
(Un)Supervised
(Bayesian) Learning

(Clustering)
Applied Machine Learning (EDAN95)

Lecture 11
2019-12-09
Elin A. Topp

Material based on Lecture Slides on Probabilistic Representation and Bayesian Learning, EDAF70, Spring 2018,
Goodfellow et al, “Deep Learning”, and Russel/Norvig, “AI - A Modern Approach”, Murphy, “Machine Learning -
A Probabilistic Perspective”, Lecture Slides on EM-algorithm by S. Zafeiriou at https://ibug.doc.ic.ac.uk/media/

uploads/documents/expectation_maximization-1.pdf

1

https://ibug.doc.ic.ac.uk/media/uploads/documents/expectation_maximization-1.pdf
https://ibug.doc.ic.ac.uk/media/uploads/documents/expectation_maximization-1.pdf
https://ibug.doc.ic.ac.uk/media/uploads/documents/expectation_maximization-1.pdf

Today’s agenda

2

• Bayesian learning with complete data - MLE, MAP, Optimal Bayes (revisited)

• Bayesian learning with hidden variables - unsupervised Bayesian learning, EM

• Bayesian Networks (revisited), Conditional Indepence and the Markov assumption

Today’s agenda

3

• Bayesian learning with complete data - MLE, MAP, Optimal Bayes (revisited)

• Bayesian learning with hidden variables - unsupervised Bayesian learning, EM

• Bayesian Networks (revisited), Conditional Indepence and the Markov assumption

Constructing explanations for predictions

4

?

Game chips / coins with different known percentages of outcome “Head (=green)” and “Tail
(=red)” when tossed.
You have a coin, but you do not know which type it was, i.e., what its bias is for getting “Head”.
Can you figure that out? 
And, more interestingly, what will the next tossing outcome be?

Assume you know of five coin types (which form your hypotheses), with following bias each:

h1: 100% Heads P(h1) = 0.1

h2: 75% Heads, 25% Tails P(h2) = 0.2

h3: 50% Heads, 50% Tails P(h3) = 0.4

h4: 25% Heads, 75% Tails P(h4) = 0.2

h5: 100% Tails P(h5) = 0.1

−5000 −4000 −3000 −2000 −1000 0 1000 2000 3000
−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Distance in mm relative to robot position

D
is

ta
nc

e
in

 m
m

 re
la

tiv
e

to
 ro

bo
t p

os
iti

on

Scan data
Robot

?

Maximum Likelihood Estimate

5

We can predict (probabilities) by maximizing the likelihood of having observed some particular

data with the help of the Maximum Likelihood hypothesis given a set of observations :

  

… which is a strong simplification disregarding the priors… but a good estimate over large
amounts of data and within more elaborate methods - and the basis that makes NBCs and EM
work.

To solve the maximisation, it is often suitable to maximise the log-likelihood instead:

 

D

hML = arg max
h

P(D |h)

hML = arg max
h

logP(D |h)

?

“Maximum A Posteriori” - MAP

6

Finding the slightly more sophisticated Maximum A Posteriori hypothesis given a

set of observations :

Then predict by assuming the MAP-hypothesis (quite bold) for new observation

Compare also to applying an NBC…

D

hMAP = arg max
h

P(h |D)

X

ℙ(X |D) = ℙ(X |hMAP)

?

Optimal Bayes learner

7

Prediction for , given some observations

 in first step,

X D = < D0, D1, . . . , Dn >

ℙ(X |D) = ∑
i

ℙ(X |hi)P(hi |D) P(hi |D) = P(hi | ⊘) = P(hi)

?

Posterior probabilities

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

Po
st

er
io

r p
ro

ba
bi

lit
y

of
 h

yp
ot

he
si

s

Number of observations in d

P(h1 | d)
P(h2 | d)
P(h3 | d)
P(h4 | d)
P(h5 | d)Posterior probability

for hypothesis hk after
i observations

Number of observations

?

Prediction after sampling, OBC

9

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

Pr
ob

ab
ili

ty
 th

at
 n

ex
t c

an
dy

 is
 li

m
e

Number of observations in d

Probability for the
next toss being Tails

Number of observations

?

Optimal learning vs MAP-estimating

10

Predict by assuming the MAP-hypothesis, after 3 observations of “Tails”:

 with

i.e.,

While the optimal classifier / learner predicts

However, they will grow closer! Consequently, the MAP-learner should not be
considered for small sets of training data!

ℙ(X |D) = ℙ(X |hMAP) hMAP = arg max
h

P(h |D)

P(X = Tails |D1 = D2 = D3)

= PhMAP
(D4 = Tails |D1 = D2 = D3 = Tails) = P(X |h5) = 1

POB(D4 = Tails |D1 = D2 = D3 = Tails) = . . . = 0.7961

?

The Gibbs Algorithm

11

Optimal Bayes Learner is costly by definition, MAP-learner might be as well, both

MAP and MLE-learners need a lot of data to actually produce something useful.

