
EDA045F: Program Analysis
LECTURE 3: DATAFLOW ANALYSIS 2

Christoph Reichenbach

In the last lecture. . .

I Eliminating Nested Expressions (Three-Address Code)
I Control-Flow Graphs
I Static Single Assignment Form
I Basic Dataflow Analysis

I transb(x)
I mergeb(x , y)

I Reaching Definitions Analysis
I Live Variables Analysis

2 / 64

Dataflow Analysis

Analyse properties of variables or basic blocks

Examples in practice:
I Live Variables
Is this variable ever read?

I Reaching Definitions
What are the possible values for this variable?

I Available Expressions
What variable definitely has which expression?

3 / 64

Analyses on Powersets (1/2)
∅ = >

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3} = ⊥

mergeb = ∪

I Common: ‘Which elements of S are possible / necessary?’
I S ⊆ Z (Reaching Definitions)

I S = Numeric Constants in code ∪ {0, 1}
I S = Variables (Live Variables)
I S = Program Locations (alt. Reaching Definitions)
I S = Types

I Abstract Domain: Powerset P(S)
I Finite iff S is finite

4 / 64

Analyses on Powersets (2/2)
∅ = >

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3} = ⊥

mergeb = ∪

∅ = ⊥

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3} = >

mergeb = ∩
I mergeb can be ∪ or ∩
I ∪:

I Property that is true over any path
I May-analysis (e.g., Reaching Definitions)

I ∩:
I Property that is true over all paths
I Must-analysis

5 / 64

Gen-Sets and Kill-Sets

I Many transfer functions transb have the following form:
I Remove set of options killx ,b from each variable x
I Add set of options genx ,b to each variable x
I Don’t depend on other variables

transb({x 7→ A, . . .}) = {x 7→ (A \ killx ,b) ∪ genx ,b, . . .}
I Highly efficient implementation with bit-vectors possible
I Examples:

I Reaching Definitions on finite domain
I gen: assignments in current basic block
I kill : everything else if variable is assigned

I Live Variables
I gen: used variables
I kill : overwritten variables

6 / 64

Gen/Kill: Available Expressions

“Which expressions do we currently have evaluated and stored?”

C
int x = 3 + z;
int y = 2 + z;
if (z > 0) {

x = 4;
}
f(2 + z); // Can re-use y here!

I Forward analysis
I gen: any expression assigned to the variable
I kill: any other expression
I mergeb = ∩

7 / 64

Gen/Kill: Very Busy Expressions

“Which expression do we definitely need to evaluate at least once?”

C
// (x / 42) is very busy: (A),(B)
if (z > 0) {

x = 4 + x / 42; // (A)
y = 1;

} else {
x = x / 42; // (B)

}
g(x);

I Backwards analysis
I gen: any expression assigned to the variable
I kill: any other expression
I mergeb = ∩

8 / 64

Summary

I Common: Abstract Domain is powerset of some set S
I Transfer function transb:

transb({x 7→ A, . . .}) = {x 7→ (A \ killx ,b) ∪ genx ,b, . . .}

I kill : ‘Kill set’: Entries of S to remove
I gen: ‘Gen set’: Entries of S to add
I mergeb is ∪ or ∩
I Often admits very efficient implementation

May Must
Forward Reaching Definitions Available Expressions
Backward Live Variables Very Busy Expressions

9 / 64

Lattices: Models for Information

I Program analyses model information
I Undecidability =⇒ must approximate

I Conservative: over-approximate (contradictory information)
I Optimistic: under-approximate (incomplete information)

I Commonly used formal model: lattices

10 / 64

Partial Ordering
Lattices L are based on a partially ordered set 〈L,v〉:
I Set: L describes possible information
I (v) ⊆ L× L:
I Intuition for a v b (for program analysis):

I a has at least as much information as b
I (v) is a partial order:

a v a Reflexivity
a v b and b v a =⇒ a = b Antisymmetry
a v b and b v c =⇒ a v c Transitivity

I Example:
I L = {unknown, true, false, true-or-false}
I true-or-false v true v unknown
I true-or-false v false v unknown

