UNIVERSITY

EDAO45F: Program Analysis
LECTURE 1: INTRODUCTION

Christoph Reichenbach

Welcome!

> Program Analysis

» Instructor: Christoph Reichenbach
christoph.reichenbach@cs.1lth.se

» Course Homepage:
http://fileadmin.cs.lth.se/cs/Education/EDA045F/2018/web/index.html

» Moodle: EDA045F

2/47

Topics

» Concepts and techniques for understanding programs

» Analysing program structure
» Analysing program behaviour

» Lanugage focus: Java, C, C++
» Concepts transferrable to most other languages

3/47

Goals

» Understand:
> What is program analysis (not) good for?
» What are strenghts and limitations of given analyses?
» How do analyses influence on each other?
» How do programming language features influence analyses?
» What are some of the most important analyses?

» Be able to:

» Implement typical program analyses
» Critically assess typical program analyses
» Understand literature on typical program analyses

4/47

Book

E;ill":ci)glreasm Principles of Program Analysis

« Analysis Nielson, Nielson & Hankin

» 3 copies in the library

» Optional (goes deeper into the
theory)

5/47

Structure

2018-09-14 | today

2018-09-21 Homework #1 start

2018-09-28

2018-10-05 Homework #2 start

2018-10-12

2018-10-19 | End of Ipl Homework #3 start
— break —

2018-11-07 | |p2: Wednesdays 15:15

2018-11-14 Homework #4 start

2018-11-21

2018-11-28 Homework #5 start

2018-12-05

2018-12-12 Homework #6 start

2018-12-19 | End of Ip2

6/47

How to Pass

» Homework projects:
> Who: Groups of 2 (or individuals)
» What: Work with program analysis frameworks
» Start: Homework will be up immediately after class
> Deadline: 13 days for each project (Thu/Tue evening)
Exception: Homework 3 deadline is 2018-11-13
(giving you almost a month)
=> 0-5 points per project
» | will not answer homework-related questions on the day of the
deadline

» Final Exam after [p2
» Admission: 2 or more points in 5 or more homework projects

7/47

Uses of Program Analysis

<

3ug-checking,
erification

L

A

Static . .
Checking Static Analysis
= Optimise = Check+Transform

Program
Understanding

v 2
> Highlighting
» Search
» Refactoring = Check+Transform

IDE Program
Execution

[Testi ngj_[P rofi IingJ

= Checking
Dynamic Analysis

Many uses are for checking boolean properties 847

Checks in Program Analysis

Given a program, check that some property P holds

Typical properties:
> No type errors

» Some particular refactoring / optimisation won't change
program behaviour

» Program Verification: The program meets all requirements

9/47

Verification vs. Validation

According to Barry Boehm:
» Verification: ‘Am | building the product right?’
» Validation: ‘Am | building the right product?’

Example: Software Security:
» Given a Threat Model (set of possible attacks):

Program is secured vs. known attacks Verification
Threat model is complete Validation

| We focus on Verification

10/47

Verification: Safety vs. Security

» Security:

External attackers cannot compromise the system
» Safety:

The system does not ‘go wrong’

» Example: Strong Typing in Java / Haskell / ...

> Languages without strong typing (C, C++) often restricted
Example: MISRA-C, restricted C89 for automotive systems:

2.2: Source code shall only use /* ... */ style comments.
5.1: Identifiers [...] shall not [use] more than 31 characters.
9.1: All automatic variables shall have been assigned a value before being used.

12.4: The right-hand operator of a logical && or | | operator shall not contain
side effects.

14.1: There shall be no unreachable code.
16.2: Functions shall not call themselves, either directly or indirectly.

20.10: The library functions atof, atoi and atol from library <stdlib.h>
shall not be used.

11 /47

Verification vs. Program Analysis

Manual Verification Automatic Verification

.. Program Analysis-
Proof Assistants oot Vi
» Lint
» CoQ
> Isabelle C/Ha§kell/. .. type
> Agda checking
& » Astrée

Our focus is on (mostly) automated approaches

12/47

Summary

» Program analyses:

» Link information
» Collect information for visualisation
> Decide yes/no checks

» Same frameworks / approaches, different outputs
» Checks test some program property P
» Typical checks:

> Program doesn’t ‘go wrong' (safe)
» Program cannot be compromised (secure)

» Program analyses are fully automatic

13/47

Everyday Program Analysis

Questions:

> ‘Is the program well-formed?’
gcc —c program.c
javac Program. java
At least for C, C++, Java; not so easy for JavaScript!

