
Reinforcement learning

Applied Machine Learning (EDAN95)
Lectures13 and 14

2018-12-17 and 2018-12-19
Elin A. Topp

Material based on “Hands-on Machine Learning with SciKit-learn and TensorFlow” (course book, chapter 16),
and on lecture “Belöningsbaserad inlärning / Reinforcement learning”
by Örjan Ekeberg, CSC/Nada, KTH, autumn term 2006 (in Swedish)

 1

Outline
• Reinforcement learning

• Problem definition

• Learning situation

• Role of the reward

• Simplified assumptions

• Central concepts and terms

• Known environment

• Bellman’s equation

• Approaches to solutions

• Unknown environment

• Temporal-Difference learning

• Q-Learning

• Sarsa-Learning

• Improvements

• The usefulness of making mistakes

• Eligibility Trace

 2

Outline
• Reinforcement learning

• Problem definition

• Learning situation

• Role of the reward

• Simplified assumptions

• Central concepts and terms

• Known environment

• Bellman’s equation

• Approaches to solutions

• Outlook: unknown environments, Monte Carlo method and policy gradients

• Unknown environment

• Temporal-Difference learning

• Q-Learning

• Sarsa-Learning

• Improvements

• The usefulness of making mistakes

• Eligibility Trace

 3

Learning situation: A model
An agent interacts with its environment

The agent performs actions

Actions have influence on the environment’s state

The agent observes the environment’s state and
receives a reward from the environment

 4

Agent Environment
Action a

State s

Reward r

Real life examples

 5

Real life examples

 5

Riding a bicycle

Powder skiing

A classic example: Grid World

Simplified “Wumpus world” with just two gold pieces

 6

G

G

A classic example: Grid World

Simplified “Wumpus world” with just two gold pieces

• Every state sj is represented by a field in the grid

 6

G

G

A classic example: Grid World

Simplified “Wumpus world” with just two gold pieces

• Every state sj is represented by a field in the grid

• Action a the agent can choose consists of moving one step to a neighbouring field

 6

G

G

A classic example: Grid World

Simplified “Wumpus world” with just two gold pieces

• Every state sj is represented by a field in the grid

• Action a the agent can choose consists of moving one step to a neighbouring field

• Reward: -1 in every step until one of the goals (G) is reached.

 6

G

G

Reinforcement learning

Learning of a behaviour (a strategy, a skill) without access to a right / wrong
measure for actions and decisions taken.

 7

Reinforcement learning

Learning of a behaviour (a strategy, a skill) without access to a right / wrong
measure for actions and decisions taken.

With the help of a reward, a measure is given, of how well things are going

 7

Reinforcement learning

Learning of a behaviour (a strategy, a skill) without access to a right / wrong
measure for actions and decisions taken.

With the help of a reward, a measure is given, of how well things are going

Note: The reward is not given in direct connection with a good choice of action
(temporal credit assignment)

 7

Reinforcement learning

Learning of a behaviour (a strategy, a skill) without access to a right / wrong
measure for actions and decisions taken.

With the help of a reward, a measure is given, of how well things are going

Note: The reward is not given in direct connection with a good choice of action
(temporal credit assignment)

Note: The reward does not tell what exactly it was, that made the action “good”  
(structural credit assignment)

 7

Learning situation: The agent’s task
The task:

Find a behaviour (action sequence) that maximises the overall reward

How long into the future should we spy?

Finite time horizon:

max E[∑ rt]

Infinite time horizon:

max E[∑ γt rt]

with γ being a discount factor for future rewards (0 < γ < 1)

 8

h

t=0

∞
t=0

The reward function’s role

The reward function depends on the type of task

 9

The reward function’s role

The reward function depends on the type of task

• Game (Chess, Backgammon, Go): Reward is given only in the end of the game, +1
for “win”, -1 for “loose”

 9

The reward function’s role

The reward function depends on the type of task

• Game (Chess, Backgammon, Go): Reward is given only in the end of the game, +1
for “win”, -1 for “loose”

• Avoid mistakes (Riding a bike, Learning to fly according to Hitchhiker’s Guide to
the Galaxy): Reward -1 when failing (falling)