12 / 64

Greatest Lower bound

c

a b

d

v v

v

Combining potentially contradictory information:
I Meet operator: (u) : L × L → L
I a u b v a and a u b v b
I Greatest element with this property:

for all d : d v a and d v b =⇒ d v a u b

u computes Greatest Lower Bound (Infimum)
13 / 64

Least Upper Bound

cc

a b

d

v v

v

Converse operation:
I Join operator: (t) : L × L → L
I a v a t b and b v a t b
I Least element with this property:

for all d : a v d and a v d =⇒ d w a t b

t computes Least Upper Bound (Supremum)
14 / 64

Lattices

L = 〈L,v,u,t〉

I L: Underlying set
I (v) ⊆ L× L: Partial Order
I (u) : L × L → L: Meet (computes g.l.b.)
I (t) : L × L → L: Join (computes l.u.b.)
I Join/Meet always exist and are unique
I It can be shown that (t), (u) are:

Commutative: a u b = b u a
Associative: a u (b u c) = (a u b) u c

(Analogous for t)

15 / 64

Complete Lattices

A lattice L = 〈L,v,u,t〉 is complete iff:
I For any L′ ⊆ L there exist:

I
⊔
L′ (least upper bound for arbitrary set)

I
d
L′ (greatest lower bound for arbitrary set)

I We define > w a for all a ∈ L as:

> =
⊔
L

I We define ⊥ v a for all a ∈ L as:

⊥ =
l
L

16 / 64

Complete Lattices: Visually

>

a b

c

d

n

⊥

a t b =

a t n =

a u b =

a u n =

17 / 64

Example: Binary Lattice

true

false

I> = true
I⊥ = false
I t = logical “or”
I u = logical “and”

18 / 64

Example: Booleans

true false

>

⊥

I> = true-and-false
I⊥ = true-or-false
I a t b: must be both a and b
I a u b: could be either a or b
I If B = {true, false}:

I Lattice sometimes called B>
⊥

Other interpretations possible

19 / 64

Example: Flat Lattice on Integers

-2 -1 0 1 2

>

⊥

I Sometimes written Z>
⊥

I> = ∅
I⊥ = Z
I a t b =

{
a iff a = b
> otherwise

I a u b =
{

a iff a = b
⊥ otherwise

Analogous for other X>
⊥ from set X

20 / 64

Example: Type Hierarchy Lattices

java.lang.Object= >

Number Comparable

OutputStream StringInteger Byte

⊥

I Type systems with subtyping form (non-powerset) lattice
I Must add ⊥ element
I Some langugaes (C++) need extra > element
I For extra precision, we may add nodes for e.g.

java.lang.Comparable u java.lang.Serializable 21 / 64

Example: Powersets

⊥

{a, b} {a, c} {b, c}

{a} {b} {c}

>
I Take any set S = {a, b, c}
I L = P(S)
I> = ∅
I⊥ = S
I (t) = (∩)
I (u) = (∪)

22 / 64

Example: Lattices and Non-Lattices

1

0

{a,b,c}

{a,b} {b,c}

{a} {b} {c}

∅

PQ

P Q

R S

Z
Lattice Lattice Not A Lattice

Right-hand side is missing e.g. a unique R t S

23 / 64

Example: Natural numbers with 0, ω

ω

3

2

1

0

I> = ω
I⊥ = 0
I a t b = maximum of a and b
I a u b = minimum of a and b

24 / 64

Dual Lattices

Let L = 〈L,v,u,t〉 be a lattice. Then:
I L = 〈L,w,t,u〉 is also a lattice
I L is dual lattice to L
I If L is complete, with >L, ⊥L being top, bottom:

I L is also complete, and:
I >L = ⊥L
I ⊥L = >L

Lattices can be ‘flipped around’ without losing their
properties

25 / 64

Product Lattices
I Program analysis: Each variable needs its own lattice
I Can we combine these lattices to analyse variables
simultaneously?

