EDA045F: Program Analysis
LECTURE 3: DATAFLOW ANALYSIS 2

Christoph Reichenbach

In the last lecture. . .

- Eliminating Nested Expressions (Three-Address Code)
- Control-Flow Graphs
- Static Single Assignment Form
- Basic Dataflow Analysis
- trans $_{b}(x)$
- $\operatorname{merge}_{b}(x, y)$
- Reaching Definitions Analysis
- Live Variables Analysis

Dataflow Analysis

Analyse properties of variables or basic blocks

Examples in practice:

- Live Variables

Is this variable ever read?

- Reaching Definitions

What are the possible values for this variable?

- Available Expressions

What variable definitely has which expression?

Analyses on Powersets (1/2)

- Common: 'Which elements of S are possible / necessary?'
- $S \subseteq \mathbb{Z}$ (Reaching Definitions)
- $S=$ Numeric Constants in code $\cup\{0,1\}$
- $S=$ Variables (Live Variables)
- $S=$ Program Locations (alt. Reaching Definitions)
- $S=$ Types
- Abstract Domain: Powerset $\mathcal{P}(S)$
- Finite iff S is finite

Analyses on Powersets (2/2)

- merge $_{b}$ can be \cup or \cap
- U:
- Property that is true over any path
- May-analysis (e.g., Reaching Definitions)
- \cap :
- Property that is true over all paths
- Must-analysis

Gen-Sets and Kill-Sets

- Many transfer functions trans_{b} have the following form:
- Remove set of options kill ${ }_{x, b}$ from each variable x
- Add set of options gen $_{x, b}$ to each variable x
- Don't depend on other variables
$\operatorname{trans}_{b}(\{x \mapsto A, \ldots\})=\left\{x \mapsto\left(A \backslash\right.\right.$ kill $\left._{x, b}\right) \cup$ gen $\left._{x, b}, \ldots\right\}$
- Highly efficient implementation with bit-vectors possible
- Examples:
- Reaching Definitions on finite domain
- gen: assignments in current basic block
- kill: everything else if variable is assigned
- Live Variables
- gen: used variables
- kill: overwritten variables

Gen/Kill: Available Expressions

"Which expressions do we currently have evaluated and stored?"

```
C
```

```
int x = 3 + z;
```

int x = 3 + z;
int y = 2 + z;
int y = 2 + z;
if (z > 0) {
if (z > 0) {
x = 4;
x = 4;
}
}
f(2 + z); // Can re-use y here!

```
f(2 + z); // Can re-use y here!
```

- Forward analysis
- gen: any expression assigned to the variable
- kill: any other expression
- merge $_{b}=\cap$

Gen/Kill: Very Busy Expressions

"Which expression do we definitely need to evaluate at least once?"

```
C
    // (x / 42) is very busy: (A),(B)
    if (z > 0) {
        x = 4 + x / 42; // (A)
        y = 1;
} else {
        x = x / 42; // (B)
}
g(x);
```

- Backwards analysis
- gen: any expression assigned to the variable
- kill: any other expression
- merge $_{b}=\cap$

Summary

- Common: Abstract Domain is powerset of some set S
- Transfer function transb:

$$
\operatorname{trans}_{b}(\{x \mapsto A, \ldots\})=\left\{x \mapsto\left(A \backslash \text { kill }_{x, b}\right) \cup \operatorname{gen}_{x, b}, \ldots\right\}
$$

- kill: 'Kill set': Entries of S to remove
- gen: 'Gen set': Entries of S to add
- merge $_{b}$ is \cup or \cap
- Often admits very efficient implementation

May

Forward Reaching Definitions Backward Live Variables

Must

Available Expressions
Very Busy Expressions

Lattices: Models for Information

- Program analyses model information
- Undecidability \Longrightarrow must approximate
- Conservative: over-approximate (contradictory information)
- Optimistic: under-approximate (incomplete information)
- Commonly used formal model: lattices

