb

7 / 37



Summary

I Procedure summaries built from composed transfer functions
I Can speed up context-sensitive analysis of popular functions,
compared to inlining

I Needs some suitably abstract analysis for the given program
I Example: IFDS-style Representation Relations

I Recursion is nontrivial:
I Analyse function calls (call graph)
I Analyse strongly connected components together

8 / 37



Composing Representation Relations
Recall Representation Relations (may be null analysis):

x = null
y = y

0

0

x

x

y

y

x = (y == null)?y:x
y = 1

0

0

x

x

y

y

{ t = x
x = y
y = t }

0

0

x

x

y

y

0

0

x

x

y

y

Composed representation relations are again representation relations

9 / 37



Composing Representation Relations
Recall Representation Relations (may be null analysis):

x = null
y = y

0

0

x

x

y

y

x = (y == null)?y:x
y = 1

0

0

x

x

y

y

{ t = x
x = y
y = t }

0

0

x

x

y

y

0

0

x

x

y

y

Composed representation relations are again representation relations

9 / 37



Composing Representation Relations
Recall Representation Relations (may be null analysis):

x = null
y = y

0

0

x

x

y

y

x = (y == null)?y:x
y = 1

0

0

x

x

y

y

{ t = x
x = y
y = t }

0

0

x

x

y

y

0

0

x

x

y

y

Composed representation relations are again representation relations

9 / 37



Composing Representation Relations
Recall Representation Relations (may be null analysis):

x = null
y = y

0

0

x

x

y

y

x = (y == null)?y:x
y = 1

0

0

x

x

y

y

{ t = x
x = y
y = t }

0

0

x

x

y

y

0

0

x

x

y

y

Composed representation relations are again representation relations

9 / 37



Composing Representation Relations
Recall Representation Relations (may be null analysis):

x = null
y = y

0

0

x

x

y

y

x = (y == null)?y:x
y = 1

0

0

x

x

y

y

{ t = x
x = y
y = t }

0

0

x

x

y

y

0

0

x

x

y

y

Composed representation relations are again representation relations

9 / 37



Merging Control-Flow Paths

if
x = null
y = y
x = (y == null)?y:x
y = 1
{ t = x

x = y
y = t }

0

0

x

x

y

y

0

0

x

x

y

y

x = null

0 x y

. . .

Behaves analogous to disjunction / ‘May’ analysis: if
reachable from 0 then may be true

10 / 37



Merging Control-Flow Paths

if
x = null
y = y
x = (y == null)?y:x
y = 1
{ t = x

x = y
y = t }

0

0

x

x

y

y

0

0

x

x

y

y

x = null

0 x y

. . .

Behaves analogous to disjunction / ‘May’ analysis: if
reachable from 0 then may be true

10 / 37



Merging Control-Flow Paths

if
x = null
y = y
x = (y == null)?y:x
y = 1
{ t = x

x = y
y = t }

0

0

x

x

y

y

0

0

x

x

y

y

x = null

0 x y

. . .

Behaves analogous to disjunction / ‘May’ analysis: if
reachable from 0 then may be true

10 / 37



Merging Control-Flow Paths

if
x = null
y = y
x = (y == null)?y:x
y = 1
{ t = x

x = y
y = t }

0

0

x

x

y

y

0

0

x

x

y

y

x = null

0 x y

. . .

Behaves analogous to disjunction / ‘May’ analysis: if
reachable from 0 then may be true

10 / 37



Dataflow via Graph Reachability

n = 〈b, v〉

I Assume binary latice ({>,⊥},v,u,t)
I a u b = ⊥ iff a = ⊥ and b = ⊥, otherwise a u b = >
I Typical for ‘May’ analysis (‘may be null’)

I Equivalently for ‘Must’ analysis:
‘must be null’ = not (‘may be non-null’)

I We can encode Dataflow problem as Graph-Reachability
I Graph nodes n = 〈b, v〉

I b: CFG node
I v : Variable or 0

I Variable: Property of interest connected to variable
I 0: Property of interest connected to executing this
statement/block

11 / 37



Dataflow via Graph Reachability

n = 〈b, v〉

I Assume binary latice ({>,⊥},v,u,t)
I a u b = ⊥ iff a = ⊥ and b = ⊥, otherwise a u b = >
I Typical for ‘May’ analysis (‘may be null’)
I Equivalently for ‘Must’ analysis:
‘must be null’ = not (‘may be non-null’)

