N -,

EDAO45F: Program Analysis

v 1
. '] LECTURE 2: DATAFLOW ANALYSIS 1

In the last lecture...

» Uses of Program Analysis

» Static vs. Dynamic Program Analysis

» Soundness, Precision, Termination

» Abstraction and Simplification for Analysis
» Program Execution Pipeline

» Intermediate Representation

2/75

Announcements

» Moodle available
» Homework #1 on home page after class
» Groups formation in break!

» Needed: Student representative

3/75

Intermediate Representations

0: iload_O
1: ifle 9
4: iconst_1
5: istore_1
6: goto 11
9: iconst_0O
10: istore_1
11: iload_1
12: ireturn

» Simplify analysis
» Fewer cases to consider
» Reduce risk of bugs in analyses

» (Simplify code generation)
» (Simplify code transformation)
—> We will need code transformation for dynamic analysis

4/75

A Buggy Example

Java

int[] array = new int[]1{23};

Set<Integer> set = null;

print(array.length, set.size());

// create nonempty set

Set<Integer> set = new HashSet<Integer>(...);

Analysis: Connect dereference to null pointer

5/75

Example: Our program in Java bytecode

S R e

0 N W~ O

11
12
13
14
19

iconst_1

newarray int

dup

iconst_0

bipush 23
iastore

astore_1

aconst_null
astore_2

aload_1

arraylength

aload_2

<=
23

<=
0
arra ,set
arra set
set.size()

<=

1, array, null,

invokeinterface java.util.Set.size() 1 array null
invokestatic print(int, int) array.length

Stack

Local variables:| 1: array

2: set/null

The stack is not convenient for program analysis

6/75

Summary

» Stack: Cumbersome for connecting

» Meaning of stack slot depends on position in the program
» Local Variables: Helpful for connecting

» Meaning is associated with variable in original program
» Dealing with intermediate results?

» No clear solution yet for dealing with e.g.:
((a>0) ? null : array).length

7/75

Simplifying Analysis with Simpler IRs

» Goal:
» Make analyses easier to build
» Make analyses less error-prone
» Start with ASTs
> Refine:
» Simpler statements
‘Dummy names' for intermediate results

» Representing control flow
» Breaking up multiple uses of the same name

8/75

A Tiny Language

name :@= id
| (name) . id

;_ (expr) +{expr)
null

| print (expr)
| new()

| (name)

stmt .

{ (stmt) x }

if (expr) (stmt) else (stmt)
while (expr) (stmt)

skip

return (expr)

9/75

Evaluation Order

ATL

v = print((print 1) + (print 2))

ATL with explicit order

tmpl = print 1
tmp2 = print 2
tmp3 = tmpl + tmp2
v = print (tmp3)

Java or C or C++

// Many challenging constructions:
ali++] = bl[i > 10 ? i-- : i++] + c[f@i++, —-i)];

| Every analysis must remember the evaluation order rules!

10/75

A Tiny Language: Simplified

name = id stmt = (name) = (expr)
| id.id | { (stmt) x }
| if (val) (stmt) else (stmt)
val == (name) | while (val) (stmt)
| num | skip
| return (val)
expr = (val)
| (val)+(val)
| null
| print (val)
| new()

11/75

Eliminating Nesting

> No nested expressions

= Evaluation order is explicit
—=> Fewer patterns to analyse

» All intermediate results have a name

—> Easier to ‘blame’ subexpressions for errors
» Names might be just pointers in the implementation

» We still have nested statements
> Not all IRs de-nest as aggressively as this

12/75

Multiple Paths

ATL ATL

v = new() v = new()

if condition { while condition {
v = null v = null

} else { }
print v v.f =1

}

v.f =1

Need to reason about the order of execution of statements, too

13/75

Control-Flow Graphs

bo
v = new()
if condition

false

{fprime]

Construct graph to show flow of control through program

14/75

Making Flow Explicit

name = id
| id.id

val = (name)
| num

= (val)

i <va”I>+<va/)
| print (val)

| new()

stmt

(name) = (expr)

skip
return (val)