Partial Ordering

Lattices L are based on a partially ordered set $\langle\mathcal{L}, \sqsubseteq\rangle$:

- Set: \mathcal{L} describes possible information
- $(\sqsubseteq) \subseteq \mathcal{L} \times \mathcal{L}$:
- Intuition for $a \sqsubseteq b$ (for program analysis):
- a has at least as much information as b
- (\sqsubseteq) is a partial order.

$$
\begin{array}{ll}
a \sqsubseteq a & \\
\text { Reflexivity } \\
a \sqsubseteq b \text { and } b \sqsubseteq a \Longrightarrow a=b \quad \text { Antisymmetry } \\
a \sqsubseteq b \text { and } b \sqsubseteq c \Longrightarrow a \sqsubseteq c \quad \text { Transitivity }
\end{array}
$$

- Example:
- $\mathcal{L}=\{$ unknown, true, false, true-or-false $\}$
- true-or-false \sqsubseteq true \sqsubseteq unknown
- true-or-false \sqsubseteq false \sqsubseteq unknown

Greatest Lower bound

Combining potentially contradictory information:

- Meet operator: $(\square): \mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$
- $a \sqcap b \sqsubseteq a$ and $a \sqcap b \sqsubseteq b$
- Greatest element with this property:

$$
\text { for all } d: d \sqsubseteq a \text { and } d \sqsubseteq b \Longrightarrow d \sqsubseteq a \sqcap b
$$

Least Upper Bound

Converse operation:

- Join operator. (\sqcup) : $\mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$
- $a \sqsubseteq a \sqcup b$ and $b \sqsubseteq a \sqcup b$
- Least element with this property:

$$
\text { for all } d: a \sqsubseteq d \text { and } a \sqsubseteq d \Longrightarrow d \sqsupseteq a \sqcup b
$$

\sqcup computes Least Upper Bound (Supremum)

Lattices

$$
L=\langle\mathcal{L}, \sqsubseteq, \sqcap, \sqcup\rangle
$$

- \mathcal{L} : Underlying set
-($\sqsubseteq) \subseteq \mathcal{L} \times \mathcal{L}$: Partial Order
-($\square): \mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$: Meet (computes g.l.b.)
$\Rightarrow(\sqcup): \mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$: Join (computes I.u.b.)
- Join/Meet always exist and are unique
- It can be shown that (\sqcup), (\sqcap) are:

Commutative: $a \sqcap b=b \sqcap a$
Associative: $a \sqcap(b \sqcap c)=(a \sqcap b) \sqcap c$
(Analogous for \sqcup)

Complete Lattices

A lattice $L=\langle\mathcal{L}, \sqsubseteq, \sqcap, \sqcup\rangle$ is complete iff:

- For any $\mathcal{L}^{\prime} \subseteq \mathcal{L}$ there exist:
- $\bigsqcup \mathcal{L}^{\prime}$ (least upper bound for arbitrary set)
- $\rceil \mathcal{L}^{\prime}$ (greatest lower bound for arbitrary set)
- We define $T \sqsupseteq a$ for all $a \in \mathcal{L}$ as:

$$
\top=\bigsqcup \mathcal{L}
$$

- We define $\perp \sqsubseteq a$ for all $a \in \mathcal{L}$ as:

$$
\perp=\bigcap \mathcal{L}
$$

Complete Lattices: Visually

Example: Binary Lattice

true	- \top = true
	- $\perp=$ false
	$\bullet \sqcup=$ logical "or"
Ise	- $\square=$ logical "and"

Example: Booleans

- $\top=$ true-and-false
- $\perp=$ true-or-false
- $a \sqcup b$: must be both a and b
- $a \sqcap b$: could be either a or b
- If $\mathbb{B}=\{$ true, false $\}$:
- Lattice sometimes called $\mathbb{B}_{\perp}^{\top}$