I We can encode Dataflow problem as Graph-Reachability
I Graph nodes n = 〈b, v〉

I b: CFG node
I v : Variable or 0

I Variable: Property of interest connected to variable
I 0: Property of interest connected to executing this
statement/block

11 / 37



A Dataflow Worklist Algorithm: IFDS

I Context-sensitive interprocedural dataflow algorithm
I Historical name: IFDS
(Interprocedural Finite Distributive Subset problems)

I ‘Exploded Supergraph’: G ] = (N ], E ])
I N] = NCFG × V ∪ {0}
I Plus parameter/return call edges

I bs
main is the CFG ENTER node of the main entry point

I Property-of-interest holds if reachable from 〈bs
main, 0〉

I Key ideas:
I Worklist-based
I Construct Representation Relations on demand
I Construct ‘Exploded Supergraph’

I CFG of all functions × V ∪ {0}

12 / 37



IFDS Datastructures

〈b0, v0〉 → 〈b3, v0〉
〈〈b0, v0〉, 〈b3, v0〉〉Instead of we also write:

〈b0, v0〉 〈b3, v0〉
WorkList edge All WorkList edges are also PathEdge edges

PathEdge edge Result of our analysis

N]-edge

SummaryInst Generated from summary nodes
Otherwise equivalent to N]-edges

13 / 37



IFDS Strategy

I Algorithm distinguishes between three types of
nodes:
I Exit nodes (be

f )
I Call nodes (bc

x )
I Other nodes

e = f(1, 5)

(return)

bc
x

br
x

ENTER f
bs

f

EXIT f
be

f

14 / 37



On-demand processing

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

15 / 37



Running Example

ATL: main()
global default = null
proc main() {

a = get(3)
default = 1
b = get(3)
return b

}

ATL: get()
proc get(c) {

if c == 0 {
z = default

} else {
z = read()
if z < 0 {

z = get(c + -1)
} else skip

}
return z

}

16 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d

0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)

I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)

I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)

I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)

I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d

0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)

I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)

I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d

0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)

I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)

I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d

0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)

I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)

I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d

0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)

I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)

I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d

0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)

I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)

I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d

0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)

I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)

I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d

0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)

I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)

I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)

I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)

I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)

I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)

I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)

I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)

I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



d = null
b0

ENTER main
bs

main

a = get(3)
bc

1

(return)
br

1

d = 1
b2

b = get(a)
bc

3

(return)
br

3

return b
b4

EXIT main
be

main

ENTER get
bs

get

if
b5

z = d
b6

z = read()
b7

if
b8

z = get(c)
bc

9

(return)
br

9

return z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G] = 〈N],E ]〉
where N ⊆ (V ∪ {0})× NCFG

Initialisation
I WorkList =
{〈bs

main, 0〉 → 〈bs
main, 0〉}

I Analogous self-loops for
static variables with
property of interest (d)

I e ∈WorkList =⇒
e ∈ PathEdge

Step (regular edge)
I Pick e off the work queue
e = n1 → n2

I n2 neither call (c) nor exit (e)?
I Find all n2 → n3
propagate(n1 → n3)

I Remove e from WorkList
I e remains in PathEdge

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:

Step (call edge)
I Pick e = n1 → nc

2 off the work queue
I nc

2 is call (c)?
I Init called procedure:

I Find all parameter edges
t = nc

2 → 〈bs
f , v〉 ∈ E ]

I propagate(〈bs
f , v〉 → 〈bs

f , v〉)
I Propagate along intra-edges
(As with regular edges)

I Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
I Pick e = ns

1 → ne
2 off the work queue

I ne
2 is exit (e)?

(ns
1 is always start node.)

