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representation)
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Material based on Lecture Slides on Probabilistic Representation and Bayesian Learning, EDAF70, Spring 2018, 
Lecture 11, EDAN95 Fall 2018

Goodfellow et al, “Deep Learning”, and Russel/Norvig, “AI - A Modern Approach”
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Today’s agenda
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• Recap conditional / posterior probabilities, Bayes’ rule, independence / conditional 
independence

• Brief introduction to Bayesian Networks (BN)

• The Naive Bayesian Classifier as special case of a BN

• Learning a Bayesian Classifier

• Gaussian Mixture Models
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A robot’s view of the world...
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Which “leg-like” data point patterns were caused by a person’s leg, which by furniture?



Or back to MNIST
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Which combination of pixel values are most often seen for each of the numbers?  
Which number is it that best explains the pixel values of a specific sample?



We want to classify / categorize / label new observations based on experience

More general: We want to predict and explain based on (limited) experience, to find 
categories / labels for observations or even the model for “how things work” (transition 
models, sensor models) given a series of (explained) observations.

First needed: Recap on conditional probabilities!

Bayesian learning
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Bayesian Probability

Probabilistic assertions summarise effects of

laziness: failure to enumerate exceptions, qualifications, etc.

ignorance: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability:

Probabilities relate propositions to one’s state of knowledge (A = “the observed 
pattern in the data was caused by a person”)

e.g., P( A) = 0.2 

e.g., P( A | there is a ton of “leggy” furniture in the respective room) = 0.1

Not claims of a “probabilistic tendency” in the current situation, but maybe 
learned from past experience of similar situations.

Probabilities of propositions change with new evidence:

e.g., P( A | ton of furniture, dataset obtained at 7:30 by a bot) = 0.05

7



Some notations
We express propositions as random variables taking on certain values directly

We look then for example at 

P( X = xi), i = 1,… n, for all n values xi of the Variable X

Thus: P( X = x1) = P( X = x2) = 1/2

with e.g., x1 = “dice roll outcome is odd number” and x2 = “dice roll outcome is even number”

For the distribution over the possible values of X we get then:

ℙ( X) = < P( X = x1), P( X = x2), …, P( X = xn) >

and we use vector notation P( X) to indicate that we iterate over a subset of the values for X in 
a computation of a joint distribution, e.g.

ℙ( X, Y)    =    ℙ( X | Y) P( Y) describes a set of equations, expressing the joint 
probability distribution of X and Y as conditional probability distribution of X in 
dependency of  the possible (or specifically given) values of  Y
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Prior probability
Prior or unconditional probabilities of propositions

e.g., P( Person = true) = 0.2 and 

P( Weather = sunny) = 0.72               (e.g., known from statistics)

correspond to belief prior to the arrival of any (new) evidence

Probability distribution gives values for all possible assignments (normalised):

ℙ(Weather) = ⟨0.72, 0.1, 0.08, 0.1⟩

Joint probability distribution for a set of (independent) random variables gives the 
probability of every atomic event on those random variables (i.e., every sample point):  
 
ℙ(Weather, Person) = ℙ(Weather) X ℙ(Person), i.e., a 4 x 2 matrix of values:

Weather sunny rain cloudy snow
Person

true 0.144 0.02 0.016 0.02

false 0.576 0.08 0.064 0.08

9



Posterior probability
Most often, there is some information, i.e., evidence, that one can base their belief on:

e.g., P( person) = 0.2 (prior, no evidence for anything), but

P( person | leg-size) = 0.6

or

P( number = 0) = 0.1 (in a uniformly distributed subset of MNIST-data), but

P( number = 0 | pixel[36] = black) = 0.6 (rough, educated guess based on the digits data)

corresponds to belief after the arrival of some evidence (also: posterior or conditional probability).                                                               

OBS: NOT “if leg-size, then 60% chance of person”

THINK “given that leg-size is all I know” instead!
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Evidence remains valid after more evidence arrives, but it might become less useful

Evidence may be completely useless, i.e., irrelevant.

