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Learning situation: A model
An agent interacts with its environment

The agent performs actions

Actions have influence on the environment’s state

The agent observes the environment’s state and                                                  
receives a reward from the environment
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Solving the equation

There are two ways of solving (this “optimal” version of) Bellman’s equation

Uπ(s) = r( s, π(s)) +  γ·Uπ( δ( s, π(s))) 

• Directly:  Uπ(s) = r( s, π(s)) +  γ·∑s’  P( s’ | s, π(s)) Uπ(s’)

• Iteratively (Value / utility iteration), stop when equilibrium is reached, i.e., “nothing 
happens”

U       (s) ⟵ r( s, π(s)) +  γ·U    ( δ( s, π(s)))
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Finding optimal policy and value function

How can we find an optimal policy π*?

That would be easy if we had the optimal value / utility function U*:

π*(s) = argmax( r( s, a) +  γ·U*( δ( s, a))) 
   a

Apply to the “optimal version” of Bellman’s equation

U*(s) = max( r( s, a) +  γ·U*( δ( s, a))) 
      a

Tricky to solve ... but possible:

Combine policy and value iteration by switching in each iteration step
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Policy iteration

Policy iteration provides exactly this switch.

For each iteration step k:

πk(s) = argmax( r( s, a) +  γ·Uk( δ( s, a))) 
   a

Uk+1(s) = r( s, πk(s)) +  γ·Uk( δ( s, πk(s)))    

 7



Policy Iteration for Cartoon Walker

We cheat a bit, and use entirely known reward and transition functions… 
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Figure 1: The two-legged robot can be in 16 di↵erent states, numbered from

0 to 15 as shown.

Action E↵ect

0 Move right leg up or down

1 Move right leg back or forward

2 Move left leg up or down

3 Move left leg back or forward

Table 1: Possible actions and their e↵ect on the robot.
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Action Effect
0 Move right (white) leg up / down
1 Move right (white) leg backward / forward
2 Move left (grey) leg up / down
3 Move left (grey) leg backward / forward

for s in range(len(policy)):
    policy[s] = argmax( 

lambda a: rew[s][a] + gamma * value[trans[s][a]], 
range(len(trans[s])))

for s in range(len(value)):
    a = policy[s]
    value[s] = rew[s][a] + gamma * value[trans[s][a]]
    



What if… 

… we take help of an ANN to learn a good policy? 

Policy gradients
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Training the network

If we had a “label” saying after a forward run that DOWN is the optimal thing to do 
for this state…

… we would compute the loss as:

- log P(y=DOWN | x) 

… but we do not have this label, so we use the reward R we get from using our  

policy ( the sampled action) to compute the loss:
   

Loss = - R log P(a) with R being r( s, a)

but that means that we have to save the gradients along our path through the state-
action space (if we do not train immediately after each episode), and all the <s, a, r> 
tuples (or actually <s, a, r, s’>)
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Policy Gradients for Cartoon Walker

Represent the walker’s policy in a network with
- a single valued array (one input value) for the state
- one of four possible output “classes” (sampled from probability distribution)  
- softmax activation 
- and not too many hidden neurons ;-)  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Figure 1: The two-legged robot can be in 16 di↵erent states, numbered from

0 to 15 as shown.

Action E↵ect

0 Move right leg up or down

1 Move right leg back or forward

2 Move left leg up or down

3 Move left leg back or forward

Table 1: Possible actions and their e↵ect on the robot.

2

Action Effect
0 Move right (white) leg up / down

1 Move right (white) leg backward / forward
2 Move left (grey) leg up / down
3 Move left (grey) leg backward / forward

Will need a lot more time and tweaking than the policy iteration!
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Monte Carlo approach
Usually the reward r( s, a) and the state transition function δ( s, a) are unknown to 
the learning agent. 

(What does that mean for learning to ride a bike?                                    ) 

Still, we can estimate U* from experience, as a Monte Carlo approach will do: 

• Start with a randomly chosen s

• Follow a policy π, store rewards and st for the step at time t

• When the goal is reached, update the Uπ(s) estimate for all visited states 
st with the future reward that was given when reaching the goal

• Start over with a randomly chosen s ...

Converges slowly... 
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Temporal Difference learning

Temporal Difference learning ...

... uses the fact that there are two estimates for the value of a state:                                             

before and after visiting the state

Or: What the agent believes before acting

Uπ( st)

and after acting

rt+1  +  γ · Uπ( st+1)
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Applying the estimates
The second estimate in the Temporal Difference learning approach is obviously 
“better”, ...

... hence, we update the overall approximation of a state’s value towards the more 
accurate estimate

Uπ( st) ⟵ Uπ( st) + α[ rt+1 +  γ·Uπ ( st+1) - Uπ( st)]

Which gives us a measure of the “surprise” or “disappointment” for the outcome of 
an action.