I Assume (complete) lattices:
I L1 = 〈L1,v1,u1,t1,>1,⊥1〉
I L2 = 〈L2,v2,u2,t2,>2,⊥2〉

I Let L1 × L2 = 〈L1 × L2,v,u,t,>,⊥〉 where:
I 〈a, b〉 v 〈a′, b′〉 iff a v1 a′ and b v2 b′

I 〈a, b〉 u 〈a′, b′〉 = 〈a u1 a′, b u2 b′〉
I 〈a, b〉 t 〈a′, b′〉 = 〈a t1 a′, b t2 b′〉
I > = 〈>1,>2〉
I ⊥ = 〈⊥1,⊥2〉

Point-wise products of (complete) lattices are again
(complete) lattices

26 / 64

Product Lattices over Binary Lattices

true

false

×

true

false

× · · ·×

true

false

I Recall binary lattices:
I > = true
I ⊥ = false
I t = logical “or”
I u = logical “and”

I Computer hardware can compute t, u of multiple
lattices in parallel:
I Bitwise or/and

=⇒ Highly efficient
I Can represent other lattices efficiently, too

Give rise to highly efficient Gen-/Kill-Set based program analysis

27 / 64

Omitted Formal Details

What we didn’t cover:
I Partially Ordered Sets (Posets)
I Semi-lattices (lacking meet or join)
I Lattice absorption laws
I Many interesting lattice properties

Not a full introduction to lattice theory

28 / 64

Word of Caution

I Definition in the book flips lattices
I> and ⊥ mean the opposite
I We use the more common definition
from the research literature

I Definition is isomorphic, but can be
confusing...

29 / 64

Summary
I Complete lattices are formal basis for many program analyses
I Complete lattice L = 〈L,v,u,t,>,⊥〉

I L: Carrier set
I (v): Partial order
I (u): Meet operation: find greatest lower bound
(Analysis: mergeb)

I (t): Join operation: find least upper bound
(Analysis: uncommon, but can improve precision of two
conservative results)

I >: Top-most element of complete lattice
(Analysis: ‘I don’t know’)

I ⊥: Bottom-most element of complete lattice
(Analysis: ‘I know that I can’t know’)

I Lattices can be flipped
I Lattices can be combined into product lattices

30 / 64

Monotone Frameworks
>

⊥

A Z

I L = 〈L,v,u,t〉 is complete lattice
I Order: v
I >: ‘No information (yet)’
I ⊥: ‘Too much information / could be anything’
I mergeb(x , y) = x u y for all b

I transb monotonic: x v y =⇒ transb(x) v transb(y)
I Finite lattice height (⇐⇒ Descending Chain Condition):
x0 w x1 w x2 w x3 . . . =⇒ exists k s.th. for all k ′ > k , xk′ = xk

I L can be infinite– only the lattice height must be finite
31 / 64

Putting It All Together

I Monotone Frameworks ensure termination of Data Flow
Analysis
I Information from complete Lattice L:

I >: ‘No information (yet)’
I ⊥: ‘Too much information / could be anything’

I Must satisfy Descending Chain Condition: no infinite progress
I Ensure that no analysis step loses knowledge:

I Each basic block has transfer function transb
I Output knowledge outb from input knowledge inb
I Monotonic: increasing input knowledge does not decrease output
knowledge

I Merging multiple inputs with mergeb = u is lattice meet
(greatest lower bound)

32 / 64

Fixpoints

I Algorithm sketch from last week:
I Repeat transb and mergeb until value no
longer moves

I Fixpoint
I Multiple possible solutions, ordered by v
I Maximal Fixpoint ⇒ Highest Precision

33 / 64

Value Range Analysis

‘Find value range (interval of possible values) for x ’

Python
x = 1
while ...:

if ...:
x = 4

else:
x = 7

I Multiple possible sound solutions:
I [1, 7]
I [1, 10]
I [−99, 99]
I ⊥

I All of these values are fixpoints
I [1, 7] is maximum fispoint

34 / 64

An Algorithm for MFP

I Last week: sketched naive algorithm for computing fixpoint
I Produces maximum fixpoint (MFP)

I Optimise processing with worklist
I Set-like datastructure:

I add element (if not already present)
I contains check: is element present?
I pop element: remove and return one element

I Tracks what’s left to be done

35 / 64

The MFP Algorithm
Procedure MFP(>, merge−, v, CFG, trans−, is-backward):
begin

if is-backward then reverse edges(CFG);
worklist := edges(CFG); -- edges that we need to look at
foreach n ∈ nodes(CFG) do

analysis[n] = >; -- state of the analysis
done
while not empty(worklist) do
〈n, n’〉 := pop(worklist);
if analysis[n’] w transn(analysis[n]) then begin

analysis[n’] := mergen(analysis[n’], transn(analysis[n]));
foreach n’’ ∈ successor-nodes(CFG, n’) do

push(worklist, 〈n’, n’’〉);
done

end
done
return analysis;

end
Worklist allows focussing effort!