 9

The reward function’s role

The reward function depends on the type of task

• Game (Chess, Backgammon, Go): Reward is given only in the end of the game, +1
for “win”, -1 for “loose”

• Avoid mistakes (Riding a bike, Learning to fly according to Hitchhiker’s Guide to
the Galaxy): Reward -1 when failing (falling)

• Avoid mistakes and try to do something useful (Learning to walk towards a goal):
Reward -10 when failing (falling) or -5 when moving backwards, +5 when an
action leads to a forward movement

 9

The reward function’s role

The reward function depends on the type of task

• Game (Chess, Backgammon, Go): Reward is given only in the end of the game, +1
for “win”, -1 for “loose”

• Avoid mistakes (Riding a bike, Learning to fly according to Hitchhiker’s Guide to
the Galaxy): Reward -1 when failing (falling)

• Avoid mistakes and try to do something useful (Learning to walk towards a goal):
Reward -10 when failing (falling) or -5 when moving backwards, +5 when an
action leads to a forward movement

• Find the shortest / cheapest / fastest path to a goal: Reward -1 for each step that
does not end in the goal

 9

Simplifying assumptions

 10

Simplifying assumptions

We assume for now:

 10

Simplifying assumptions

We assume for now:

• Discrete time (steps over time)

 10

Simplifying assumptions

We assume for now:

• Discrete time (steps over time)

• Finite number of possible actions ai

ai ∈ a1, a2, a3, ... , an

 10

Simplifying assumptions

We assume for now:

• Discrete time (steps over time)

• Finite number of possible actions ai

ai ∈ a1, a2, a3, ... , an

• Finite number of states sj

sj ∈ s1, s2, s3, ... , sm

 10

Simplifying assumptions

We assume for now:

• Discrete time (steps over time)

• Finite number of possible actions ai

ai ∈ a1, a2, a3, ... , an

• Finite number of states sj

sj ∈ s1, s2, s3, ... , sm

• The context is a constant (stationary) MDP (Markov Decision Process), where
reward and new state s’ only depend on s, a, and (random) noise

 10

Simplifying assumptions

We assume for now:

• Discrete time (steps over time)

• Finite number of possible actions ai

ai ∈ a1, a2, a3, ... , an

• Finite number of states sj

sj ∈ s1, s2, s3, ... , sm

• The context is a constant (stationary) MDP (Markov Decision Process), where
reward and new state s’ only depend on s, a, and (random) noise

• Environment is observable

 10

The agent’s internal representation

 11

The agent’s internal representation

• An agent’s policy π is the “rule” after which the agent chooses its action a in a
given state s

π(s) ⟼ a

 11

The agent’s internal representation

• An agent’s policy π is the “rule” after which the agent chooses its action a in a
given state s

π(s) ⟼ a

• An agent’s utility function U describes the expected future reward given s, when
following policy π

Uπ(s) ⟼ ℝ

 11

Grid World: A state’s value

A state’s value depends on the chosen policy

 12

Grid World: A state’s value

A state’s value depends on the chosen policy

 12

0 -1 -2 -3

-1 -2 -3 -2

-2 -3 -2 -1

-3 -2 -1 0

U with optimal policy

Grid World: A state’s value

A state’s value depends on the chosen policy

 12

0 -1 -2 -3

-1 -2 -3 -2

-2 -3 -2 -1

-3 -2 -1 0

U with optimal policy

0 -14 -20 -22

-14 -18 -22 -20

-20 -22 -18 -14

-22 -20 -14 0

U with random policy

Cartoon Walker

16 discrete states, some really bad, 4 discrete actions, only some making the walker walk

 13

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 1: The two-legged robot can be in 16 di↵erent states, numbered from

0 to 15 as shown.

Action E↵ect

0 Move right leg up or down

1 Move right leg back or forward

2 Move left leg up or down

3 Move left leg back or forward

Table 1: Possible actions and their e↵ect on the robot.