Other interpretations possible

Example: Flat Lattice on Integers

- Sometimes written $\mathbb{Z}_{\perp}^{\top}$
- $\top=\emptyset$
- $\perp=\mathbb{Z}$
- $a \sqcup b=\left\{\begin{array}{lll}a & \text { iff } & a=b \\ \top & \text { otherwise }\end{array}\right.$
- $a \sqcap b=\left\{\begin{array}{lll}a & \text { iff } & a=b \\ \perp & & \text { otherwise }\end{array}\right.$

Analogous for other X_{\perp}^{\top} from set X

Example: Type Hierarchy Lattices

- Type systems with subtyping form (non-powerset) lattice
- Must add \perp element
- Some langugaes $(\mathrm{C}++$) need extra T element
- For extra precision, we may add nodes for e.g. java.lang.Comparable \sqcap java.lang.Serializable

Example: Powersets

Example: Lattices and Non-Lattices

Lattice

Not A Lattice

Right-hand side is missing e.g. a unique $R \sqcup S$

Example: Natural numbers with $0, \omega$

```
O-~~~N~\omega-------. &
```

- $\top=\omega$
- $\perp=0$
- $a \sqcup b=$ maximum of a and b
- $a \sqcap b=$ minimum of a and b

Dual Lattices

Let $L=\langle\mathcal{L}, \sqsubseteq, \sqcap, \sqcup\rangle$ be a lattice. Then:

- $\bar{L}=\langle\mathcal{L}, \sqsupseteq, \sqcup, \sqcap\rangle$ is also a lattice
- \bar{L} is dual lattice to L
- If L is complete, with \top_{L}, \perp_{L} being top, bottom:
- \bar{L} is also complete, and:
- $\top_{\bar{L}}=\perp_{L}$
${ }^{-} \perp_{\bar{L}}=\top_{L}$

Lattices can be 'flipped around' without losing their properties

Product Lattices

- Program analysis: Each variable needs its own lattice
- Can we combine these lattices to analyse variables simultaneously?
- Assume (complete) lattices:

$$
\begin{aligned}
& -L_{1}=\left\langle\mathcal{L}_{1}, \sqsubseteq_{1}, \sqcap_{1}, \sqcup_{1}, \top_{1}, \perp_{1}\right\rangle \\
& \text { - } L_{2}=\left\langle\mathcal{L}_{2}, \sqsubseteq_{2}, \Pi_{2}, \sqcup_{2}, \top_{2}, \perp_{2}\right\rangle \\
& \text { Let } L_{1} \times L_{2}=\left\langle\mathcal{L}_{1} \times \mathcal{L}_{2}, \sqsubseteq, \sqcap, \sqcup, \top, \perp\right\rangle \text { where: } \\
& \text { - }\langle a, b\rangle \sqsubseteq\left\langle a^{\prime}, b^{\prime}\right\rangle \text { iff } a \sqsubseteq_{1} a^{\prime} \text { and } b \sqsubseteq_{2} b^{\prime} \\
& -\langle a, b\rangle \sqcap\left\langle a^{\prime}, b^{\prime}\right\rangle=\left\langle a \sqcap_{1} a^{\prime}, b \sqcap_{2} b^{\prime}\right\rangle \\
& -\langle a, b\rangle \sqcup\left\langle a^{\prime}, b^{\prime}\right\rangle=\left\langle a \sqcup_{1} a^{\prime}, b \sqcup_{2} b^{\prime}\right\rangle \\
& -T=\left\langle T_{1}, \top_{2}\right\rangle \\
& -\perp=\left\langle\perp_{1}, \perp_{2}\right\rangle
\end{aligned}
$$