(stmt) x &
end

(stmt) % if {val) & else &

For intuition only: & is not a ‘real’ nonterminal

15/75

Control-Flow-Graphs

» Replace statement nesting by nodes and edges —
» Multiple outgoing edges: Label condition:

bo
if condition|

tru/ WSe

» Can group statements into Basic Blocks or keep them

separate:
bo = new()
v = new()
if condition A
0b - N
- Qf cond1t10n|
Basic Block

» Uniform representation for different control statements
16/75

Use-Def Chains

Use-Def chain: Map one use to all definitions
Def-Use chain: Map one definition to all uses (not shown here)

17/75

Alternative: Static Single Assignments

Idea: unique names for every assignment

bo
vvp = null
print vvp
vvy; = new()
if condition

tru/ k}lse

by
viz = nu11| prlnt vV

NNV

vy = ®(vy, V)
V3.f =1

18/75

Static Single Assignments Simplifies
Def-Use/Use-Def Chains

v=0

by

print v

without SSA

vz = ®(vg, vi, Vv2)
if ...if

with SSA

19/75

Static Single Assignment Form

» From a static perspective:

» Each variable is set exactly once in the program
» Each name stands for exactly one computation

» Can connect definitions and uses without complex graphs
» ® (Phi) functions merge points

» Minimal SSA eliminates unnecessary ® functions
» Similar representations:

» Continuation-Passing Style IR (CPS)
» A-Normal Form (ANF)

» Simpler Def-Use / Use-Def chains

20/75

Summary

» Different Intermediate Representations (IRs) to pick
» Usually eliminate nested expressions
» Make evaluation order explicit
> Control-Flow Graph (CFG):
» Represent control flow as Blocks and Control-Flow Edges

» Edges represent control flow, labelled to identify conditionals
» Blocks can be single statements or Basic Blocks
> Basic blocks are sequences of statements without branches

> IRs try to expose and link:
> Definitions of (= writes to) a variable
> Uses of (= reads from) a variable
» Use-Def Chain: Links uses to all reaching definitions
» Def-Use Chain: Links definitions to all reachable uses
> Static Single Assignment (SSA) form:
» Each variable has exactly one definition
» Use ® (Phi) expressions to merge variables across control-flow
edges

21/75

Basic Formal Notation

» Tuples:
> Notation:

(a)
(a,b) (pair
(a,c,d) (triple)
> Fixed-length (unlike list)
> Group items, analogous to (read-only) record/object
» Sets:
0 ={} (the empty set)
{1} (singleton set containing precisely the number 1)
{2,3} (Set with two elements)
Z (The (infinite) set of integers)
R (The (infinite) set of real numbers)

22/75

Basic operations on sets

x €S
x¢S

AUB

ANB

Ax B

Is x containd in S?
Is x NOT containd in S?

Set union

Set intersection

Subset relationship

Product set

True: 1€ {1} and 1€ Z
False: 2 € {1} ormr € R

{1}u{2} ={1,2}
{1,3}U{2,3} = {1,2,3}

{13n{2} =0
{1,3}n{2,3} = {3}

True: 0 C {1} and ZC R
False: {2} C {1}

{1,2} x {3,4}
- {<17 3>7 <174>7 <273>7 <274>}

23/75

Graphs

A (directed) graph G is a tuple G = (N, E), where:

» N is the set of nodes of G
» & C N x N is the set of edges of G
» Often: Add function f : £ — X to label edges

@\@

n

N ={ng, n1,np, n3, na’}

& = {{no, m), (no, m2), (m, n3), (n2, no)}

@

24/75

Summary

» Tuples group a fixed number of items

» Sets represent a (possibly infinite) number of unique
elements

» Widely used in program analysis
» (Directed) Graphs represent nodes and edges between
them
» Optional labels on edges possible
» Used e.g. for control-flow graphs

25/75

Dataflow Analysis: Example

ATL

x = new()

print x // A

if z {
x.f=2//B
X = null

} else skip

x.f=1 // C

» Analyse: Will there be an error at B or C?7
» Must distinguish between x at A vs. x at B and C
> Need to model flow of information Suitable IRs:
» Control-Flow Graph (CFG)
> Static Single-Assignment Form (SSA)

