
Lunds Tekniska Högskola EDAN95
Institutionen för datavetenskap HT 2018

Lösning: Tillämpad Maskininlärning
Solution: Applied Machine Learning
Tentamen 2019–05–02, 14.00–19.00

1 Boosting (JM): 5p

1c, 2b, 3a (+c, i.e., a by itself is enough for being accepted), 4c, 5b

2 k-Means (JM): 10p

Cluster means:
a) (1.83, 1.33), b) (3.625, 4.625), c) (5, 7)

3 Decision trees (JM): 10p

First split attribute becomes Education.

For branches College and HighSchool, no further split is necessary, the nodes are pure (class
Medium for 5 samples in Education:Collegeand class Low for 4 samples in Education:HighSchool).

For the branch University, another split is needed, here the split can be done over either Income
or Status (both result in two children with 0 impurity, 3 samples of class Low landing in either
Income:Low or Status:Married, 3 of class High landing in Income:High or Status:Single).

4 Neural networks (PN): 35p

4.1 Convolutional Neural Networks

A suggestion for a solution to the programming task (originally a notebook, split into cells to see the
output):

Examination May 2019
One−hot Encoding

The corpus
corpus = [[’ Chrys ler ’ , ’ plans ’ , ’new ’ , ’ investments ’ , ’ in ’ , ’ Latin ’ , ’ America ’ , ’ . ’] ,

1

[’ Chrys ler ’ , ’ plans ’ , ’ major ’ , ’ investments ’ , ’ in ’ , ’Mexico ’ , ’ . ’]]

Li s t o f unique words
words = sor t ed (

l i s t (s e t ([word . lower () f o r sentence in corpus f o r word in sentence])))
words

idx2word = d i c t (enumerate (words))
idx2word

word2idx = {v : k f o r (k , v) in idx2word . i tems ()}
word2idx

z e ro s = [0] ∗ l en (words)
z e r o s

new_corpus = []
f o r sentence in corpus :

new_sentence = []
f o r word in sentence :

temp = ze ro s . copy ()
temp [word2idx [word . lower ()]] = 1
new_sentence += [temp]

new_corpus += [new_sentence]
new_corpus

Catego r i za t i on

from keras . da ta s e t s import r e u t e r s
from keras . p r ep ro c e s s i ng import sequence
max_features = 10000
maxlen = 500
batch_size = 32
pr in t (’ Loading data . . . ’)
(input_train , y_train) , (input_test , y_test) = r eu t e r s . load_data (

num_words=max_features)
p r i n t (l en (input_tra in) , ’ t r a i n sequences ’)
p r i n t (l en (input_test) , ’ t e s t sequences ’)
p r i n t (’Pad sequences (samples x time) ’)
input_tra in = sequence . pad_sequences (input_train , maxlen=maxlen)
input_test = sequence . pad_sequences (input_test , maxlen=maxlen)
p r i n t (’ input_tra in shape : ’ , input_tra in . shape)
p r i n t (’ input_test shape : ’ , input_test . shape)

2

word_index = r eu t e r s . get_word_index ()
reverse_word_index = d i c t ([(value , key) f o r (key , va lue) in word_index . i tems ()])
decoded_review = ’ ’ . j o i n (

[reverse_word_index . get (i − 3 , ’ ? ’) f o r i in input_tra in [2 0]])
decoded_review

import numpy as np
y_train [1]
cat_nbr = max(y_train) + 1

from keras . u t i l s . np_uti l s import t o_ca t ego r i c a l
y_train = to_ca t ego r i c a l (y_train)
y_test = to_ca t ego r i c a l (y_test)
y_train [1]

from keras . l a y e r s import Dense
from keras . models import Sequent i a l
from keras . l a y e r s import Embedding
from keras . l a y e r s import LSTM, B i d i r e c t i o n a l
model = Sequent i a l ()
model . add (Embedding (max_features , 32))
model . add (B i d i r e c t i o n a l (LSTM(32)))
model . add (Dense (cat_nbr , a c t i v a t i o n=’softmax ’))
model . compi le (opt imize r=’rmsprop ’ ,

l o s s =’ ca t ego r i ca l_cro s s en t ropy ’ ,
met r i c s =[’ acc ’])

model . summary ()

h i s t o r y = model . f i t (input_train , y_train ,
epochs=10,
batch_size=64,
v a l i d a t i o n_sp l i t =0.2)

r e s u l t s = model . eva luate (input_test , y_test)
r e s u l t s

import matp lo t l i b . pyplot as p l t
acc = h i s t o r y . h i s t o r y [’ acc ’]
val_acc = h i s t o r y . h i s t o r y [’ val_acc ’]
l o s s = h i s t o r y . h i s t o r y [’ l o s s ’]
va l_ los s = h i s t o r y . h i s t o r y [’ va l_loss ’]
epochs = range (1 , l en (acc) + 1)
p l t . p l o t (epochs , acc , ’ bo ’ , l a b e l =’Train ing acc ’)
p l t . p l o t (epochs , val_acc , ’b ’ , l a b e l =’Va l idat i on acc ’)