Point-wise products of (complete) lattices are again (complete) lattices

Product Lattices over Binary Lattices

- Recall binary lattices:
- $\top=$ true
- $\perp=$ false
$\stackrel{\text { true }}{\text { true }}{ }^{\text {true }} \times|\times \cdots \times|$
- $\sqcup=$ logical"or"
- $\square=$ logical "and"
- Computer hardware can compute \sqcup, \sqcap of multiple lattices in parallel:
- Bitwise or/and
\Longrightarrow Highly efficient
- Can represent other lattices efficiently, too

Give rise to highly efficient Gen-/Kill-Set based program analysis

Omitted Formal Details

What we didn't cover:

- Partially Ordered Sets (Posets)
- Semi-lattices (lacking meet or join)
- Lattice absorption laws
- Many interesting lattice properties

Not a full introduction to lattice theory

Word of Caution

- Definition in the book flips lattices
- \top and \perp mean the opposite
- We use the more common definition from the research literature
- Definition is isomorphic, but can be confusing...

Summary

- Complete lattices are formal basis for many program analyses
- Complete lattice $L=\langle\mathcal{L}, \sqsubseteq, \sqcap, \sqcup, \top, \perp\rangle$
- \mathcal{L} : Carrier set
- (Б): Partial order
$\rightarrow(\sqcap)$: Meet operation: find greatest lower bound (Analysis: merge $_{b}$)
- (\sqcup): Join operation: find least upper bound (Analysis: uncommon, but can improve precision of two conservative results)
- T: Top-most element of complete lattice (Analysis: 'I don't know')
- \perp : Bottom-most element of complete lattice (Analysis: 'I know that I can't know')
- Lattices can be flipped
- Lattices can be combined into product lattices

Monotone Frameworks

T
A
-

Putting It All Together

- Monotone Frameworks ensure termination of Data Flow Analysis
- Information from complete Lattice L :
- T: 'No information (yet)'
- \perp : 'Too much information / could be anything'
- Must satisfy Descending Chain Condition: no infinite progress
- Ensure that no analysis step loses knowledge:
- Each basic block has transfer function trans $_{b}$
- Output knowledge out $_{b}$ from input knowledge in $_{b}$
- Monotonic: increasing input knowledge does not decrease output knowledge
- Merging multiple inputs with merge ${ }_{b}=\square$ is lattice meet (greatest lower bound)

Fixpoints

- Algorithm sketch from last week:
- Repeat trans $_{b}$ and merge $_{b}$ until value no longer moves
- Fixpoint
- Multiple possible solutions, ordered by \sqsubseteq
- Maximal Fixpoint \Rightarrow Highest Precision

Value Range Analysis

'Find value range (interval of possible values) for x '

```
Python
    \(\mathrm{x}=1\)
    while
    if ....:
        \(\mathrm{x}=4\)
        else:
        \(\mathrm{x}=7\)
```

- Multiple possible sound solutions:
- $[1,7]$
- $[1,10]$
- [-99, 99]
- \perp
- All of these values are fixpoints
- $[1,7]$ is maximum fispoint

An Algorithm for MFP

- Last week: sketched naive algorithm for computing fixpoint
- Produces maximum fixpoint (MFP)
- Optimise processing with worklist
- Set-like datastructure:
- add element (if not already present)
- contains check: is element present?
- pop element: remove and return one element
- Tracks what's left to be done

The MFP Algorithm

```
Procedure MFP(丁, merge_, \sqsubseteq, CFG, trans_, is-backward):
begin
    if is-backward then reverse edges(CFG);
    worklist := edges(CFG); -- edges that we need to look at
    foreach n\in nodes(CFG) do
    analysis[n] = T; -- state of the analysis
    done
    while not empty(worklist) do
    \langlen, n'\rangle := pop(worklist);
    if analysis[n'] \sqsupseteq trans, (analysis[n]) then begin
        analysis[n'] := merge (analysis[n'], transm(analysis[n]))
        foreach n'' }\in\mathrm{ successor-nodes(CFG, n') do
        push(worklist, \langlen', n',\rangle);
        done
    end
    done
    return analysis;
end
```