Converges significantly faster than the pure Monte Carlo approach. 
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Q-learning
Problem: 

even if  U is appropriately estimated, it is not possible to compute π, as the agent 
has no knowledge about δ and r, i.e., it needs to learn also that. 

Solution (trick): Estimate Q( s, a) instead of U(s):

Q( s, a): Expected total reward when choosing a in s

π(s) = argmax Q( s, a)
a

U*( s) = max Q*( s, a)
 a
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Learning Q
How can we learn Q?

Also the Q-function can be learned using the Temporal Difference approach:

Q( s, a) ⟵ Q( s, a) + α[ r  +  γ max Q( s’, a’) - Q( s, a)]
                   a’

With s’ being the next state that is reached when choosing action a’

Again, a problem: the max operator requires obviously a search through all possible 
actions that can be taken in the next step...
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SARSA-learning

SARSA-learning works similar to Q-learning, but it is the currently active policy that 
controls the actually taken action a’:

Q( s, a) ⟵ Q( s, a) + α[ r  +  γ Q( s’, a’) - Q( s, a)]

                   

Got its name from the “experience tuples” having the form                                

State-Action-Reward-State-Action

< s, a, r, s’, a’ >
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Improvements and adaptations

What can we do, when ...

• ... the environment is not fully observable?

• ... there are too many states?

• ... the states are not discrete?

• ... the agent is acting in continuous time?
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Allowing to be wrong sometimes

Exploration - Exploitation dilemma: When following one policy based on the 
current estimate of Q, it is not guaranteed that Q actually converges to Q* (the 
optimal Q).

A simple solution: Use a policy that has a certain probability of “being wrong” once 
in a while, to explore better.

• ε-greedy:  Will sometimes (with probability ε) pick a random action instead of the 
one that looks best (greedy)

• Softmax:  Weighs the probability for choosing different actions according to how 
“good” they appear to be.
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ε-greedy Q-learning

A suggested algorithm (ε-greedy implementation, given some “black box”, that 
produces r and s’, given s and a)

• Initialise Q(s, a) arbitrarily ∀s, a, choose learning rate α and discount factor γ

• Initialise s

• Repeat for each step:

• Choose a from s using ε-greedy policy based on Q(s, a)

• Take action a, observe reward r, and next state s'

• Update Q(s, a) ← Q(s, a) + α[r + γ max Q(s', a') - Q(s, a)]
                              a'

• replace s with s'

until T steps.
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Q-Learning for Cartoon Walker

Use the reward-function estimated in the Policy Iteration experiment. Apply Q-Learning with 
ε-greedy policy to compute (s’, a’) from (s, a)
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Figure 1: The two-legged robot can be in 16 di↵erent states, numbered from

0 to 15 as shown.

Action E↵ect

0 Move right leg up or down

1 Move right leg back or forward

2 Move left leg up or down

3 Move left leg back or forward

Table 1: Possible actions and their e↵ect on the robot.
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Action Effect
0 Move right (white) leg up / down

1 Move right (white) leg backward / forward
2 Move left (grey) leg up / down
3 Move left (grey) leg backward / forward

for i in range(steps):
    a = eps_greedyPolicy(Q[s], eps)
    s_n, rew, _ = env.go(a) #obtain new state and reward from s, a
    sequence.append(s_n)
    Q[s][a] = Q[s][a] + eta*(rew + gamma * max( Q[s_n]) - Q[s][a])
    s = s_n
    



Speeding up the process

Idea: the Time Difference (TD) updates can be used to improve the estimation also 
of states where the agent has already been earlier.

∀s, a  :  Q( s, a) ⟵ Q( s, a) + α[ rt+1  +  γ Q( st+1, at+1) - Q( st, at)] · e

With e the eligibility trace, telling how long ago the agent visited s and chose action a 

Often called TD( λ), with λ being the time constant that describes the “annealing 
rate” of the trace. 
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Application examples

• End-to-end learning systems 

• learning to interact with humans 
(Ali Ghadirzadeh et al, IROS 2016,  
https://ieeexplore.ieee.org/document/7759417)  
accessible from inside LU’s network (or when running over VPN)
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Application examples

• End-to-end learning systems 

• learning to throw a ball to hit the Pokèmon  
(Ali Ghadirzadeh et al, IROS 2017,  
https://ieeexplore.ieee.org/document/8206046)  
accessible from inside LU’s network (or when running over VPN)
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Application examples

• End-to-end learning systems 

• learning to play Go [https://www.nature.com/articles/nature24270]
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Lab assignment 7

• The lab assignment is given as a package with instructions, code skeleton and 
some useful links also to hands-on material at  
https://github.com/ErikGartner/edan95-rlagent-handout

• Some hands-on experimenting material can be found at  
https://github.com/ageron/handson-ml
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