
EDA045F: Program Analysis
LECTURE 1: INTRODUCTION

Christoph Reichenbach

Welcome!

I Program Analysis
I Instructor: Christoph Reichenbach

christoph.reichenbach@cs.lth.se
I Course Homepage:

http://fileadmin.cs.lth.se/cs/Education/EDA045F/2018/web/index.html

I Moodle: EDA045F

2 / 47

Topics

I Concepts and techniques for understanding programs
I Analysing program structure
I Analysing program behaviour

I Lanugage focus: Java, C, C++
I Concepts transferrable to most other languages

3 / 47

Goals

I Understand:
I What is program analysis (not) good for?
I What are strenghts and limitations of given analyses?
I How do analyses influence on each other?
I How do programming language features influence analyses?
I What are some of the most important analyses?

I Be able to:
I Implement typical program analyses
I Critically assess typical program analyses
I Understand literature on typical program analyses

4 / 47

Book

Principles of Program Analysis
Nielson, Nielson & Hankin
I 3 copies in the library
I Optional (goes deeper into the
theory)

5 / 47

Structure

2018-09-14 today
2018-09-21 Homework #1 start
2018-09-28
2018-10-05 Homework #2 start
2018-10-12
2018-10-19 End of lp1 Homework #3 start

— break —
2018-11-07 lp2: Wednesdays 15:15
2018-11-14 Homework #4 start
2018-11-21
2018-11-28 Homework #5 start
2018-12-05
2018-12-12 Homework #6 start
2018-12-19 End of lp2

6 / 47

How to Pass

I Homework projects:
I Who: Groups of 2 (or individuals)
I What: Work with program analysis frameworks
I Start: Homework will be up immediately after class
I Deadline: 13 days for each project (Thu/Tue evening)
Exception: Homework 3 deadline is 2018-11-13
(giving you almost a month)

⇒ 0–5 points per project
I I will not answer homework-related questions on the day of the
deadline

I Final Exam after lp2
I Admission: 2 or more points in 5 or more homework projects

7 / 47

Uses of Program Analysis

Static Analysis

Dynamic Analysis

x Program

IDE

Program
Understanding I Highlighting

I Search
I Refactoring

Compiler

Optimise

Program
Execution

Testing Profiling

Static
CheckingBug-checking,

verification
= Check+Transform

= Check+Transform

= Checking

Many uses are for checking boolean properties 8 / 47

Checks in Program Analysis

Given a program, check that some property P holds

Typical properties:
I No type errors
I Some particular refactoring / optimisation won’t change
program behaviour

I Program Verification: The program meets all requirements

9 / 47

Verification vs. Validation

According to Barry Boehm:
I Verification: ‘Am I building the product right?’
I Validation: ‘Am I building the right product?’

Example: Software Security:
I Given a Threat Model (set of possible attacks):

Program is secured vs. known attacks Verification
Threat model is complete Validation

We focus on Verification

10 / 47

Verification: Safety vs. Security
I Security:
External attackers cannot compromise the system

I Safety:
The system does not ‘go wrong’
I Example: Strong Typing in Java / Haskell / . . .
I Languages without strong typing (C, C++) often restricted
Example: MISRA-C, restricted C89 for automotive systems:

2.2: Source code shall only use /* ... */ style comments.
5.1: Identifiers [. . .] shall not [use] more than 31 characters.
9.1: All automatic variables shall have been assigned a value before being used.
12.4: The right-hand operator of a logical && or || operator shall not contain

side effects.
14.1: There shall be no unreachable code.
16.2: Functions shall not call themselves, either directly or indirectly.
20.10: The library functions atof, atoi and atol from library <stdlib.h>

shall not be used.
11 / 47

Verification vs. Program Analysis

Proof Assistants Program Analysis-
based Verifiers

I CoQ
I Isabelle
I Agda
. . .

I Lint
I C/Haskell/. . . type
checking

I Astrée
. . .

Manual Verification Automatic Verification

Our focus is on (mostly) automated approaches

12 / 47

Summary

I Program analyses:
I Link information
I Collect information for visualisation
I Decide yes/no checks

I Same frameworks / approaches, different outputs
I Checks test some program property P
I Typical checks:

I Program doesn’t ‘go wrong’ (safe)
I Program cannot be compromised (secure)

I Program analyses are fully automatic

13 / 47

Everyday Program Analysis

Questions:
I ‘Is the program well-formed?’

gcc -c program.c
javac Program.java

At least for C, C++, Java; not so easy for JavaScript!
I ‘Does my factorial function produce the right input in the
range 0–5?’