36 / 64

Summary: MFP Algorithm

I Compute data flow analysis:
I Initialise all nodes with >
I Repeat until nothing changes any more:

I Apply transfer function
I Propagate changes along control flow graph
I Apply u

I Compute maximal fixpoint
I Use worklist to increase efficiency
I Distinction: Forward/Backward analyses

37 / 64

Another Dataflow Example

Consider again Reaching Definitions:

Lattice:

>

⊥

· · · -1 0 1 · · ·

I⊥: Unknown
I>: Too much/contradictory information
I Integer: exactly that one assignment is possible

38 / 64

Optimal Dataflow Results

if (...)

x = 3
y = 1

x = 1
y = 3

z = x + y

x = >
y = >
z = >

x = 1
y = 3
z = >

x = 3
y = 1
z = > outb1 t outb2 =

x = ⊥
y = ⊥
z = >

x = ⊥
y = ⊥
z = ⊥

true false

b0

b1 b2

b3

Imprecise! Can we do better?
39 / 64

Execution paths

if (...)

x = 3
y = 1

x = 1
y = 3

z = x + y

b0

b1 b2

b3

I Idea: Let’s consider all paths through the program:

pathb0 = {[]}
pathb1 = {[b0]}
pathb2 = {[b0]}
pathb3 = {[b0, b1], [b0, b2]}

40 / 64

The MOP algorithm for Dataflow
Analysis

I Compute the MOP (‘meet-over-all-paths’) solution:
I Iterate over all paths [p0, . . . , pk] in pathbi
I Compute precise result for that path
I Merge (u) with all other precise results

outbi =
l

[p0,...,pk]∈pathbi

transbi ◦ transpk ◦ · · · ◦ transp0(>)

Notation: (function composition)

(f ◦ g)(x) = f (g(x))

41 / 64

MOP vs MFP: Example

if (...)

x = 3
y = 1

x = 1
y = 3

z = x + y

b0

b1 b2

b3

Transfer functions

transb0 = id
transb1 = [x 7→ 3][y 7→ 1]
transb2 = [x 7→ 1][y 7→ 3]
transb3 = [z 7→ x + y]

Paths

pathb0 = {[]}
pathb1 = {[b0]}
pathb2 = {[b0]}
pathb3 = {[b0, b1], [b0, b2]}

outb3 = ([z 7→ x + y][x 7→ 3][y 7→ 1](>)) u ([z 7→ x + y][x 7→ 1][y 7→ 3](>))
= {z 7→ 3 + 1, x 7→ 3, y 7→ 1} u {z 7→ 1 + 3, x 7→ 1, y 7→ 3}
= {z 7→ 4, x 7→ ⊥, y 7→ ⊥} 42 / 64

MOP vs MFP

MOP MFP
Soundness sound sound
Precision maximal sometimes lower
Decidability undecidable decidable

I MOP: Meet Over all Paths
I MFP: Maximal Fixed Point

43 / 64

Summary

I pathb: Set of all paths from program start to b
I MOP: alternative to MFP (theoretically)

I Termination not guaranteed
I May be more precise
I Idea:

I Enumerate all paths to basic block
I Compute transfer functions over paths individually
I Meet

44 / 64

MFP revisited

Consider Reaching Definitions again, with different lattice:

x = 0
y = 0
z = 1

x = x + 1

y = 7 z = y

return x, y, z

`0
`1
`2

`3

`4

⊥ = {`0, `1, `2, `3, `4}

{`0, `1} · · · {`3, `4}

{`0} {`1} {`2} {`3} {`4}

> = ∅

I All subsets of {`0, . . . , `4}
I Finite height
I u = ∪

45 / 64

MFP revisited: Transfer Functions

x = 0
y = 0
z = 1

x = x + 1

y = 7 z = y

return x, y, z

`0
`1
`2

`3

`4

b0

b1

b2 b3

b4

transb0 =[x 7→ {`0},
y 7→ {`1},
z 7→ {`2}]

transb1 =[x 7→ {`3}]
transb2 =[y 7→ {`4}]
transb3 =[z 7→ y]