Summary: MFP Algorithm

- Compute data flow analysis:
- Initialise all nodes with \top
- Repeat until nothing changes any more:
- Apply transfer function
- Propagate changes along control flow graph
- Apply \square
- Compute maximal fixpoint
- Use worklist to increase efficiency
- Distinction: Forward/Backward analyses

Another Dataflow Example

Consider again Reaching Definitions:

Lattice:
$\cdots \quad-1$
0
\perp

- \perp : Unknown
- T: Too much/contradictory information
- Integer: exactly that one assignment is possible

Optimal Dataflow Results

$$
\begin{array}{lll}
\\
y \\
z & = \\
z
\end{array}
$$

Imprecise! Can we do better?

Execution paths

- Idea: Let's consider all paths through the program:

$$
\begin{aligned}
\text { path }_{b_{0}} & =\{[]\} \\
\text { path }_{b_{1}} & =\left\{\left[b_{0}\right]\right\} \\
\text { path }_{b_{2}} & =\left\{\left[b_{0}\right]\right\} \\
\text { path }_{b_{3}} & =\left\{\left[b_{0}, b_{1}\right],\left[b_{0}, b_{2}\right]\right\}
\end{aligned}
$$

The MOP algorithm for Dataflow Analysis

- Compute the MOP ('meet-over-all-paths') solution:
- Iterate over all paths $\left[p_{0}, \ldots, p_{k}\right]$ in path $_{b_{i}}$
- Compute precise result for that path
- Merge (\square) with all other precise results

$$
\text { out }_{b_{i}}=\prod_{\left[p_{0}, \ldots, p_{k}\right] \in \text { path }_{b_{i}}} \operatorname{trans}_{b_{i}} \circ \operatorname{trans}_{p_{k}} \circ \cdots \circ \operatorname{trans}_{p_{0}}(\top)
$$

Notation: (function composition)

$$
(f \circ g)(x)=f(g(x))
$$

MOP vs MFP: Example

Transfer functions

$$
\begin{aligned}
\operatorname{trans}_{b_{0}} & =i d \\
\operatorname{trans}_{b_{1}} & =[x \mapsto 3][y \mapsto 1] \\
\operatorname{trans}_{b_{2}} & =[x \mapsto 1][y \mapsto 3] \\
\operatorname{trans}_{b_{3}} & =[z \mapsto x+y]
\end{aligned}
$$

Paths

$$
\begin{aligned}
\text { path }_{b_{0}} & =\{[]\} \\
\text { path }_{b_{1}} & =\left\{\left[b_{0}\right]\right\} \\
\text { path }_{b_{2}} & =\left\{\left[b_{0}\right]\right\} \\
\text { path }_{b_{3}} & =\left\{\left[b_{0}, b_{1}\right],\left[b_{0}, b_{2}\right]\right\}
\end{aligned}
$$

$$
\text { out }_{b_{3}}=([z \mapsto x+y][x \mapsto 3][y \mapsto 1](\top)) \sqcap([z \mapsto x+y][x \mapsto 1][y \mapsto 3](\top))
$$

$$
=\{z \mapsto 3+1, x \mapsto 3, y \mapsto 1\} \sqcap\{z \mapsto 1+3, x \mapsto 1, y \mapsto 3\}
$$

$$
=\{z \mapsto 4, x \mapsto \perp, y \mapsto \perp\}
$$

MOP vs MFP

	MOP	MFP
Soundness	sound	sound
Precision	maximal	sometimes lower
Decidability	undecidable	decidable

- MOP: Meet Over all Paths
- MFP: Maximal Fixed Point

Summary

- path ${ }_{b}$: Set of all paths from program start to b
- MOP: alternative to MFP (theoretically)
- Termination not guaranteed
- May be more precise
- Idea:
- Enumerate all paths to basic block
- Compute transfer functions over paths individually
- Meet