Java
@Test // Unit Test
public void testFactorial() {

int[] expected = new int[] { 1, 1, 2, 6, 24, 120 };
for (int i = 0; i < expected.length; i++) {

assertEquals(expected[i], factorial(i));
} }

14 / 47

A First Challenge

I Given program.c:
I Property: ‘The library functions . . . , gets, . . . shall not be
used.’

user@host$ grep gets program.c
gets(input_buffer);
/* The code below gets the system configuration */
int failed_gets_counter = 0;

user@host$

At least 2 of 3 resuls were wrong: Analysis is
imprecise

15 / 47

A First Challenge, Continued
user@host$ grep gets\(program.c

gets(input_buffer);
user@host$

I More precise!
I Will this catch all calls to gets?

C: program2.c
#include <stdio.h>
void f(char* target_buffer) {

char *(*dummy)(char*) = gets;
dummy(target_buffer);

}

user@host$ cc -c program.c; nm program.o
0000000000000000 T f

U gets ←− Aha!
U _GLOBAL_OFFSET_TABLE_

user@host$ 16 / 47

A First Challenge, Solved?

C: program3.c
#include<stdio.h>
#include<dlfcn.h>
int f(char* target_buffer) {

void* handle = dlopen("/lib/x86_64-linux-gnu/libc.so.6",
RTLD_LAZY);

void* sym = dlsym(handle, "puts");
void(*p)(char*) = sym;
p(target_buffer);
return 0;

}

I Dynamic library loading: puts will not show up in symbol
table

Analysis doesn’t catch everything (unsound)
17 / 47

Soundness and Completeness
Analysis (Check) A tests a property P:
I A is sound (with respect to P) iff:

I When A triggers, P is true
I A is complete means:

I When P is true, A triggers
I Interpretation differs between verification and bug-finding:

P Soundness Completeness
Verification there is no bug A finds all bugs A finds only bugs
Bug-finding there is a bug A finds only bugs A finds all bugs

I Other common terms:
I Precision: Fraction of reported bugs that are real bugs
I Recall: Fraction of real bugs that were reported

We want: Analyses that are sound and complete
18 / 47

The Unfortunate (?) Bottom Line

“Everything interesting about the behaviour
of programs is undecidable.”

— H.G. Rice [1953], paraphrased by Anders Møller

We must choose:
I Sound
I Complete
I Terminating
. . . pick any two.

19 / 47

Gaming the System?

I Idea:
I select analysis As : Sound + Terminating
I select analysis Ac : Complete + Terminating
I Report intersection of As and Ac ⇒ perfect solution?

Bugs

As

Ac

Figure for Verification (swap As and Ac for bug finding)
20 / 47

Summary
I Verification checks absence of bugs
I Bug-finding checks presence of bugs
I Given property P and analysis A:

I A is sound if it triggers only on P (maybe misses some)
Verifier: A finds all bugs

I A is precise if it always triggeres on P (and possibly on non-P)
Verifier: A finds only bugs

I Bug-finders swap the meanings of sound and complete
I If P is nontrivial (depend on behaviour, not program
structure), the following holds for Verifiers:

Terminating

Sound CompletePartial

∅Conservative Optimistic

21 / 47

Gathering Our Tools

The Java® Language

Specification
Java SE 8 Edition

James Gosling

Bill Joy

Guy Steele

Gilad Bracha

Alex Buckley

2015-02-13

 INCITS/ISO/IEC 14882-2011[2012]

 (ISO/IEC 14882-2011, IDT)

Information technology — Programming

languages — C++

Licensed to Christoph Reichenbach. ANSI order X_307414. Downloaded 2/10/2013 1:09 PM. Single user license only. Copying and networking prohibited.

Theory Tools

Analysis
Frame-
works

Astrée

Compilers

Hardware

22 / 47

Language Definitions
I Pure theory
I Define structure (syntax) and meaning (semantics) of
language

I Abstracts over many details
Syntax example:

e ::= zero
| one
| 〈e〉+〈e〉
| 〈e〉-〈e〉
| neg 〈e〉
| (〈e〉)
| log 〈e〉

Let’s develop a check: will the given program compute a
positive number?

23 / 47

Simplifying the Lanugage
I Let’s make it easier to analyse the language
I We don’t need parentheses for the analysis
I log is too difficult
⇒ Simplification (we give up on some problem)

I a-b = a+neg b
⇒ Abstraction (we join similar problems into one)

e ::= zero
| one
| 〈e〉+〈e〉

| neg 〈e〉

Restricted scope, but simplified our job
24 / 47

Semantics

I What does a program p compute?
I Notation: p ⇓ i , where i is some number in Z

zero ⇓ 0 one ⇓ 1

x ⇓ i
neg x ⇓ −i

x ⇓ i y ⇓ j
x + y ⇓ i + j

25 / 47

Computing Is-The-Result-Positive

I Our semantics are unambiguous
X Can compute value of any program

I In other languages, computing the output:
I depends on input
I may not terminate

I As example, let’s classify programs in our toy language into:
I A0: Computes 0
I A+: Computes a positive value
I A−: Computes a negative value

I Notation: p ⇓A a , where a is one of A0, A+, A−

26 / 47

Semantics

	 A0 = A0

	 A+ = A−

	 A− = A+

	 A? = A?

a1 ⊕ a2 =

A+ A0 A−

A+ A+ A+ A?