» ‘Does my factorial function produce the right input in the
range 0-57'

Java
@Test // Unit Test
public void testFactorial() {
int[] expected = new int[] { 1, 1, 2, 6, 24, 120 };
for (int i = 0; i < expected.length; i++) {
assertEquals(expected[i], factorial(i));

3

14 /47

A First Challenge

» Given program. c:

» Property: ‘The library functions ..., gets, ...shall not be
used.

user@host$ grep gets program.c
gets (input_buffer);
/* The code below gets the system configuration */
int failed_gets_counter = O;

user@host$

At least 2 of 3 resuls were wrong: Analysis is
imprecise

15/47

A First Challenge, Continued

user@host$ grep gets\(program.c I
gets(input_buffer);
user@host$ I
» More precise!
» Will this catch all calls to gets?

C: program2.c

#include <stdio.h>

void f(char* target_buffer) {
char *(*kdummy) (char*) = gets;
dummy (target_buffer) ;

}

user@host$ cc -c program.c; nm program.o I
0000000000000000 T £

U gets +— Ahal

U _GLOBAL_OFFSET_TABLE_

user@host$ I .

A First Challenge, Solved?

C: program3.c

#include<stdio.h>
#include<dlfcn.h>
int f(char* target_buffer) {
void* handle = dlopen("/1ib/x86_64-1linux-gnu/libc.so.6",
RTLD_LAZY) ;
void* sym = dlsym(handle, "puts");
void(*p) (charx) = sym;
p(target_buffer);
return O;

» Dynamic library loading: puts will not show up in symbol
table

Analysis doesn’t catch everything (unsound)

17/47

Soundness and Completeness

Analysis (Check) A tests a property P:
» Ais sound (with respect to P) iff:
» When A triggers, P is true
» A is complete means:
» When P is true, A triggers

> Interpretation differs between verification and bug-finding:
\ P Soundness Completeness

Verification
Bug-finding

there is no bug A finds all bugs A finds only bugs
there is a bug A finds only bugs A finds all bugs

» Other common terms:
» Precision: Fraction of reported bugs that are real bugs
» Recall: Fraction of real bugs that were reported

We want: Analyses that are sound and complete

18/47

The Unfortunate (?7) Bottom Line

“Everything interesting about the behaviour
of programs is undecidable.”
— H.G. Rice [1953], paraphrased by Anders Mgller
We must choose:
» Sound
» Complete

» Terminating

... pick any two.

19/47

Gaming the System?

» |dea:

» select analysis As: Sound + Terminating
» select analysis A.: Complete 4+ Terminating
» Report intersection of As and A. = perfect solution?

Bugs

Figure for Verification (swap As and A. for bug finding)

20/47

Summary

» Verification checks absence of bugs
» Bug-finding checks presence of bugs
» Given property P and analysis A:
> A is sound if it triggers only on P (maybe misses some)
Verifier: A finds all bugs
> A is precise if it always triggeres on P (and possibly on non-P)
Verifier: A finds only bugs
» Bug-finders swap the meanings of sound and complete
> If P is nontrivial (depend on behaviour, not program
structure), the following holds for Verifiers:

Terminating

‘ W
W Complete

21/47

Theory

Gathering Our Tools

The Java® Language
Specification
Java SE 8 Edition

20150013

Principles

of Program
»_Analysis
(-

Tools

Fiastadd PAASAR

Analysis
Frame-

works

Astrée

-

.

FindBugs

/.
oot

Hardware

22/47

Language Definitions

» Pure theory

» Define structure (syntax) and meaning (semantics) of
language
» Abstracts over many details

Syntax example:

)

] e
; (e)-(e)
|

|

Let’s develop a check: will the given program compute a
positive number?

23/47

Simplifying the Lanugage

» Let's make it easier to analyse the language
» We don't need parentheses for the analysis
» log is too difficult
= Simplification (we give up on some problem)
»a-b=a+neg b
= Abstraction (we join similar problems into one)

Restricted scope, but simplified our job

24 /47

Semantics

» What does a program p compute?