I For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

I If nc
i → nr

i /∈ SummaryInst:
I Add it to SummaryInst
I Find all n→ nc

i ∈ PathEdge and
propagate(n→ nr

1)

Worklist empty: Done
I Can now read results off of

PathEdge
I e.g. at end of main():

I a may be null
I b and d definitely non-null

17 / 37



The IFDS Algorithm: Initialisation and
Propagation)

Procedure Init():
begin

WorkList := PathEdge := ∅
propagate(〈bs

main, 0〉 → 〈bs
main, 0〉)

ForwardTabulate()
end

Procedure propagate(n1 → n2):
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

18 / 37



IFDS: Forward Tabulation
Procedure ForwardTabulate():
begin
while n0 → n1 ∈WorkList do
WorkList := WorkList \ {n0 → n1}
〈b0, v0〉 = n0; 〈b1, v1〉 = n1
if b1 is neither Call nor Exit node then
foreach n1 → n2 ∈ E ]:

propagate(n0 → n2)
else if b1 is Call node then begin
foreach call edge n1 → n2 ∈ E ]:

propagate(n2 → n2)
foreach non-call edge n1 → n2 ∈ E ] ∪ SummaryInst:

propagate(n0 → n2)
end else if b1 is Exit node then begin
foreach caller/return node pair bc

i , br
i that calls b0 and vars v0, v1 do

ns = 〈bc
i , v0〉; nr = 〈bc

i , v1〉
if {ns → n0, n0 → n1, n1 → nr} ⊆ E ] and not ns → nr ∈ SummaryInst then begin

SummaryInst := SummaryInst ∪ {ns → nr}
foreach nz → ns ∈ PathEdge:

propagate(nz , nr )
end done end done end

19 / 37



Summary: IFDS Algorithm
I Computes yes-or-no ‘May’ analysis on all variables

I Original notion of ‘variables’ is slightly broader)
I Represents facts-of-interest as nodes 〈b, v〉:

I b is node (basic block) in CFG
I v is variable that we are interested in

I Uses
I ‘Exploded Supergraph’ G]

I All CFGs in program in one graph
I Plus interprocedural call edges

I Representation relations
I Graph reachability
I A worklist

I Distinguishes between Call nodes, Exit nodes, others
I Demand-driven: only analyses what it needs
I Whole-program analysis
I Computes Max. Fixpoint on distributive frameworks

20 / 37



Beyond True and False

v− v0 v+

I What if abstract domain is not boolean?
I e.g., {>,A+,A−,A0,⊥}

I Multiple boolean properties per variable
I easy for powerset lattice P({+,−, 0})

I Limitation: Transfer functions only depend on one variable
I Some problems not representable, others must adapt lattice
Consider b1 = y = 0 - x :

transb1 =

0

0

x+

x+

x0

x0

x−

x−

y+

y+

y0

y0

y−

y−

This is how the algorithm was originally proposed

21 / 37



Beyond True and False

v− v0 v+

I What if abstract domain is not boolean?
I e.g., {>,A+,A−,A0,⊥}

I Multiple boolean properties per variable
I easy for powerset lattice P({+,−, 0})

I Limitation: Transfer functions only depend on one variable
I Some problems not representable, others must adapt lattice
Consider b1 = y = 0 - x :

transb1 =

0

0

x+

x+

x0

x0

x−

x−

y+

y+

y0

y0

y−

y−

This is how the algorithm was originally proposed
21 / 37



Beyond True and False

v− v0 v+

I What if abstract domain is not boolean?
I e.g., {>,A+,A−,A0,⊥}

I Multiple boolean properties per variable
I easy for powerset lattice P({+,−, 0})

I Limitation: Transfer functions only depend on one variable
I Some problems not representable, others must adapt lattice
Consider b1 = y = 0 - x :

transb1 =

0

0

x+

x+

x0

x0

x−

x−

y+

y+

y0

y0

y−

y−

This is how the algorithm was originally proposed
21 / 37



Beyond True and False

v− v0 v+

I What if abstract domain is not boolean?
I e.g., {>,A+,A−,A0,⊥}

I Multiple boolean properties per variable
I easy for powerset lattice P({+,−, 0})

I Limitation: Transfer functions only depend on one variable
I Some problems not representable, others must adapt lattice
Consider b1 = y = 0 - x :

transb1 =

0

0

x+

x+

x0

x0

x−

x−

y+

y+

y0

y0

y−

y−

This is how the algorithm was originally proposed
21 / 37



Extending IFDS?

I Not all analyses map well to IFDS
I Core ideas are appealing:

I Automatically compute procedure summaries
I Exploit graph reachability + worklist for dependency tracking

It is possible to extend this to other classes of problems

22 / 37



Extending IFDS?