A0 A+ A0 A−

A− A? A− A−

A? ⊕ a = A? = a ⊕ A?

zero ⇓A A0 one ⇓A A+

x ⇓A a
neg x ⇓A 	 a

x ⇓A a1 y ⇓A a2
x + y ⇓A a1 ⊕ a2

27 / 47

Correspondence: Abstract and Concrete

· · · · · ·−3 −2 −1 0 1 2 3 A− A0 A+

A?

Also:
I	 is compatible with neg
I⊕ is compatible with +

Abstract Interpretation explores these ideas in great detail 28 / 47

Summary

I We can mathematically formalise syntax and semantics
I Semantics derive from syntax, with suitable notation
I Abstract Interpretation:

I Abstract over the program’s semantics
I Goal: check if some property P holds
I Challenge: remain precise yet decidable
I May have abstractions A1, A2 where A1 is strictly more precise
than A2

29 / 47

Program Execution Pipeline

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Static
Linker

Binary

Libraries

Lo
ad
er

Interpreter

Dynamic
Linker

Dynamic
Compiler

java

Operating
System

Hardware

program.py

python

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders
Instrumentable

We can instrument and
analyse all of these (to
some degree)

30 / 47

Program Execution Pipeline

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Static
Linker

Binary

Libraries

Lo
ad
er

Interpreter

Dynamic
Linker

Dynamic
Compiler

java

Operating
System

Hardware

program.py

python

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders
Instrumentable

We can instrument and
analyse all of these (to
some degree)

30 / 47

Program Execution Pipeline

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Binary

Libraries

Lo
ad
er

Interpreter

Dynamic
Linker

Dynamic
Compiler

java

Operating
System

Hardware

program.py

python

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders

Instrumentable

We can instrument and
analyse all of these (to
some degree)

30 / 47

Program Execution Pipeline

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Static
Linker

Binary

Libraries

Lo
ad
er

Interpreter

Dynamic
Linker

Dynamic
Compiler

java

Operating
System

Hardware

program.py

python

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders

Instrumentable

We can instrument and
analyse all of these (to
some degree)

30 / 47

Static vs. Dynamic Program Analyses
Static Analysis Dynamic Analysis

Principle Analyse program
structure

Analyse program execution

Input
Independent Depends on input

Hardware/OS
Independent Depends on hardware and OS

Perspective
Sees everything Sees that which actually happens

Soundness
Possible Must try all possible inputs

Precision
Possible Always, for free

31 / 47

Summary
I Preprocessor: Transforms source code before compilation
I Static compiler: Tranlates source code into executable
(machine or intermediate) code

I Interpreter: Step-by-step execution of source or
intermediate code

I Dynamic (JIT) compiler: Translates code into
machine-executable code

I Loader: System tool that ensures that OS starts executing
another program

I Linker: System tool that connects references between
programs and libraries
I Static linker: Before running
I Dynamic linker: While running

I Machine code: Code that is executable by a machine
I Static Analysis: Analyse program without executing it
I Dynamic Analysis: Analyse program execution

32 / 47

Java lexing
i n t i ;
i f (2 > 0) {

i = "One" ;
}
return i ;

int i ; if (2 > 0) i = "One" ; return i ;

Lexing / Tokenisation

33 / 47

Java lexing & parsing

int i ; if (2 > 0) i = "One" ; return i ;

int ; if (>) = ; return ;id num num id str id

Lexemes

Tokens

stmt

dstmt

type

prim-ty
decls

decl

id

stmt

ifstmt

stmt

assign

aop
expr

strid

expr

binexpr

binop
expr

num

expr

num

stmt

return

expr

id

stmt

block

CST = parse tree
AST
attr block

ifstmt

returndstmt

prim-ty
decls

id

binexpr

num num

assign

strid

return

id

int i 2 > 0 i = "One" i

34 / 47

Parsing in general

Translate text files into meaningful in-memory structures
I CST = Concrete Syntax Tree

I Full “parse”, cf. language BNF grammar
I Not usually materialised in memory

I AST = Abstract Syntax Tree
I Standard in-memory representation
I Avoids syntactic sugar from CST, preserves important
nonterminals as AST nodes