46 / 64

MOP vs MFP revisited

Solutions for b4:
MOP solution

x 7→ {`0, `3}
y 7→ {`1, `4}
z 7→ {`1, `2, `4}

MFP solution

x 7→ {`0, `3}
y 7→ {`1, `4}
z 7→ {`1, `2, `4}

I Repeat with other programs:
I MOP solution always the same as MFP solution

I Not true for other lattices/transfer functions...

47 / 64

Distributive Frameworks
A Monotone Framework is:
I Lattice L = 〈L,v,u,t〉
I L has finite height (Descending Chain Condition)
I All transb are monotonic
I Guarantees that MFP conservatively approximates MOP

A Distributive Framework is:
I A Monotone Framework, where additionally:
I transb distributes over u:

transb(x u y) = transb(x) u transb(y)

for all programs and all x , y , b
I Guarantees that MFP is equal to MOP

48 / 64

Distributive Problems

I Monotonic:

transb(x u y) v transb(x) u transb(y)

I Distributive:

transb(x u y) = transb(x) u transb(y)

I Many analyses can fit distributive framework
I Known counter-example: transfer functions on Z>

⊥:
I [z 7→ x + y]
I Generally: transfer function that depends on two independent
inputs and may produce same output for different inputs

49 / 64

A Hack to Improve Precision1 (1/2)

if (...)

x = 3
y = 1

x = 1
y = 3

z = x + y

true false

b0

b1 b2

b3

I Recall: Imprecision comes about because
transb3(outb1 u outb2) =

transb3({x 7→ 3, y 7→ 1, . . .} u {x 7→ 1, y 7→ 3, . . .}) =
transb3({x 7→ >, y 7→ >, . . .}) =

{z 7→ >, . . .}
I Idea: Transfer first, then meet:

transb3({x 7→ 3, y 7→ 1, . . .}) u transb3({x 7→ 1, y 7→ 3, . . .}) =
{z 7→ 4, . . .} u {z 7→ 4, . . .}

50 / 64

A Hack to Improve Precision (2/2)

if (...)

x = 3
y = 1

x = 1
y = 3

a = 0

z = x + y

true false

b0

b1 b2

b3

b4

inb4 = outb3 =
transb3({x 7→ 3, y 7→ 1, . . .}) u transb3({x 7→ 1, y 7→ 3, . . .}) =

{x 7→ 3, y 7→ 1, . . .} u {x 7→ 1, y 7→ 3, . . .} =
{x 7→ >, y 7→ >, . . .}

Only works if data is used right at point of the merge
51 / 64

Summary

I Distributive Frameworks are Monotone Frameworks with
additional property:

transb(x u y) = transb(x) u transb(y)

for all programs and all x , y , b
I In Distributive Frameworks, MOP and MFP produce same
answer

I Gen/Kill-set based analyses are always distributive

52 / 64

Subroutine calls

name ::= id
| id . id

val ::= 〈name〉
| num

expr ::= 〈val〉
| 〈val〉+〈val〉
| null
| print 〈val〉
| new()
| id (〈val〉 ?)

stmt ::= 〈name〉 = 〈expr〉
| { 〈stmt〉 ? }
| if 〈val〉 〈stmt〉 else 〈stmt〉
| while 〈val〉 〈stmt〉
| skip
| return 〈val〉

decl ::= proc id (id ?) 〈stmt〉
| global id = num

prog ::= decl ?

53 / 64

Limitations of Intra-Procedural Analysis

ATL
a = 7
d = f(a, 2)
e = a + d

ATL
proc f(x, y) {

z = 0
if x > y {

z = x
} else {

z = y
}
return z

}

How can we compute Reachable Definitions here?