P( person | leg-size, sunny) = P( person | leg-size)

Domain knowledge lets us do this kind of inference.



Posterior probability (2)
Definition of conditional / posterior probability:

P( a | b) =                   if P( b) ≠ 0

or as Product rule (for a and b being true, we need b true and then a true, given b):

P( a ∧ b)    =    P( a | b) P( b)    =    P( b | a) P( a)

and in general (independency cannot be assumed) for whole distributions (e.g.):                                                               

ℙ( Weather, Person)    =    ℙ( Weather | Person) P( Person)
(a 4x2 set of equations, governed by the chosen (given) value for Person from 
the array over possible values, hence P)  

Chain rule (successive application of product rule):

ℙ( X₁, ..., Xn)  = ℙ( X₁, ..., Xn-1) ℙ( Xn | X₁, ..., Xn-1)

= ℙ( X₁, ..., Xn-2) ℙ( Xn-1 | X₁, ..., Xn-2) ℙ( Xn | X₁, ..., Xn-1)

= ... = ∏    ℙ( Xi | X₁, ..., Xi-1) 

P( a ∧ b)
-----------------------------------------

   P( b)

n

i=1
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Bayes’ Rule
Recap product rule: P( a ∧ b) = P( a | b) P( b) = P( b | a) P(a)

⇒  Bayes’ Rule P( a | b) = 

or in distribution form (vector notation to express, that for the distribution, we 
normally look at all possible outcomes for Y that govern P(X)):

ℙ(  Y | X) =                         =  α ℙ( X | Y) P(  Y) 

Useful for assessing diagnostic probability from causal probability

P( cause | effect)  = 

E.g., with M “meningitis”, S “stiff neck”:  

 
P( m | s) =                        =                        = 0.0014   (not too bad, really!)
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ℙ( X | Y) P( Y)
-----------------------------------------------------------------

      P( X)

P( effect | cause) P( cause)
-------------------------------------------------------------------------------------------------------------------------------

             P( effect)

P( b | a) P( a)
--------------------------------------------------------------

       P( b)

P( s | m) P( m)
-------------------------------------------------------------------

       P( s)

0.7 * 0.00002
—————————————————————————————

      0.01



Independence
A and B are independent, i.e.,  A ⊥ B iff

P( A | B) =  P( A)    or    P( B | A) = P( B)    or   P( A, B) = P( A) P( B)

                                                           

ℙ( Leg-size, Curved, Person, Weather)    =    ℙ( Leg-size, Curved, Person) ℙ( Weather)

32 entries reduced to 8 + 4 (Weather is not Boolean!).  
This absolute (unconditional) independence is powerful but rare!

Some fields (like robotics and computer vision, or, as used in the AIMA book, 
dentistry) have still a lot, maybe hundreds, of variables, none of them being 
independent. 

What can be done to overcome this mess...? 

13

PersonPerson

Weather

Leg-size            Curved

decomposes into

Leg-size   Curved

Weather



Conditional independence
ℙ( Leg-size, Person, Curved) has 23 - 1 = 7 independent entries (must sum up to 1)

But: If there is a person, the probability for “Curved” does not depend on whether the 
pattern has leg-size (this dependency is now “implicit” in some sense):

(1) ℙ( Curved | leg-size, person) = ℙ( Curved | person)

The same holds when there is no person:

(2) ℙ( Curved | leg-size, ¬person) = ℙ( Curved | ¬person)

Curved is conditionally independent of Leg-size given Person:

ℙ( Curved | Leg-size, Person) = ℙ( Curved | Person)

Writing out the full joint distribution using chain rule:

ℙ( Leg-size, Curved, Person)                                                                                  
=  ℙ( Leg-size | Curved, Person) ℙ( Curved, Person)                                              
=  ℙ( Leg-size | Curved, Person) ℙ( Curved | Person) ℙ( Person)                                      
=  ℙ( Leg-size | Person) ℙ( Curved | Person) ℙ( Person)

gives thus 2 + 2 + 1 = 5 independent entries
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Bayesian networks
A simple, graphical notation for conditional independence assertions and hence for 
compact specification of full joint distributions