2

Action Effect
0 Move right (white) leg up / down
1 Move right (white) leg backward / forward
2 Move left (grey) leg up / down
3 Move left (grey) leg backward / forward

Bayesian reinforcement learning

 14

Bayesian reinforcement learning

A remark:

 14

Bayesian reinforcement learning

A remark:

One form of reinforcement learning integrates Bayesian learning into the process to
obtain the transition model, i.e., P(s’ | s, π(s))

 14

Bayesian reinforcement learning

A remark:

One form of reinforcement learning integrates Bayesian learning into the process to
obtain the transition model, i.e., P(s’ | s, π(s))

This means to assume a prior probability for each hypothesis on how the model
might look like and then applying Bayes’ rule to obtain the posterior.

 14

Bayesian reinforcement learning

A remark:

One form of reinforcement learning integrates Bayesian learning into the process to
obtain the transition model, i.e., P(s’ | s, π(s))

This means to assume a prior probability for each hypothesis on how the model
might look like and then applying Bayes’ rule to obtain the posterior.

We are not going into details here!

 14

Outline
• Reinforcement learning

• Problem definition

• Learning situation

• Roll of the reward

• Simplified assumptions

• Central concepts and terms

• Known (observable) environment

• Bellman’s equation

• Approaches to solutions

• Outlook: unknown environments, Monte Carlo method and policy gradients

• Unknown environment

• Temporal-Difference learning

• Q-Learning

• Sarsa-Learning

• Improvements

• The usefulness of making mistakes

• Eligibility Trace

 15

Environment model

 16

Environment model

• Where do we get in each step?

δ(s, a) ⟼ s’

 16

Environment model

• Where do we get in each step?

δ(s, a) ⟼ s’

• What will the reward be?

r(s, a) ⟼ ℝ

 16

Environment model

• Where do we get in each step?

δ(s, a) ⟼ s’

• What will the reward be?

r(s, a) ⟼ ℝ

 16

Environment model

• Where do we get in each step?

δ(s, a) ⟼ s’

• What will the reward be?

r(s, a) ⟼ ℝ

The utility values of different states obey Bellman’s equation, given a fixed policy π:

Uπ(s) = r(s, π(s)) + γ·Uπ(δ(s, π(s)))

 16

Solving the equation

There are two ways of solving (this “optimal” version of) Bellman’s equation

Uπ(s) = r(s, π(s)) + γ·Uπ(δ(s, π(s)))

• Directly: Uπ(s) = r(s, π(s)) + γ·∑s’ P(s’ | s, π(s)) Uπ(s’)

• Iteratively (Value / utility iteration), stop when equilibrium is reached, i.e., “nothing
happens”

U (s) ⟵ r(s, π(s)) + γ·U (δ(s, π(s)))

 17

π
k+1

π
k

Finding optimal policy and value function

 18

Finding optimal policy and value function

How can we find an optimal policy π*?

 18

Finding optimal policy and value function

How can we find an optimal policy π*?

That would be easy if we had the optimal value / utility function U*:

π*(s) = argmax(r(s, a) + γ·U*(δ(s, a)))
 a

 18

Finding optimal policy and value function

How can we find an optimal policy π*?

That would be easy if we had the optimal value / utility function U*:

π*(s) = argmax(r(s, a) + γ·U*(δ(s, a)))
 a

Apply to the “optimal version” of Bellman’s equation

U*(s) = max(r(s, a) + γ·U*(δ(s, a)))
 a

 18

Finding optimal policy and value function

How can we find an optimal policy π*?

That would be easy if we had the optimal value / utility function U*:

π*(s) = argmax(r(s, a) + γ·U*(δ(s, a)))
 a

Apply to the “optimal version” of Bellman’s equation

U*(s) = max(r(s, a) + γ·U*(δ(s, a)))
 a

Tricky to solve ... but possible:

Combine policy and value iteration by switching in each iteration step

 18

Policy iteration

 19

Policy iteration

Policy iteration provides exactly this switch.

 19

Policy iteration

Policy iteration provides exactly this switch.

For each iteration step k:

πk(s) = argmax(r(s, a) + γ·Uk(δ(s, a)))
 a

Uk+1(s) = r(s, πk(s)) + γ·Uk(δ(s, πk(s)))

 19

Policy Iteration for Cartoon Walker

We cheat a bit, and use entirely known reward and transition functions…

 20

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 1: The two-legged robot can be in 16 di↵erent states, numbered from

0 to 15 as shown.

