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Today’s agenda
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• Concept learning

• (Recap) Linear Algebra (Goodfellow chapter 2),  
example: PCA to construct a classifier for localisation 

• Some tips on Python / Jupyter notebooks and Numpy,  
example: image filtering (convolution)
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Concept learning

• A central issue in learning is the acquistion of general concepts from examples, e.g., finding 
the descriptive features for deciding, whether something one observes is a bird or not

• Question: Given some descriptive features for the weather on a certain day, and a list of 
already rated weather conditions, is this particular day a good day for enjoying some sport 
activity?

• Assume a set of attributes (features) and possible values for them, which express the 
constraints for classifying a day as “good” (TRUE):  
Sky (Sunny, Rainy, Cloudy), AirTemp (Warm, Cold), Humidity (Normal, High), Wind (Strong, Weak), 
Water (Warm, Cool), Forecast (Same, Change)

• Represent hypotheses for the concept by a set of values for the attributes, where

• ? - any value is acceptable

• ∅ - no value is acceptable

• <value> - a specific value is acceptable

• Find the most specific hypothesis that matches the data (examples) in a training set

4



Enjoy sports - when? 

• Most general hypothesis: EnjoySport = yes on every day is h = <?, ?, ?, ?, ?, ?>

• Most specific hypothesis: EnjoySport = yes on no day is h =  < ∅,	∅,	∅,	∅,	∅,	∅	> 

• A fundamental assumption (The Inductive Learning Hypothesis):  
 
Any hypothesis approximating the target function well over a sufficiently large 
training set will also approximate the target function well for unseen data

• So - let’s find this hypothesis by search…
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Example Sky AirTemp Humidity Wind Water Forecast EnjoySport?

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes



Search space for EnjoySport

• # of hypotheses h for the task: 3*2*2*2*2*2 = 96 (# of values per attribute) 

• or actually, including ? and ∅:	5*4*4*4*4*4 = 5120 syntactically distinct h

• but, given that any ∅	makes all other attributes obsolete (render the outcome as 
“no”, we have 4*3*3*3*3*3 +1 = 973 semantically distinct hypotheses h

• Hence, the search needs to be organised somehow (we cannot test all h, if the 
problem grows more complex…)
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Find-S

• Start with the most specific hypothesis 
 

				(no day is a good day for sports)

• observe first example (it is a positive one)  
 

     
 
(a day with exactly these values in its attributes is a good day for sports, all others are not)

• observe second example (it is a positive one)  
 

 
 
(since both “Normal” and “High” for the third attribute produce “yes”, the third attribute 
can obviously have any value, while the others need to be fixed …)

• ignore the third example (it is negative)

• observe the fourth example and get  
 

 

h ← < ⊘ , ⊘ , ⊘ , ⊘ , ⊘ , ⊘ >

h ← < Sunny, Warm, Normal, Strong, Warm, Same >

h ← < Sunny, Warm,?, Strong, Warm, Same >

h ← < Sunny, Warm,?, Strong,?, ? >
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Find-S

• Find-S finds the most specific hypothesis that matches the training data (positive examples) 
and it is correct regarding the negative examples it excludes. 

• But there is no guarantee that the found h is the ONLY one that covers the concept fully. 

• Also, maybe it would be better to also look at the most general hypothesis that still fits the 
training data?
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Version Space and Candidate Elimination
• Candidate Elimination finds ALL hypotheses consistent with the training data, the Version Space 

of the hypothesis space H. 

• The algorithm:  
Initialize G to the set of maximally general hypotheses in H:  
Initialize S to the set of maximally specific hypotheses in H:  
For each training example d, do

G = { < ?, ?, ?, ?, ?, ? > }
S = { < ⊘ , ⊘ , ⊘ , ⊘ , ⊘ , ⊘ > }

9

If d is a positive example
• Remove from G any hypothesis inconsistent with d
• For each hypothesis s in S that is not consistent with d

• Remove s from S
• Add to S all minimal generalisations h of s such 

that 
• h is consistent with d, and some g in G is 

more general than h
• Remove from S any hypothesis that is more 

general than another hypothesis in S

If d is a negative example
• Remove from S any hypothesis inconsistent with d
• For each hypothesis g in G that is not consistent with d

• Remove g from G
• Add to G all minimal specialisations h of g such 

that 
• h is consistent with d, and some s in S is 

more specific than h
• Remove from G any hypothesis that is less general 

than another hypothesis in G



Problem solved?

• Candidate Elimination converges if the training data are correct and there is actually a 
correct hypothesis in H (if it converges after sufficiently many positive AND negative 
examples to one single hypothesis, this is the optimal and correct one). 

• Extremely sensitive to noise - one single “false negative” in the training data can eliminate 
the correct hypothesis, and it will never come back …

• Not exactly practical with an image of a bird or not a bird, if attributes are not conceptual 
but correspond to pixels with a much larger value range than “high” vs “normal”. 
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• Some tips on Python / Jupyter notebooks and Numpy



Building up an ellipsoid from different 
viewpoints
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Using the estimate to ask for clarification
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Today’s agenda
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• Concept learning

• (Recap) Linear Algebra (Goodfellow chapter 2)

• Some tips on Python / Jupyter notebooks and Numpy (shown in Jupyter notebook)



Outlook lecture 3
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• Decision Trees

• Recap Information Theory and Probability Theory

• Reading advise: Tom Mitchell, chapter 3, Goodfellow chapter 3, online material by Géron on 
DTs.



Today’s summary
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• Introduced concept learning as an intuitive (conceptual) approach to machine learning 
(including its limitations)

• Walked through a recap of Linear Algebra concepts, touching upon EVD / SVD and PCA. 
Exemplified PCA with categorisation of locations from own research

• Showed some examples of use for Numpy in context of image filtering (convolution)

• Reading advise: Tom Mitchell, chapter 2, Goodfellow chapter 2, Numpy (SciPy) tutorials / 
reference at https://docs.scipy.org/doc/numpy/reference/index.html, Pierre Nugues 
introductory chapter on Python (holler, if you did not get it yet)

https://docs.scipy.org/doc/numpy/reference/index.html