Syntax:
a set of nodes, one per random variable
a directed, acyclic graph (link ≈ “directly influences”)
a conditional distribution for each node given its parents:
ℙ( Xi | Parents( Xi))

In the simplest case, conditional distribution represented as a 

conditional probability table ( CPT) 

giving the distribution over Xi  for each combination of parent values
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Example
Topology of network encodes conditional independence assertions:

Weather is (unconditionally, absolutely) independent of the other variables

Leg-size and Curved are conditionally independent given Person
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Person

Leg-size Curved
Weather

P(W=sunny) P(W=rainy) P(W=cloudy) P(W=snow)

0.72 0.1 0.08 0.1

P(Per) P(¬Per)

0.2 0.8

Per P(L|Per) P(¬L|Per)

T 0.6 0.4

F 0.1 0.9

Per P(C|Per) P(¬C|Per)

T 0.9 0.1

F 0.2 0.8

We can skip the dependent columns in the tables to reduce complexity!

P(W=sunny) P(W=rainy) P(W=cloudy)

0.72 0.1 0.08

P(Per)

0.2

Per P(T|Per)

T 0.6

F 0.1

Per P(C|Per)

T 0.9

F 0.2
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.  .  .

Bayes’ Rule and conditional independence
ℙ( Person | leg-size ∧ curved)                                                                                  
=  α ℙ( leg-size ∧ curved | Person) ℙ( Person)                                                
=  α ℙ( leg-size | Person)ℙ( curved | Person) ℙ( Person)                                      

An example of a naive Bayes model:

ℙ( Cause, Effect1, ...., Effectn) =   ℙ( Cause) ∏i ℙ( Effecti | Cause) 

The total number of parameters is linear in n
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Cause

Effect 1 Effect n

Person

Leg-size Curved



.  .  .

A (super naive) NBC for the digits data

          

P(X = Number) = arg max
k

[P(Number = k, Pixel0, . . . , Pixeln−1)]

= arg max
k

[P(Number = k)∏
i

P(Pixeli = Xi |Number = k)]

20

Number

Pixel 0 Pixel 63

CPTjk = P(Pixel0 = vj |Number = k) CPTjk = P(Pixel63 = vj |Number = k)
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.  .  .

Towards a (less naive) NBC
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Number

Pixel 0 Pixel 63

Super naive assumption was    

 
    with 

CPTijk = P(Pixeli = vj |Number = k) =
|Xi vj

|

|Xk |

Xivj
= {examples X belonging to class k, where Pixeli(X) = vj}

CPT0 j k CPT63 j k



Does that really work well?
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• The digits data set has images with 8x8 = 64 pixels with discrete values in the range [0, …, 16]

• The more realistic MNIST_Light data has 20x20 = 400 pixels with (discrete) values in the 
range [0.0, …, 255.0]

• Is there a more general way to express how much an example belongs to a class?

• Assign “padded” values with the m-estimate to avoid empty slots (see the text example)

• “Blur” the probabilities by using a suitable distribution (often, not always, a Gaussian Normal 
Distribution can help)



Excourse: Classifying text
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Our approach to representing arbitrary text is disturbingly simple: Given a text document, 

such as this paragraph, we define an attribute for each word position in the document and 

define the value of that attribute to be the English word found in that position. Thus, the 

current paragraph would be described by 111 attribute values, corresponding to the 111 word 

positions. The value of the first attribute is the word “our”, the value of the second attribute is 

the word “approach”, and so on. Notice that long text documents will require a larger number 

of attributes than short documents. As we shall see, this will not cause us any trouble. (*)

vNB = argmax P(vj) ∏i111 P( ai | vj ) = P( vj) P( a1 = “our” | vj) * .... * P( a111 = “trouble” | vj)
               vj ∈ {like, dislike}

(*)[Tom M. Mitchell, “Machine Learning”, p 180]



Naive Bayes Classifier for text
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Given a test person who classified 1000 text samples into the categories “like” and “dislike” (i.e., the target value 
set V) and those text samples (Examples), the text from the previous slide is to be classified with the help of the 
Naive Bayes Classifier. This algorithm (from Tom M. Mitchell, “Machine Learning”, p 183) assumes (and learns) the 
m-estimate for P( wk | vj), the term describing the probability that a randomly drawn word from a document in 
class vj  will be the word wk.