MFP revisited

Consider Reaching Definitions again, with different lattice:

- All subsets of $\left\{\ell_{0}, \ldots, \ell_{4}\right\}$
- Finite height
- $\sqcap=\cup$

MFP revisited: Transfer Functions

$$
\begin{aligned}
& \text { trans }_{b_{0}}=\left[x \mapsto\left\{\ell_{0}\right\},\right. \\
& y \mapsto\left\{\ell_{1}\right\}, \\
& \left.z \mapsto\left\{\ell_{2}\right\}\right] \\
& \operatorname{trans}_{b_{1}}=\left[x \mapsto\left\{\ell_{3}\right\}\right] \\
& \text { trans }_{b_{2}}=\left[y \mapsto\left\{\ell_{4}\right\}\right] \\
& \text { trans }_{b_{3}}=[z \mapsto y]
\end{aligned}
$$

MOP vs MFP revisited

Solutions for b_{4} :

MOP solution

MFP solution

$$
\begin{aligned}
x & \mapsto\left\{\ell_{0}, \ell_{3}\right\} \\
y & \mapsto\left\{\ell_{1}, \ell_{4}\right\} \\
z & \mapsto\left\{\ell_{1}, \ell_{2}, \ell_{4}\right\}
\end{aligned}
$$

$$
\begin{aligned}
x & \mapsto\left\{\ell_{0}, \ell_{3}\right\} \\
y & \mapsto\left\{\ell_{1}, \ell_{4}\right\} \\
z & \mapsto\left\{\ell_{1}, \ell_{2}, \ell_{4}\right\}
\end{aligned}
$$

- Repeat with other programs:
- MOP solution always the same as MFP solution
- Not true for other lattices/transfer functions...

Distributive Frameworks

A Monotone Framework is:

- Lattice $L=\langle\mathcal{L}, \sqsubseteq, \sqcap, \sqcup\rangle$
- L has finite height (Descending Chain Condition)
- All trans ${ }_{b}$ are monotonic
- Guarantees that MFP conservatively approximates MOP

A Distributive Framework is:

- A Monotone Framework, where additionally:
- trans $_{b}$ distributes over \sqcap :

$$
\operatorname{trans}_{b}(x \sqcap y)=\operatorname{trans}_{b}(x) \sqcap \operatorname{trans}_{b}(y)
$$

for all programs and all x, y, b

- Guarantees that MFP is equal to MOP

Distributive Problems

- Monotonic:

$$
\operatorname{trans}_{b}(x \sqcap y) \sqsubseteq \operatorname{trans}_{b}(x) \sqcap \operatorname{trans}_{b}(y)
$$

- Distributive:

$$
\operatorname{trans}_{b}(x \sqcap y)=\operatorname{trans}_{b}(x) \sqcap \operatorname{trans}_{b}(y)
$$

- Many analyses can fit distributive framework
- Known counter-example: transfer functions on $\mathbb{Z}_{\perp}^{\top}$:
- $[z \mapsto x+y]$
- Generally: transfer function that depends on two independent inputs and may produce same output for different inputs

A Hack to Improve Precision ${ }^{1}(1 / 2)$

- Recall: Imprecision comes about because

$$
\begin{array}{r}
\operatorname{trans}_{b_{3}}\left(\text { out }_{\left.b_{1} \sqcap \text { out }_{b_{2}}\right)}=\right. \\
\operatorname{trans}_{b_{3}}(\{x \mapsto 3, y \mapsto 1, \ldots\} \sqcap\{x \mapsto 1, y \mapsto 3, \ldots\})
\end{array}=
$$

- Idea: Transfer first, then meet:

$$
\begin{array}{r}
\operatorname{trans}_{b_{3}}(\{x \mapsto 3, y \mapsto 1, \ldots\}) \sqcap \operatorname{trans}_{b_{3}}(\{x \mapsto 1, y \mapsto 3, \ldots\})= \\
\{z \mapsto 4, \ldots\} \sqcap\{z \mapsto 4, \ldots\}
\end{array}
$$