Action E↵ect

0 Move right leg up or down

1 Move right leg back or forward

2 Move left leg up or down

3 Move left leg back or forward

Table 1: Possible actions and their e↵ect on the robot.

2

Action Effect
0 Move right (white) leg up / down
1 Move right (white) leg backward / forward
2 Move left (grey) leg up / down
3 Move left (grey) leg backward / forward

for s in range(len(policy)):
 policy[s] = argmax(

lambda a: rew[s][a] + gamma * value[trans[s][a]],
range(len(trans[s])))

for s in range(len(value)):
 a = policy[s]
 value[s] = rew[s][a] + gamma * value[trans[s][a]]

Monte Carlo approach

 21

Monte Carlo approach
Usually the reward r(s, a) and the state transition function δ(s, a) are unknown to
the learning agent.

 21

Monte Carlo approach
Usually the reward r(s, a) and the state transition function δ(s, a) are unknown to
the learning agent.

(What does that mean for learning to ride a bike?)

 21

Monte Carlo approach
Usually the reward r(s, a) and the state transition function δ(s, a) are unknown to
the learning agent.

(What does that mean for learning to ride a bike?)

 21

Monte Carlo approach
Usually the reward r(s, a) and the state transition function δ(s, a) are unknown to
the learning agent.

(What does that mean for learning to ride a bike?)

Still, we can estimate U* from experience, as a Monte Carlo approach will do:

• Start with a randomly chosen s

• Follow a policy π, store rewards and st for the step at time t

• When the goal is reached, update the Uπ(s) estimate for all visited states
st with the future reward that was given when reaching the goal

• Start over with a randomly chosen s ...

 21

Monte Carlo approach
Usually the reward r(s, a) and the state transition function δ(s, a) are unknown to
the learning agent.

(What does that mean for learning to ride a bike?)

Still, we can estimate U* from experience, as a Monte Carlo approach will do:

• Start with a randomly chosen s

• Follow a policy π, store rewards and st for the step at time t

• When the goal is reached, update the Uπ(s) estimate for all visited states
st with the future reward that was given when reaching the goal

• Start over with a randomly chosen s ...

Converges slowly...

 21

Policy gradients

 22

G

?

? ?

? G

𝜫(s) a

What if…

Policy gradients

 22

G

?

? ?

? G

𝜫(s) a

What if…

… we take help of an ANN to learn a good policy?

Policy gradients

 22

G

?

? ?

? G

𝜫(s) a

Training the network

 23

Training the network

If we had a “label” saying after a forward run that DOWN is the optimal thing to do
for this state…

 23

Training the network

If we had a “label” saying after a forward run that DOWN is the optimal thing to do
for this state…

… we would compute the loss as:

- log P(y=DOWN | x)

… but we do not have this label, so we use the reward R we get from using our  

policy (the sampled action) to compute the loss:

Loss = - R log P(a) with R being r(s, a)

but that means that we have to save the gradients along our path through the state-

action space

 23

Policy Gradients for Cartoon Walker

Represent the walker’s policy in a network with
- a single valued array (one input value) for the state
- one of four possible output “classes” (sampled from probability distribution)  
- softmax activation 
- and not too many hidden neurons ;-)  

 24

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 1: The two-legged robot can be in 16 di↵erent states, numbered from

0 to 15 as shown.

Action E↵ect

0 Move right leg up or down

1 Move right leg back or forward

2 Move left leg up or down

3 Move left leg back or forward

Table 1: Possible actions and their e↵ect on the robot.

2

Action Effect
0 Move right (white) leg up / down

1 Move right (white) leg backward / forward
2 Move left (grey) leg up / down
3 Move left (grey) leg backward / forward

Will need a lot more time and tweaking than the policy iteration!

Lab assignment 7

• The lab assignment is given as a package with instructions, code skeleton and
some useful links also to hands-on material at  
https://github.com/ErikGartner/edan95-rlagent-handout

• Some hands-on experimenting material can be found at  
https://github.com/ageron/handson-ml

 25

https://github.com/ErikGartner/edan95-rlagent-handout
https://github.com/ageron/handson-ml