» Notation: , where i is some number in Z

zero |} 0 one |} 1

x4i x4i ylj
neg x | —i x4+ yli+j

25 /47

Computing Is-The-Result-Positive

» Our semantics are unambiguous
v Can compute value of any program

> In other languages, computing the output:
» depends on input
» may not terminate

» As example, let's classify programs in our toy language into:
» A% Computes 0
» AT: Computes a positive value
» A~: Computes a negative value

» Notation: , where a is one of A, At A~

26 /47

Semantics

o AO
oAt
SA”
oA’

a; @ a

AO
A-
At
A?
A% |0 A |
AT TTATTAT [A 7m0 A ?
20 || 4t | 20 | A Adga=A"=adA
A" || AT A= | A
zero | A° one J* At
x{"a xa y I a
neg x J* ©a x+ylta®a

27 /47

Correspondence: Abstract and Concrete

A

=3 -2-10 1 2 3 -- A= A0 At

—_—

Also:
» O is compatible with neg
» & is compatible with +

Abstract Interpretation explores these ideas in great detail /4{

Summary

» We can mathematically formalise syntax and semantics
» Semantics derive from syntax, with suitable notation

» Abstract Interpretation:

» Abstract over the program’s semantics

» Goal: check if some property P holds

» Challenge: remain precise yet decidable

» May have abstractions A;, A, where A; is strictly more precise
than A,

29/47

Program Execution Pipeline

program.py
Source
Code

Libraries ’

Dynamic
Linker

Interpreter

Operating
System

Hardware

30/47

Program Execution Pipeline

program.c _ _)

S ‘ Libraries ’lle.SO
ource =

Code

program

Preprocessor | cpp

[::EE::::::] Static Dynamic
Linker Linker

program.o

Compiler

Loader

gcc

Operating
System

Hardware

30/47

Program Execution Pipeline

C.java

Source

Code

Libraries

Compiler

javac

Loader

’ rt.jar
pynannc ClassLoaders
Linker
Interpreter
Operating

Dynamic System
Compiler

java

30/47

Program Execution Pipeline

| Libraries ’

Source

Coge\

Instrumentable
Stati
Lin

o Con@ﬁ

D .
We can instrument and yrﬁmlc
Compiler
analyse all of these (to -
some degree) 1= Haraware
[Static Environmentj [Runtime Environment]

30/47

Static vs. Dynamic Program Analyses

| Static Analysis | Dynamic Analysis

Principle Analyse program Analyse program execution

structure
Input

Independent Depends on input
Hardware/OS

Independent Depends on hardware and OS
Perspective

Sees everything Sees that which actually happens
Soundness

Possible Must try all possible inputs
Precision

Possible Always, for free

]-jasl:add

/oot ﬂ

« felieie

31/47

Summary

» Preprocessor: Transforms source code before compilation

» Static compiler: Tranlates source code into executable
(machine or intermediate) code

» Interpreter: Step-by-step execution of source or
intermediate code

> Dynamic (JIT) compiler: Translates code into
machine-executable code

» Loader: System tool that ensures that OS starts executing
another program

» Linker: System tool that connects references between
programs and libraries
» Static linker: Before running
» Dynamic linker: While running

» Machine code: Code that is executable by a machine

» Static Analysis: Analyse program without executing it

» Dynamic Analysis: Analyse program execution
32/47

Java lexing

int i:

if (2 >0) ¢
i = "One";

}

return i;

Lexing / Tokenisation

|

int i ; if (2 > 0) i = "One" ; return i ;

33/47

Java lexing & parsing

CST = parse tree |

stmt

return

v
Lexemes

Parsing in general

Translate text files into meaningful in-memory structures
» CST = Concrete Syntax Tree

» Full “parse”, cf. language BNF grammar
» Not usually materialised in memory

» AST = Abstract Syntax Tree

» Standard in-memory representation
» Avoids syntactic sugar from CST, preserves important

nonterminals as [AST nodes
» Converts useful tokens into | attributes

Program analysis starts on the AST

35/47

In-Memory Representation

—E—

T2

Typical in-memory representations for this AST:

» Algebraic values (functional)
» Records (imperative)

36/47

In-Memory Representation

dstmt
e —|—{primy]
decls-list: — id i
ifstmt
cond: binexpr: >
lhs: ———{_num: 2|
rhs: —1——[_num: 0|
true: assign: =
s 7170 1 ths ———[1]
rhs: ———{_str: "One" |

L[return |——] id:i |

37/47

Program Analysis

We run numerous code analyses on the AST:
» Name Analysis:
» Which name use binds to which declaration?
» Type Analysis:
» What are the types of all expressions?
» Static Correctness Checks:

» Are there type errors?
> Is a variable unused?
» Are we initialising all variables?

» Optimisations:
» Can we speed up the program somehow?

Advanced static correctness checks increasingly common
in compilers

38/47

Name Analysis

dstmt
e —| [ty]
decls-list: — id: i |
ifstmt
cond: binexpr: >
lhs: —f——[_num: 2]
rhs: ———[_num: 0 |
true: assign: =
flse: 10 | s]
rhs: ———{ str: "One" |
return | —t—S¢—=—1—"—"—""—

39/47

Type Analysis

— return

dstmt Type
P —|— oy
decls-list: — id: i | int

ifstmt

cond: binexpr: > | int, int — boolean (OK)
Ihs: ———[_num: 2_]||int
rhs: —4——{ _num: 0 ||| int

true: assign: = | int, int — int (OK) PE ERROR)

false: ——o Ihs: ! int
rhs: —|——[e 1] | iring

ILet's fix the program...l

40 /47

Summary

» Compiler represents programs in intermediate representations
(IRs)

» Compiler can be separated into:
» Frontend: process incoming source code, generate IR
» Middle-end: optimise IR
» Back-end: translate IR into executable code

» Parser matches concrete syntax tree (CST), generates
abstract syntax tree (AST)

» Typical analyses on AST:

» Name analysis: which variable use belongs to which definition?
» Type analysis: do variable/operator/function types agree?
Any implicit conversions needed?

41/47

Emitting code

The compiler backend emits bytecode from the AST structure:

> Involves additional steps

L e ED

Source code Bytecode

public static int myfun(int k) {

int i; 0: :.Lload_O
i 1: ifle 9

if (k > O) { 4: iconst_1

i=1; 5: istore_1

} else { 6: goto 11

i=0: 9: iconst_O

’ 10: istore_1

} 11: iload_1
return i; 12: ireturn

}

42/47

Java Bytecode: Example

Let's call our function with myfun(7):

= 0 iload_0 Load first function parameter as int
= 1 ifle 9 7 <= 07 No, so continue
= 4 iconst_1 load the value 1
= b: istore_1 i=1
= 6 goto 11 jump to label 11
9 iconst_0
10: istore_1
= 11: iload_1 Load i (value 1)
= 12: ireturn Return 1.

And the method returns.

43 /47

Java Bytecode Overview

» 202 instructions
» Operate on Value Stack and Local Variables
» Complex heap and thread model
» Statically typed
» Variations due to compression:
» iload i: Load local variable i as int
» iload_0: Same as iload 0O
»iload_1: Same as iload 1
» iload_2: Same as iload 2
» iload_3: Same as iload 3
» Variations due to typing:
iload (int), 1load (long), dload (double), aload (objects)
» Many instructions have ‘wide’ variants

Optimised for space, checkability; not too convenient to work on

44/ 47

Which Abstraction Is Right for You?

» Different tools use different intermediate representations:
» JastAdd
» Soot: Jimple, Shimple, Grimple, Baf
» WALA
» Eclipse JDT and CDT
» gce: Gimple
» LLVM IR / LLVM bitcode
» Some are graph-based (— next week!)
» Different strengths and weaknesses:
> Eclipse JDT/CDT support source-to-source transformation
» Soot's 'Grimple': Easier to read but harder to analyse than
‘Jimple’

45 /47

Summary

» Compilers and analysis tools use Intermediate representations
(IRs)

» IRs simplify analysing code
» Different IRs have different advantages

» Program analysis tools introduce abstractions to simplify
analysis

46 /47

To be continued. ..

Next week:

» Graph-based representations

» Foundations of Dataflow Analysis
» Homework #1

47 /47