Need analysis that can represent data flow through program

6/75

Control Flow

Understanding data flow requires understanding control flow:

— Control flow
—— Data flow (here as Def-Use chains)

27/ 75

Basic Ideas of Data Flow Analysis

x unknown

x<4—OMect————+x = new()

x |nonnull

(no change) ————{%EE%E:%]

nonnull

X
(no change) —{ii
x

(no change)

28/75

Another Analysis

print y

» Which assignments are unnecessary?
—> Possible oversights / bugs
(Live Variables Analysis)

29/75

Control Flow

0
{z}
{Z} Overwrite y =
{y: Z} flf/)n,t need old y
{v, z}
/ /\ﬁ% v
{v} {v}

0

| Analysis effective: found useless assignments to z and x |

30/75

Observations

Data Flow analysis can be run forward or backward
May have to join results from multiple sources

31/75

What about Loops? (1/2)

X unknown
X = null

X|null

x nonnull

x either

x| either

print x

» Analysis: Null Pointer Dereference

» Stop when we're not learning anything new any more
» Works fine

32/75

What about Loops? (2/2)

x €{1,2,3,...}

print x

» Analysis: Reaching Definitions

We need to bound repetitions!

33/75

Summary: Data-Flow Analysis
(Introduction)

» Some important program analyses are flow sensitive:
must consider how execution order affects variables

» Data flow depends on control flow

» Data flow analysis examines how variables change across
control-flow edges

» May have to join multiple results
» Can run forward or backward wrt program control flow
» Handling loops is nontrivial

34/75

Engineering Data Flow Algorithms

Termination

» Assumption: Operate on Control Flow Graph
» Theory: Ensure termination

(Correctness)

35/75

Data Flow Analysis on CFGs

» in,: knowledge at entrance of
basic block b

» out,: knowledge at exit of basic
block b

» merge,: merges all out,, for all transp
basic blocks b; that flow into b

» transy: updates out, from in,

out,

36/75

Characterising Data Flow Analyses

Characteristics:

» Forward or backward analysis

» L: Abstract Domain (the ‘analysis domain’)
> trans, : L — L

»merge, : Lx L — L

Require properties of L, trans,, merge, to ensure termination

37/75

Limiting Iteration

Po

» Does the following ever stop changing:
iny, = merge, (Po, P2)

> Intuition: we keep generalising information
» Growth limit: bound amount of generalisation
» Make sure mergey, transp, never throw information away

Eventually, either nothing changes or we hit growth limit

38/75

Ordering Knowledge

» A describes at least as much knowledge as B
» Either:

»A=B(i.e, ACBLC A), or

» A has strictly more knowledge than B

39/75

Intuition: Knowing Less, Knowing More
Structure of L:

A B Sp Y z
merge, . -
— A&B LLaAsy

More Knowledge

» merge, must not lose knowledge
> merge,(A,B) C A
> merge,(A,B)C B
» trans, must be monotonic over amount of knowledge:

x Cy = transy(x) C transy(y)

» Introduce bound: L means ‘too much information’
40/75

Aggregating Knowledge

P1 = merge, (A, B. P> = transp,(mergep, (A, B)).L
L

> Interplay between trans, and merge, helps preserve
knowledge

» merge, (A, B) C A:
As we add knowledge, P; either
» Stays equal
» ‘Descends’

» Monotonicity of trans,: If P; descends, then P, either
» Stays equal
» ‘Descends’

—> At each node, we either stay equal or descend

Now we must only set a growth limit. ..