3

p l t . t i t l e (’ Tra in ing and va l i d a t i o n accuracy ’)
p l t . l egend ()
p l t . f i g u r e ()
p l t . p l o t (epochs , l o s s , ’ bo ’ , l a b e l =’Train ing l o s s ’)
p l t . p l o t (epochs , va l_loss , ’b ’ , l a b e l =’Va l idat i on l o s s ’)
p l t . t i t l e (’ Tra in ing and va l i d a t i o n l o s s ’)
p l t . l egend ()
p l t . show ()

5 Bayesian Learning / Classifiers (VK): 20p

Sketch for a solution:

1. Please refer to the lecture slides (Lectures 11 and 12, HT2018), but in short the theorem is the
same as Bayes’ rule and would be in this context:

P (y|x̄) =
P (x̄|y)P (y)

P (x̄)
forP (x̄) 6= 0.

It means that the probability for an observation belonging to class y can be computed knowing the
probability (likelihood) for something belonging to class y having generated the observation (i.e.,
P (x̄|y)) and the prior probability for the class P(y). The probability for making the observation
can be ignored if the rule is applied in distribution form (then it essentially is absorbed by the
normalising factor α).

2. Please refer to the lecture slides (see above), but it would be something like

P (x̄ = class y) = argmaxyP (x̄|y) ≈ argminy||µy − x̄||2

for the actual ML-estimate. The highest likelihood is approximated by the closest distance to
the respective mean of the class.

3. For the likelihoods, use Gaussian normal distributions with the given means and compute the
covariance matrix from the data (per class). Plug those into the ML-estimate.

4. 1) It will be a diagonal matrix, with only the variances per feature. Use the definition of the
covariance to proof this. 2) Refer to the definition of the covariance (see lecture slides lecture 11
and 12, HT2018).

5. iid: "Independent and identically distributed" random variables are mutually independent and
stem from the same distribution. If a respective assumption holds (at least with conditional
independence), the computation of joint probabilities becomes tractable also for multivariate
distributions, as it is merely the product of the probabilities / likelihoods.

4

6 MDPs / Reinforcement Learning (ET): 20p

1. 1) The policy π that the agent uses to find the next action a given the state s. 2) The utility
(value) of the state s under the policy π.

2. As given in lecture 13, HT2018, the Bellman equation under a fixed policy is:

Uπ(s) = r(s, π(s)) + γUπ(δ(s, π(s)))

The general form was also accepted.

3. Value Iteration solves the equation iteratively:

Uπ(s)k+1 = r(s, π(s)) + γUπk (δ(s, π(s)))

4. Transition function δ(s, a):
δ(0, 0) = 0, δ(0, 1) = 1, δ(0, 2) = 2, δ(0, 3) = 0,
δ(1, 0) = 1, δ(1, 1) = 1, δ(1, 2) = 3, δ(1, 3) = 0,
δ(2, 0) = 0, δ(2, 1) = 3, δ(2, 2) = 2, δ(2, 3) = 2,
(δ(3, 0) = 1, δ(3, 1) = 3, δ(3, 2) = 3, δ(3, 3) = 2, is not necessary, but can be given)

Reward function r(s, a):

r(s, a) =

{
1 for (s, a) ∈ {(1, 2), (2, 1)[and (3, 1), (3, 2) if actions in 3 are still considered]}
0 for all other (s, a)

5. See lecture slides lecture 13 and 14, HT2018, on Policy Iteration (pseudocode is given in lecture
slides)

6. Q-learning (assign a value to each state-action pair, update iteratively until convergence, assume
preferably an ε-greedy policy to balance exploitation vs exploration).

5

	Boosting (JM): 5p
	k-Means (JM): 10p
	Decision trees (JM): 10p
	Neural networks (PN): 35p
	Convolutional Neural Networks

	Bayesian Learning / Classifiers (VK): 20p
	MDPs / Reinforcement Learning (ET): 20p