LEARN_NAIVE_BAYES_TEXT( Examples, V)
/* learn probability terms P( wk | vj) and the class prior probabilities P( vj ) */
1. Collect all words, punctuation, and other tokens that occur in Examples

•  Vocabulary ⟵	the set of	all distinct words and other tokens occurring in any text document from Examples
2. calculate the required P( vj ) and P( wk | vj) terms

• docsj ⟵	the subset of documents from Examples for which the target value is vj

• P( vj ) ⟵	| docsj | / | Examples |
• Textj  ⟵	a single document created by concatenating all members of docsj

• n  ⟵	total number of distinct word positions in Textj
• for each word wk  in Vocabulary

• nk ⟵	number of times word wk occurs in Textj
• P( wk | vj) ⟵	( nk +1) / ( n + | Vocabulary |)                             /* m-estimate */

CLASSIFY_NAIVE_BAYES_TEXT( Doc)
/* Return the estimated target value for the document Doc. ai denotes the word found in ith position within Doc.

• positions ⟵	all word positions in Doc that contain tokens found in Vocabulary
• Return vNB, where                  

                                                 vNB = argmax    P(vj)    ∏       P( ai | vj ) 
                                                            vj ∈V            i ∈positions
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Gaussian Mixture Model
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• Assume that the n attributes in the example set form the axes of an n-dimensional feature 
space, i.e., each example is a “point” in that space.

• The examples belonging to a class will then somehow “gather” around some centre “point”

• The degree of “belonging” can be expressed as a continuous PDF - very often a Gaussian 
Normal distribution is suitable, which gives then a Gaussian Mixture Model (the 
multidimensional bell “curves” will most likely overlap, hence, there is a mixture of several 
distributions that explain a given data point - the sample to be classified).

• see Goodfellow (3) / Murphy (2) for other “standard” distributions



.  .  .

Gaussian Naive Bayesian Classifier

Classification is then handled for unseen sample : 

          

Xnew

P(Xnew = Number) = arg max
k

[P(Number = k, Pixel0, . . . , Pixeln−1)]

= arg max
k

[P(Number = k)∏
i

P(Pixeli(Xnew) |Number = k)]
28

Number

Pixel 0 Pixel 63

   

 
 with  and 

CPTik = (μik, σik), P(Pixeli = x |Number = k) =
1

2πσ2
ik

e
− 1

2σ2
ik

(x−μik)2

μik = mean(Pixeli(X)) σ2
ik = var(Pixeli(X)) ∀ X ∈ {examples where Number = k}

CPT0 j k CPT63 j k



Outlook on lab 5
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• Several implementations of statistical classifiers (NCC, NBC, and GNB)

• Several data sets

• Make sure that you can show / discuss results for any required combination of data set 
and classifier, do not overwrite anything as you go …

• Do not panic regarding the timing - the code for one arbitrary classifier is in the ballpark 
of < 55 LoC, with ~15 LoC being the core part that would have to be adapted to the 
respective classifier.

• No report to be delivered for this lab session - but be prepared that the content might 
be relevant to the next report assignment connected to lab session 6.



Today’s summary
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• Refreshed memory on conditional probabilities, Bayes’ rule, independence, conditional 
independence

• [Gave a short intro / recap to Bayesian Networks (see Russel / Norvig, ch 14)] 

• Introduced Naive Bayesian Classifiers

• Introduced Gaussian Mixture Models and GNBs (very briefly)

• Reading:

• Goodfellow, ch 3, Murphy, ch 2

• Lecture slides lecture 11, 2018

• Mitchell, chapter 6