41/75

Descending Chains

» A (possibly infinite) sequence ag, a1, a, . .. is a
a . .
|0 descending chain iff:
a|1 ajy1 = a; (forall /i > 0)
ap » Descending Chain Condition:
| » For every descending chain ag, a1, a», ... in abstract
a3 domain L:
1
! > there exists k > 0 such that:
1
1
Ak = A1 = --- ak = akyn for any n >0

DCC is formalisation of growth limit

42/75

Top and Bottom

o N o

» Convention: We introduce two distinguished elements:

> Top: T: AC T forall A
» Bottom: L: 1 T Aforall A
» Since merge,(A, B) C A and merge,(A, B) C B:
» mergep(L, A) = L = merge,(A, L)
> mergep(T,A) C A 3 merge, (A, T)
> In practice, it's safe and simple to set:
merge,(T,A) = A= merge, (A, T)
> Intuition:
» T: means ‘no information known yet'
> 1 : means ‘contradictory / too much information’

43/75

Summary

» Designing a Forward or backward analysis:
» Pick Abstract Domain L
> Must be partially ordered with (C) C L x L:
A LC B iff A 'knows' at least as much as B
» Unique top element T
» Unique bottom element L
»trans, : L — L
» Must be monotonic:

x Cy = transp(x) C transp(y)

» merge, . L x L — L must produce a lower bound for its
parameters:
» mergep(A,B) C A
> merge,(A,B) C B

» Satisfy Descending Chain Condition to ensure termination

» Easiest solution: make L finite
44/75

Abstract Domains Revisited

o)
A
£ -3-2-10 1 2 3 - A- a0 At
© is compatible with neg A= |
/
oT = T isW
oA = A0 for all i € Z=
oAt = A _ _
OA" = At S(a(i)) E a(neg(i))
oA = A

© is monotonic (and @ extended with T is, too)
4575

Summary

» We could extend {A*, A=, A% A?} to an Abstract Domain by
adding T
La={AT A" A A" T}
> L4 is finite, so the DCC holds trivially
» All our abstract operations are monotonic

» Making the abstraction function o : Z — L, explicit allows
us to check that our abstract operations are compatible:

S(a(i)) E a(neg(i))

(cf. ‘induced operation’ in Abstract Interpretation)

4675

Soot IRs

r4
V 4

) o
oot

» Exercise #1 uses Soot, which offers four IRs:
» Jimple: Soot’s main CFG-based IR
» Shimple: Jimple converted to SSA form
» Grimp: Jimple with nested expressions
Intended for decompiling/pretty-printing
» Baf: Enhanced Java bytecode
Intended for bytecode generation

4775

Example Program with Bug

Java

int[] array = new int[]{23};

Set<Integer> set = null;

print(array.length, set.size());

// create nonempty set

Set<Integer> set = new HashSet<Integer>(...);

Soot’s Jimple IR

10 := Q@this

$r0 = newarray (int)[1]

$rof0] = 23

12 = null

$i0 = lengthof $r0

$il = interfaceinvoke 12.<java.util.Set: int size()>()

staticinvoke <T2: void print(int,int)>($i0, $il)

4875

Order of Side Effects

Java Jimple

int[] one
int[] two

new int[1]; .

newarray (int)[1]
new int[2];

two = newarray (int)[2]
int counter = 0; counter = 0 + 1
one[counter++] = two[counter++]++; $i0 = counter
return one; $i1 = two[$i0]

$i2 = $i1 + 1

two[$i0] = $i2

one[0] = $i1

return one

49 /75

Jimple IR

Block
Stmt

Trap

(Stmt) x (Trap)x
nop

(vr) = (v)

(vr) = (v)
(Invoke)

goto (i)

if (v) goto (i)
return {(v)
return-void
entermonitor (v)
exitmonitor (v)
tableswitch ...
lookupswitch ...
breakpoint

ret

throw (v)

catch ty from i to iy with iy Invoke

Ve

Ve

Vr

var | (ve) | {ve) | (ve)

int | long | float | double
string | null

(method) | ty

(Invoke)

new ty

newarray ty[int]
nemultiwarray ty([int])*
v+v

v-v

v [(v)]

@this

@parameter |
@caughtexception
(v,).id

(ty).id

50,75

Homework

Find all main methods
Find all calls to deprecated methods

Simplified Array Out-Of-Bounds checking: find uses of
negative array indices

Live Variables Analysis: Find useless assignments
Make your analysis reusable

51/75

To be continued. ..

Next week:

» Lattice theory

» Understanding our precision
» Procedure calls

52/75