A Hack to Improve Precision $(2 / 2)$

$$
\begin{aligned}
& \mathbf{i n}_{b_{4}}=\operatorname{out}_{b_{3}}= \\
&{\operatorname{trans} b_{3}}(\{x \mapsto 3, y \mapsto 1, \ldots\}) \sqcap \operatorname{trans}_{b_{3}}(\{x \mapsto 1, y \mapsto 3, \ldots\})= \\
&\{x \mapsto 3, y \mapsto 1, \ldots\} \sqcap\{x \mapsto 1, y \mapsto 3, \ldots\}= \\
&\{x \mapsto T, y \mapsto T, \ldots\}
\end{aligned}
$$

Only works if data is used right at point of the merge

Summary

- Distributive Frameworks are Monotone Frameworks with additional property:

$$
\operatorname{trans}_{b}(x \sqcap y)=\operatorname{trans}_{b}(x) \sqcap \operatorname{trans}_{b}(y)
$$

for all programs and all x, y, b

- In Distributive Frameworks, MOP and MFP produce same answer
- Gen/Kill-set based analyses are always distributive

Subroutine calls

Limitations of Intra-Procedural Analysis

ATL
 $a=7$
 $d=f(a, 2)$
 $\mathrm{e}=\mathrm{a}+\mathrm{d}$

```
ATL
proc f(x, y) {
    z = 0
    if x > y {
        z = x
    } else {
        z = y
    }
    return z
}
```

How can we compute Reachable Definitions here?

A Naive Inter-Procedural Analysis

- out ${ }_{b_{7}}: e \mapsto\{9,14\}$

Inter-Procedural Data Flow Analysis

subroutine start

- Split call sites b_{x} into call $\left(b_{x}^{c}\right)$ and return $\left(b_{x}^{r}\right)$ nodes
- Intra-procedural edge $b_{x}^{c} \longrightarrow b_{x}^{r}$ carries environment/store
- Inter-procedural edge (\Rightarrow) :
- Caller \Rightarrow subroutine, substitutes parameters (for pass-by-value)
- Caller \Longleftarrow return, substitutes result (for pass-by-result)
- Otherwise as intra-procedural data flow edge

A Naive Inter-Procedural Analysis

Context Sensitivity: Valid Paths

- $\left[b_{5}, b_{6}^{c}, b_{0}, b_{1}, b_{3}, b_{4}, b_{6}^{r}\right]$

Context-sensitive analyses consider only valid paths

Summary

- Intraprocedural Data Flow Analysis is highly imprecise with subroutine calls
- Interprocedural Data Flow Analysis is more precise:
- Split call site into call site + return site
- Add flow edges between call sites, subroutine entry
- Add flow edges between subroutine return, return site
- Carry environment from call site to return site
- Interprocedural analysis must typically consider the entire program
\Rightarrow whole-program analysis
- Naive interprocedural analysis is context-insensitive
- Merge all callers into one

Interprocedural Data Flow Analysis

Context-insensitive: analysis merges all callers to $f()$

Inlining

Clone subroutine IRs for each calling context

Summary

- Context-sensitive analysis distinguishes 'calling context' when analysing subroutine
- 'Who called me'?
- Can go deeper: 'And who called them?'
- Inlining is one strategy for context-sensitive analysis
- Copy subroutine bodies for each caller
- Advantages:
- Simple
- Improves precision
- Disadvantages:
- Difficult with recursion
- Slows down analysis

Review

- Gen/Kill analyses
- Lattices
- Monotone Frameworks
- MFP algorithm
- MOP algorithm
- Distributive Frameworks
- Interprocedural Analysis
- Inlining for analysis

To be continued. . .

Next week:

- More on IFDS and its refinements
- Callgraph Analysis