54 / 64

A Naive Inter-Procedural Analysis

a = 7

d = f(a, 2)

e = a + d

f(x, y) =

z = 0

if ...

z = x z = y

return z

b0

b1

b2 b3

b4

b5

bc
6

b7

x 7→ {7}
y 7→ {2}

omitting ‘obvious’ transfer functions

(return)

d 7→ {2, 7}

a 7→ {7} br
6

inbr
6

= outb6 u outb4 = outbr
6

I outb7 : e 7→ {9, 14}

Works rather straightforwardly! 55 / 64

Inter-Procedural Data Flow Analysis

e = f(1, 5)

(return)

bc
x

br
x

ENTER
subroutine start

EXIT
subroutine end

I Split call sites bx into call (bc
x) and return (br

x) nodes
I Intra-procedural edge bc

x br
x carries environment/store

I Inter-procedural edge ():
I Caller subroutine, substitutes parameters (for
pass-by-value)

I Caller return, substitutes result (for pass-by-result)
I Otherwise as intra-procedural data flow edge

56 / 64

A Naive Inter-Procedural Analysis

a = 7

d = f(a, 2)

e = f(1, 5)

f(x, y) =

z = 0

if ...

z = x z = y

return z

b0

b1

b2 b3

b4

b5

bc
6

bc
7

(return)

(return)

br
6

br
7

x 7→ {7}
y 7→ {2}

x 7→ {1}
y 7→ {5}

x 7→ {1, 7}
y 7→ {2, 5}

z 7→ {1, 2, 5, 7}
d 7→ {1, 2, 5, 7}

e 7→ {1, 2, 5, 7}

Imprecision!
57 / 64

Context Sensitivity: Valid Paths

a = 7

d = f(a, 2)

e = f(1, 5)

z = 0

if ...

z = x z = y

return z

Not a valid pathNot a valid path either

b0

b1

b2 b3

b4

b5

bc
6

bc
7

(return)

(return)

br
6

br
7

I [b5, bc
6 , b0, b1, b3, b4, br

6]

Context-sensitive analyses consider only valid paths

58 / 64

Summary

I Intraprocedural Data Flow Analysis is highly imprecise with
subroutine calls

I Interprocedural Data Flow Analysis is more precise:
I Split call site into call site + return site
I Add flow edges between call sites, subroutine entry
I Add flow edges between subroutine return, return site
I Carry environment from call site to return site

I Interprocedural analysis must typically consider the entire
program
⇒ whole-program analysis

I Naive interprocedural analysis is context-insensitive
I Merge all callers into one

59 / 64

Interprocedural Data Flow Analysis

a = 7

d = f(a, 2)

e = f(1, 5)

f(x, y) =

z = 0

if ...

z = x z = y

return z

b0

b1

b2 b3

b4

b5

bc
6

bc
7

(return)

(return)

br
6

br
7

x 7→ {7}
y 7→ {2}

x 7→ {1}
y 7→ {5}

x 7→ {1, 7}
y 7→ {2, 5}

z 7→ {1, 2, 5, 7}d 7→ {2, 7, 1, 5}

e 7→ {1, 5, 2, 7}

Context-insensitive: analysis merges all callers to f()
60 / 64

Inlining

a = 7

d = f(a, 2)

e = f(1, 5)

f(x, y) =

z = 0

if ...

z = x z = y

return z

z = 0

if ...

z = x z = y

return z

bc
6

bc
7

(return)

(return)

br
6

br
7

x 7→ {7}
y 7→ {2}

x 7→ {1}
y 7→ {5}

d 7→ {2, 7}

e 7→ {1, 5}

Clone subroutine IRs for each calling context 61 / 64

Summary

I Context-sensitive analysis distinguishes ‘calling context’
when analysing subroutine
I ‘Who called me’?
I Can go deeper: ‘And who called them?’

I Inlining is one strategy for context-sensitive analysis
I Copy subroutine bodies for each caller
I Advantages:

I Simple
I Improves precision

I Disadvantages:
I Difficult with recursion
I Slows down analysis

62 / 64

Review

I Gen/Kill analyses
I Lattices
I Monotone Frameworks
I MFP algorithm
I MOP algorithm
I Distributive Frameworks
I Interprocedural Analysis

I Inlining for analysis

63 / 64

To be continued. . .

Next week:
I More on IFDS and its refinements
I Callgraph Analysis

64 / 64