I Not all analyses map well to IFDS
I Core ideas are appealing:

I Automatically compute procedure summaries
I Exploit graph reachability + worklist for dependency tracking

It is possible to extend this to other classes of problems

22 / 37



Linear Reaching Values

Statement inb outb
x = 42 M {[x 7→ 42]} ∪ (M \ [x 7→ _])
x = y + 1 M = {[y 7→ c], . . .} {[x 7→ c + 1]} ∪ (M \ [x 7→ _])
x = y * 7 M = {[y 7→ c], . . .} {[x 7→ c × 7]} ∪ (M \ [x 7→ _])
x = y + z M {[x 7→ ⊥]} ∪ (M \ [x 7→ _])

I The above sketches a distributive reaching values analysis

I Each annotation of form v1 7→ c1 × v2 + c2
I Tradeoff: no support for adding / multiplying / . . . (multiple
variables)

I Encode in IFDS?
In the following, we consider Linear Constant Propagation, which
is the Must analysis version of Reaching Definitions.

23 / 37



Linear Reaching Values

Statement inb outb
x = 42 M {[x 7→ 42]} ∪ (M \ [x 7→ _])
x = y + 1 M = {[y 7→ c], . . .} {[x 7→ c + 1]} ∪ (M \ [x 7→ _])
x = y * 7 M = {[y 7→ c], . . .} {[x 7→ c × 7]} ∪ (M \ [x 7→ _])
x = y + z M {[x 7→ ⊥]} ∪ (M \ [x 7→ _])

I The above sketches a distributive reaching values analysis
I Each annotation of form v1 7→ c1 × v2 + c2
I Tradeoff: no support for adding / multiplying / . . . (multiple
variables)

I Encode in IFDS?
In the following, we consider Linear Constant Propagation, which
is the Must analysis version of Reaching Definitions.

23 / 37



Labelling Graph Edges

x = 2
y = y * 7

0

0

x

x

y

y

[x 7→ 2]
[y 7→ 7× y ]

x = y + 2
y = 3 * y + 1

0

0

x

x

y

y
[x 7→ y + 2] [y 7→ 3× y + 1]

{ t = x
x = y
y = t }

0

0

x

x

y

y
[y 7→ x ] [x 7→ y ]

[x 7→ 2]

[y 7→ 21× y + 1][x 7→ 7× y + 2]

[x 7→ 21× y + 1] [y 7→ 7× y + 2]

I Extending IFDS to support information processing
I Carrying over key techniques:

I Track dependencies
I Generate procedure summaries on the fly

24 / 37



Labelling Graph Edges

x = 2
y = y * 7

0

0

x

x

y

y

[x 7→ 2]
[y 7→ 7× y ]

x = y + 2
y = 3 * y + 1

0

0

x

x

y

y
[x 7→ y + 2] [y 7→ 3× y + 1]

{ t = x
x = y
y = t }

0

0

x

x

y

y
[y 7→ x ] [x 7→ y ]

[x 7→ 2]

[y 7→ 21× y + 1][x 7→ 7× y + 2]

[x 7→ 21× y + 1] [y 7→ 7× y + 2]

I Extending IFDS to support information processing
I Carrying over key techniques:

I Track dependencies
I Generate procedure summaries on the fly

24 / 37



Labelling Graph Edges

x = 2
y = y * 7

0

0

x

x

y

y

[x 7→ 2]
[y 7→ 7× y ]

x = y + 2
y = 3 * y + 1

0

0

x

x

y

y
[x 7→ y + 2] [y 7→ 3× y + 1]

{ t = x
x = y
y = t }

0

0

x

x

y

y
[y 7→ x ] [x 7→ y ]

[x 7→ 2]

[y 7→ 21× y + 1][x 7→ 7× y + 2]

[x 7→ 21× y + 1] [y 7→ 7× y + 2]

I Extending IFDS to support information processing
I Carrying over key techniques:

I Track dependencies
I Generate procedure summaries on the fly

24 / 37



Representation

{
[x 7→ cx ,1 × x + dx ,1]
[y 7→ cy ,1 × y + dy ,1]

}
◦

{
[x 7→ cx ,2 × v1 + dx ,2]
[y 7→ cy ,2 × v2 + dy ,2]

}
={

[x 7→ (cx ,2 × cx ,1)× v1 + (dx ,2 + cx1 × dx1)]
[y 7→ (cy ,2 × cy ,1)× v1 + (dy ,2 + cy1 × dy1)]