I Converts useful tokens into attributes

Program analysis starts on the AST

35 / 47

In-Memory Representation

int i 2 > 0 i = "One" i

prim-ty id

decls

dstmt

binexpr

num num strid

assign

id

return

ifstmt

block

Typical in-memory representations for this AST:
I Algebraic values (functional)
I Records (imperative)

36 / 47

In-Memory Representation

dstmt
type:

decls-list:
prim-ty: int

id : i

ifstmt
cond:

true:
false:

binexpr: >
lhs:
rhs:

num: 2
num: 0

assign: =
lhs:
rhs:

id: i
str: "One"

return id : i

37 / 47

Program Analysis
We run numerous code analyses on the AST:
I Name Analysis:

I Which name use binds to which declaration?
I Type Analysis:

I What are the types of all expressions?
I Static Correctness Checks:

I Are there type errors?
I Is a variable unused?
I Are we initialising all variables?
. . .

I Optimisations:
I Can we speed up the program somehow?

Advanced static correctness checks increasingly common
in compilers

38 / 47

Name Analysis

dstmt
type:

decls-list:
prim-ty: int

id : i

ifstmt
cond:

true:
false:

binexpr: >
lhs:
rhs:

num: 2
num: 0

assign: =
lhs:
rhs:

id: iid: i
str: "One"

return id : iid : i

39 / 47

Type Analysis

dstmt
type:

decls-list:
prim-ty: int

id : i

ifstmt
cond:

true:
false:

binexpr: >
lhs:
rhs:

num: 2
num: 0

assign: =
lhs:
rhs: str: "One"str: "One"int: 1

return

int

Type

int
int

int, int → boolean (OK)

int
String

int, String → ? (TYPE ERROR)

int

int, int → int (OK)

Let’s fix the program...

40 / 47

Summary

I Compiler represents programs in intermediate representations
(IRs)

I Compiler can be separated into:
I Frontend: process incoming source code, generate IR
I Middle-end: optimise IR
I Back-end: translate IR into executable code

I Parser matches concrete syntax tree (CST), generates
abstract syntax tree (AST)

I Typical analyses on AST:
I Name analysis: which variable use belongs to which definition?
I Type analysis: do variable/operator/function types agree?
Any implicit conversions needed?
. . .

41 / 47

Emitting code
The compiler backend emits bytecode from the AST structure:
I Involves additional steps

A.java javac A.class

Source code Bytecode

public static int myfun(int k) {
int i;
if (k > 0) {

i = 1;
} else {

i = 0;
}
return i;

}

. . .
0: iload_0
1: ifle 9
4: iconst_1
5: istore_1
6: goto 11
9: iconst_0
10: istore_1
11: iload_1
12: ireturn
. . .

42 / 47

Java Bytecode: Example

Let’s call our function with myfun(7):
. . .
⇒ 0: iload_0 Load first function parameter as int
⇒ 1: ifle 9 7 <= 0? No, so continue
⇒ 4: iconst_1 load the value 1
⇒ 5: istore_1 i := 1
⇒ 6: goto 11 jump to label 11

9: iconst_0
10: istore_1

⇒ 11: iload_1 Load i (value 1)
⇒ 12: ireturn Return 1.
. . .

And the method returns.

43 / 47

Java Bytecode Overview
I 202 instructions
I Operate on Value Stack and Local Variables
I Complex heap and thread model
I Statically typed
I Variations due to compression:

I iload i : Load local variable i as int
I iload_0: Same as iload 0
I iload_1: Same as iload 1
I iload_2: Same as iload 2
I iload_3: Same as iload 3

I Variations due to typing:
iload (int), lload (long), dload (double), aload (objects)

I Many instructions have ‘wide’ variants

Optimised for space, checkability; not too convenient to work on
44 / 47

Which Abstraction Is Right for You?

I Different tools use different intermediate representations:
I JastAdd
I Soot: Jimple, Shimple, Grimple, Baf
I WALA
I Eclipse JDT and CDT
I gcc: Gimple
I LLVM IR / LLVM bitcode

I Some are graph-based (→ next week!)
I Different strengths and weaknesses:

I Eclipse JDT/CDT support source-to-source transformation
I Soot’s ‘Grimple’: Easier to read but harder to analyse than
‘Jimple’

45 / 47

Summary

I Compilers and analysis tools use Intermediate representations
(IRs)

I IRs simplify analysing code
I Different IRs have different advantages
I Program analysis tools introduce abstractions to simplify
analysis

46 / 47

To be continued. . .

Next week:
I Graph-based representations
I Foundations of Dataflow Analysis
I Homework #1

47 / 47