Gibbs algorithm (surprisingly well working under certain conditions regarding the a

posteriori distribution for the set of hypotheses H):

1. Choose a hypothesis h from H at random, according to the posterior probability

distribution over H (i.e., rule out “impossible” hypotheses)

2. Use h to predict the classification of the next instance x.

Today’s agenda

12

• Bayesian learning with complete data - MLE, MAP, Optimal Bayes (revisited)

• Bayesian learning with hidden variables - unsupervised Bayesian learning, EM

• Bayesian Networks (revisited), Conditional Indepence and the Markov assumption

No model / labels

13

?

Game chips / coins with different unknown likelihoods for outcome “Head (=green)” and “Tail
(=red)” when tossed.
You have a coin, toss it, and try to find the model (hypothesis / likelihood) and thus the
posterior probabilities for observing certain data.

Maximising the MLE (and thus any of the other estimates) for an unknown model is in general
not possible.

But, we can compute all estimates iteratively with the EM-algorithm.

−5000 −4000 −3000 −2000 −1000 0 1000 2000 3000
−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Distance in mm relative to robot position

D
is

ta
nc

e
in

 m
m

 re
la

tiv
e

to
 ro

bo
t p

os
iti

on

Scan data
Robot

?

EM intuition (coin tossing example)

14

Assume two coins and a series of tossing experiments, in each of which you observe

a sequence of “Heads” and “Tails”. You do not know which coin was used for which

experiment.

Find the likelihoods and priors for the two hypotheses that an

observed sequence was generated with coin i to then be able to reason according to

the resulting model.

EM works in general as follows:

• E-step: Compute the expectation for the observation given an initial estimate

for priors and likelihoods.

• M-step: Update the priors and the estimate for the likelihoods for the

respective hypotheses according to the expected distribution of the data from

the E-step. Repeat E and M until convergence.

P(D |hi) P(hi) hi

EM intuition (coin tossing example)

15

A widely cited example:

https://ibug.doc.ic.ac.uk/media/uploads/documents/expectation_maximization-1.pdf

Additional explanation to the assumed priors on page 6:

for sequence 1, calculate based on the

assumption that we have a repeated Bernoulli experiment of drawing 10 times

with replacement (thus and n = 10, k = 5)

The expected counts from the binomial term become part of

the normalisation factor .

for sequence 2, this means to calculate , etc.

𝔼Coin[5H,5T] = α * θ5
Coin * (1 − θCoin)5

Bin(k |n, θ) = (n
k) θk

Coin * (1 − θCoin)n−k

(n
k) =

n!
(n − k)!k!

α

𝔼Coin[9H,1T] = α * θ9
Coin * (1 − θCoin)

https://ibug.doc.ic.ac.uk/media/uploads/documents/expectation_maximization-1.pdf

EM-algorithm for GMMs

16

This is the EM-algorithm as given by Murphy, “Machine Learning - A Probabilistic Approach”, p 353.
assume data set with examples and classes you want to cluster into.

EM-for-GMM()
1. Initialize , where  
 is the class prior for class k (e.g., assume uniform distribution here initially)  
 are the means for the attribute values j in class k (e.g., the means over a random subset of the data)  
 is the covariance for the attribute values in class k (can be simplified to variance for each attribute j if a  
 G-NBC is assumed as the model)
2. Iterate over E and M steps as follows:
 E-step:  

 compute where , assuming that  

 the covariance can be substituted with for attribute j and class k.

 M-step:

 compute , then update the means and variances:  

  

 (from which the new can be extracted)

3. Stop, when the and are not changing significantly anymore.

X ⃗xi , i = 1,...,N K X

X, K
θ0

k = (π0
k , ⃗μk

0, Σ0
k)

πk
⃗μk

Σk σ2
jk

rt
ik =

πt−1
k P(⃗x i |θt−1

k)
∑k′�πk′�P(⃗x i |θt−1

k′ �)
P(⃗x i |θt−1

k) = ∏
j

1

2πσ2
kj

e
− 1

2σ2
kj

(x−μt−1
kj)2

σ2
jk

rt
k = ∑

i

rt
ik and πt

k =
rt
k

N

⃗μk
t =

∑i rt
ik ⃗xi

rt
k

and Σt
k =

∑i rt
ik ⃗x i ⃗x T

i

rt
k

− ⃗μt
k

⃗μt
k

T
σ2

jk

⃗μk Σk

EM-algorithm for k-Means

17

This is the EM-algorithm as given by Murphy, “Machine Learning - A Probabilistic Approach”, p 356.
assume data set with examples and classes you want to cluster into.

k-Means()
1. Initialize , assume fixed class priors
2. Iterate over E and M steps as follows:
 E-step:  
 Assign each data point to its closest cluster centre:

 M-step:

 Update each cluster centre by computing the means of all points assigned to it:

 Until converged

X ⃗xi , i = 1,...,N K X

X, K
⃗μk
0 πk

zi = arg min
k

|| ⃗x i − ⃗μ k ||2
2 = L2(⃗x i − ⃗μ k)2

⃗μ k =
1
Nk ∑

i:zi=k

⃗x i

Outlook on lab 6

18

• Implementation of EM-algorithm to find the Gaussians for the GNB for the digits data

• Compare to k-Means clustering

• Write report (note: there are some aspects of labs 2 and 5 to be considered, refresh your
memory!)