}
I ci , di : constants
I vi : program variables

I (Maps of) linear functions are closed under composition
I Must support u to merge, map to ⊥ on mismatch{

[x 7→ cx ,1 × v1 + dx ,1]
[y 7→ cy ,1 × v3 + dy ,1]

}
u

{
[x 7→ cx ,1 × v1 + dx ,1]
[y 7→ cy ,2 × v2 + dy ,2]

}
={

[x 7→ cx ,1 × x + dx ,1]
[y 7→ ⊥]

}

25 / 37



Representation

{
[x 7→ cx ,1 × x + dx ,1]
[y 7→ cy ,1 × y + dy ,1]

}
◦

{
[x 7→ cx ,2 × v1 + dx ,2]
[y 7→ cy ,2 × v2 + dy ,2]

}
={

[x 7→ (cx ,2 × cx ,1)× v1 + (dx ,2 + cx1 × dx1)]
[y 7→ (cy ,2 × cy ,1)× v1 + (dy ,2 + cy1 × dy1)]

}
I ci , di : constants
I vi : program variables
I (Maps of) linear functions are closed under composition

I Must support u to merge, map to ⊥ on mismatch{
[x 7→ cx ,1 × v1 + dx ,1]
[y 7→ cy ,1 × v3 + dy ,1]

}
u

{
[x 7→ cx ,1 × v1 + dx ,1]
[y 7→ cy ,2 × v2 + dy ,2]

}
={

[x 7→ cx ,1 × x + dx ,1]
[y 7→ ⊥]

}

25 / 37



Representation

{
[x 7→ cx ,1 × x + dx ,1]
[y 7→ cy ,1 × y + dy ,1]

}
◦

{
[x 7→ cx ,2 × v1 + dx ,2]
[y 7→ cy ,2 × v2 + dy ,2]

}
={

[x 7→ (cx ,2 × cx ,1)× v1 + (dx ,2 + cx1 × dx1)]
[y 7→ (cy ,2 × cy ,1)× v1 + (dy ,2 + cy1 × dy1)]

}
I ci , di : constants
I vi : program variables
I (Maps of) linear functions are closed under composition
I Must support u to merge, map to ⊥ on mismatch{

[x 7→ cx ,1 × v1 + dx ,1]
[y 7→ cy ,1 × v3 + dy ,1]

}
u

{
[x 7→ cx ,1 × v1 + dx ,1]
[y 7→ cy ,2 × v2 + dy ,2]

}
={

[x 7→ cx ,1 × x + dx ,1]
[y 7→ ⊥]

}
25 / 37



Micro-Functions and Lattices

I Extend lattices to such ‘Micro-Functions’:

a b

>

⊥

x 7→ a x 7→ b

x 7→ >

x 7→ ⊥

26 / 37



Micro-Functions, Efficient
Representation

I Micro-Functions must support:
Encoding

O(1) space

Computation f (x)

O(1) time

Equality testing f = f ′

O(1) time

Composition f ◦ f ′

O(1) time

Meet f u f ′

O(1) time
I Micro-functions are

efficiently representable

if they satisfy
space / time constraints
I Required for the algorithm’s time bounds

I Other examples:
I IFDS problems
I Value bounds analysis

27 / 37



Micro-Functions, Efficient
Representation

I Micro-Functions must support:
Encoding O(1) space
Computation f (x) O(1) time
Equality testing f = f ′ O(1) time
Composition f ◦ f ′ O(1) time
Meet f u f ′ O(1) time

I Micro-functions are efficiently representable if they satisfy
space / time constraints
I Required for the algorithm’s time bounds

I Other examples:
I IFDS problems
I Value bounds analysis

27 / 37



The IDE Algorithm (1/1)
I Interprocedural Distributive Environments algorithm
I Extends IFDS to ‘labelled’ edges as described above
I Assumes distributive framework over micro-functions
I Algorithmic changes:

I First phase analogous to IFDS
I Second phase applies computed functions to read out results

I Maintain/update mapping from path edges to
micro-functions f :

PathEdge = {〈b0, v0〉
f0−→ 〈b1, v1〉, . . .}

I ‘Missing edges’ equivalent to x 7→ >
I Initialise:

PathEdge = {〈b0, v0〉
v1 7→>−→ 〈b1, v1〉, . . .}

I Always exactly one f per {〈b0, v0〉
f→ 〈b1, v1〉} ∈ PathEdge

28 / 37



The IDE Algorithm (2/2)
Procedure propagate(n1 → n2): -- IFDS version
begin
if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

⇓

Procedure propagateIDE(n1
f→ n2): -- IDE version

begin
let n1

f ′

→ n2 ∈ PathEdge
fupd := f u f ′

if fupd = f ′ then
return

PathEdge := (PathEdge \ {n1
f ′

→ n2}) ∪ {n1
fupd→ n2}

WorkList := WorkList ∪ {n1 → n2}
end

29 / 37



Summary

I IDE strictly generalises IFDS
I Utilises Micro-Functions to ensure efficient summaries:

I Intra-procedural summaries via PathEdge
I Inter-procedural procedure summaries via SummaryInst

I Runtime is O(LED3) if micro-functions are efficiently
representable
I L: Lattice height

I IFDS: 1
I IDE: length of longest descending chain

I E : Number of control-flow edges
I D: Number of variables

I IFDS supported by Soot, Phasar, WALA
I IDE supported by Soot, Phasar

30 / 37



Path Sensitivity

>

⊥

nullnon-nullv = null
b0 v = new()

b1

if v == null
b2

v = new()
b3 print v

b4

v.f = 1
b5

true false

non-nullnull

⊥

⊥

⊥⊥

⊥non-null

⊥

Path-insensitive

non-nullnull

⊥

nullnon-null

non-nullnon-null

non-null

Path-sensitive

31 / 37



Path Sensitivity

>

⊥

nullnon-nullv = null
b0 v = new()

b1

if v == null
b2

v = new()
b3 print v

b4

v.f = 1
b5

true false

non-nullnull

⊥

⊥

⊥⊥

⊥non-null

⊥

Path-insensitive

non-nullnull

⊥

nullnon-null

non-nullnon-null

non-null

Path-sensitive

31 / 37



Path Sensitivity

>

⊥

nullnon-nullv = null
b0 v = new()

b1

if v == null
b2

v = new()
b3 print v

b4

v.f = 1
b5

true false

non-nullnull

⊥

⊥

⊥⊥

⊥non-null

⊥

Path-insensitive

non-nullnull

⊥

nullnon-null

non-nullnon-null

non-null

Path-sensitive

31 / 37



Multiple Conditionals
if x == null

b0

y = new()
b1

y = null
b2

if x == null
b3

y.f = 1
b4

x.f = 1
b5

true false

x 7→ non-null
y 7→ null

x 7→ null
y 7→ non-null

true false

Should we carry path information across merge points?

32 / 37



Multiple Conditionals
if x == null

b0

y = new()
b1

y = null
b2

if x == null
b3

y.f = 1
b4

x.f = 1
b5

true false

x 7→ non-null
y 7→ null

x 7→ null
y 7→ non-null

true false

Should we carry path information across merge points?
32 / 37



Paths

proc f(a, b, c)

ENTER
b0

if a > 0
b1

2 paths

if b > 0
b2

4 paths
if c > 0

b3

8 paths

EXIT
bX

Number of paths grows exponentially

33 / 37



Paths

proc f(a, b, c)

ENTER
b0

if a > 0
b1

2 paths
if b > 0

b2

4 paths

if c > 0
b3

8 paths

EXIT
bX

Number of paths grows exponentially

33 / 37



Paths

proc f(a, b, c)

ENTER
b0

if a > 0
b1

2 paths
if b > 0

b2

4 paths
if c > 0

b3

8 paths
EXIT

bX

Number of paths grows exponentially

33 / 37



Summary

I Path-sensitive analysis considers conditionals:
I May propagate different information along different paths

I Only for forward analyses
I Number of paths O(# of conditionals)

I Avoid exponential blow-up by merging (as before)
I Path-sensitive procedure summaries might require exponential
number of cases

I Exponential analyses/representations usually not practical

34 / 37



Homework 2

I IFDS analysis in Soot
I Flow Analysis on paper

35 / 37



Review

I Procedure Summaries
I IFDS algorithm
I IDE algorithm
I Path Sensitivity

36 / 37



To be continued. . .

Next week:
I Heap Analysis

37 / 37