Today’s agenda

19

• Bayesian learning with complete data - MLE, MAP, Optimal Bayes (revisited)

• Bayesian learning with hidden variables - unsupervised Bayesian learning, EM

• Bayesian Networks (revisited), Conditional Indepence and the Markov assumption

Conditional independence
ℙ(Number, Pixel[0], …, Pixel[63]) has 10*1764 -1 ≈ 5.61e78 independent entries

But: If looking at a specific number, the probability distribution for “Pixel[36]” does not depend on
whether Pixel[4] has a certain value or not (this dependency is now “implicit” in some sense):

(1) ℙ(Pixel[36] | Pixel[4] = 0.0, number = 0) = ℙ(Pixel[36] | number = 0)

The same holds when we are looking at another number:

(2) ℙ(Pixel[36] | Pixel[4] = 0.0, number != 0) = ℙ(Pixel[36] | number != 0)

Pixel[36] is conditionally independent of Pixel[4] (and all other Pixels) given Number:

ℙ(Pixel[36] | Pixel[4], Number) = ℙ(Pixel[36] | Number)

Writing out the full joint distribution using chain rule and conditional independence assumption:  
 ℙ(Pixel[0], …, Pixel[63], Number)  
= ℙ(Pixel[0] | Pixel[1], …, Pixel[63], Number) ℙ(Pixel[1], …, Pixel[63], Number)  
= ℙ(Pixel[0] | Pixel[1], …, Pixel[63], Number) ℙ(Pixel[1] | Pixel[2], … Pixel[63], Number) ℙ(Pixel[2], …, Pixel[63], Number)  
= … =  
= ℙ(Pixel[0] | Number) … ℙ(Pixel[63] | Number) ℙ(Number)

gives thus 64*((17-1)*10) + (10-1) = 10249 independent entries

20

Bayesian networks
A simple, graphical notation for conditional independence assertions and hence for
compact specification of full joint distributions

Syntax:
a set of nodes, one per random variable
a directed, acyclic graph (link ≈ “directly influences”)
a conditional distribution for each node given its parents:
ℙ(Xi | Parents(Xi))

In the simplest case, conditional distribution represented as a

conditional probability table (CPT)

giving the distribution over Xi for each combination of parent values

21

. . .

The BN for the digits data

P(X = Number) = arg max
k

[P(Number = k, Pixel0, . . . , Pixeln−1)]

= arg max
k

[P(Number = k)∏
i

P(Pixeli = Xi |Number = k)]

22

Number

Pixel 0 Pixel 63

CPTjk = P(Pixel0 = vj |Number = k) CPTjk = P(Pixel63 = vj |Number = k)

Observable and “hidden” variables

23

Alarm

JohnCalls MaryCalls

Burglary

Earthquake

P(B)

0.001 P(E)

0.002

A P(J|A)

T 0.9

F 0.05

A P(M|A)

T 0.7

F 0.01

B E P(A|B,E)

T T 0.95

T F 0.94

F T 0.29

F F 0.001

The Markov assumption

24

A process is Markov (i.e., complies with the Markov assumption), when any given

state Xt depends only on a finite and fixed number of previous states.

155

Xt–2 Xt–1 Xt(a)

(b)

Xt+1 Xt+2

Xt–2 Xt–1 Xt Xt+1 Xt+2

Figure 15.1 FILES: figures/markov-processes.eps (Tue Nov 3 16:23:08 2009). (a) Bayesian net-
work structure corresponding to a first-order Markov process with state defined by the variables Xt. (b)
A second-order Markov process.

A first-order Markov chain as Bayesian network

25

Raint-1 Raint Raint+1

Umbrellat-1 Umbrellat Umbrellat+1

Rt-1 P(Rt | Rt-1)

T 0.7

F 0.3

Rt P(Ut | Rt)

T 0.9

F 0.2

“cause” / state

“effect” / evidence

Outlook on lectures 12-14 and beyond

26

• From Markov Chains to Markov Decision Processes (MDP)

• MDP and Reinforcement Learning, MCMC (briefly)

• Policy Search, Policy / Value Iteration, Q-Learning, SARSA-learning

• Lab 6 is already online (in a provisional version)

• Save the date: January 7, 13-15, double guest seminar on ML  
with Marc Deisenroth (University College, London) and Shakir Mohamed (DeepMind)  
to be found in the calendar on http://rss.cs.lth.se  
PLEASE REGISTER if you are interested!!!

http://rss.cs.lth.se

Today’s summary

27

• Summarised Bayesian learning approaches based on MLE, MAP, and Optimal Bayes

• Introduced Naive Bayesian Classifiers

• Introduced Gaussian (Mixture) Models and GNBs (very briefly)

• Reading:

• Murphy, ch 11

• https://ibug.doc.ic.ac.uk/media/uploads/documents/expectation_maximization-1.pdf

• Mitchell, chapter 6

• Bayesian Networks: see also Russel / Norvig, ch 14)

https://ibug.doc.ic.ac.uk/media/uploads/documents/expectation_maximization-1.pdf

